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Version of 24 August 2009

NOTES ON THE PROJECTIVE LIMIT THEOREM

OF KOLMOGOROV

HEINZ KÖNIG

Abstract. The new systematization in measure and integration due
to the author produced a version of the Kolmogorov projective limit
theorem which is far more comprehensive than the previous ones. The
present article is devoted to several consequences. In particular one
obtains a topological version which applies to arbitrary Hausdorff spaces.

1. Introduction and Preliminaries

The present article is part of the author’s new systematization in measure
and integration, of which the latest introduction and account is in [13]. One
of the fundamental points is the projective limit theorem of Kolmogorov [5].
Our new form of the theorem [9][10] is for inner • premeasures of mass one
(=:prob), where this time we assume • = στ . The assertion is the one-
to-one correspondence between the appropriate inner premeasures on an
infinite product space X = Π

t∈T
Yt and the consistent families of such ones on

the collection of all finite partial products Yp = Π
t∈p

Yt. Our inner extension

theorem with the incorporation of • = τ allows for the first time to overcome
the barrier of countably determined subsets of X in a natural manner, and
thus to arrive at an adequate concept and treatment of stochastic processes
[9][10][11][12].

The present paper wants to develop three consequences of our Kolmogorov
type projective limit theorem. The first consequence in section 3 is a topolog-
ical version of the theorem which applies to all Hausdorff spaces. In contrast,
the conventional theorems are restricted to Polish spaces or to Borel spaces,
the Borel subspaces of Polish spaces, and in Rao [16] to Hausdorff spaces
with countable base. The second consequence in section 4 is concerned with
the frequent form of the conventional projective limit theorem which assumes
inner regularity not for all members of the relevant consistent families but
restricted to the simplest ones which live on the factors Yt. In our framework
this is not a natural assumption, but we show that our theorem is apt to
include the situation.

In all these cases we first present the results in our natural form for inner
• prob premeasures on X. Then we specialize to the conventional forms for
measures on σ algebras. As a rule these domains consist of countably deter-
mined subsets of X, and thus are much too small in case of an uncountable

2000 Mathematics Subject Classification. 28A12, 28A35, 28C15, 28C20.
Key words and phrases. Inner premeasures, sequential and nonsequential ones, consis-

tent families, projective limits.



2 HEINZ KÖNIG

index set T . As a consequence it must be expected that the inner regularity
structure of the resultant measures cannot be expressed.

The third consequence in section 5 is devoted to the old method to obtain
decent projective limit measures via compactification of X. For this extended
matter we refer to Bogachev [2] Vol.II pp.447-448. It is obvious that our new
systematization renders the method obsolete. However, we cannot resist
to demonstrate that it can lead to situations which are best described as
compactification catastrophes: the basic space X is turned into an inner null
set!

The present section 1 continues with a few preliminaries, most of them
previous results collected for convenience. Then section 2 recalls our Kol-
mogorov type projective limit theorem, combined with a certain variant
which will be useful in the sequel.

Preliminaries on Set Systems. Most of the basic terms are as de-
fined in [6][8][14]. A nonvoid set system S on a nonvoid set X is called a
paving. We define S⋆ ⊂ Sσ ⊂ Sτ to consist of the unions of the nonvoid fi-
nite/countable/arbitrary subsystems of S, and S⋆ ⊂ Sσ ⊂ Sτ to consist of
the respective intersections. We also recall the shorthand notation • = ⋆στ .
The first two remarks have obvious proofs.

1.1 Remark. Let H : X → Y be a map between nonvoid sets X and Y ,
and B be a paving in Y . Then

H−1
(

⋃

B∈B

B
)

=
⋃

B∈B

H−1(B) and H−1
(

⋂

B∈B

B
)

=
⋂

B∈B

H−1(B),

H−1(B•) = (H−1(B))• and H−1(B•) = (H−1(B))•.

1.2 Remark. Let the Sl be pavings in Yl (l = 1, · · · , n), and thus S :=
(

n

Π
l=1

Sl

)⋆
a paving in Y :=

n

Π
l=1

Yl. If the Sl are lattices/rings/algebras then

S is a lattice/ring/algebra as well.

We turn to the set-theoretical notions of compactness initiated in Mar-
czewski [15]. These notions are weaker and more flexible than topological
compactness, and will be fundamental in the sequel. The paving S is de-
fined to be • compact iff each • subpaving of S with intersection ∅ has a
finite subpaving with intersection ∅. In case • = ⋆ this is obvious for all S.

1.3 Examples. 1) In a Hausdorff topological space X the compact subsets
form a τ compact paving Comp(X). 2) If the paving S in X is • compact
then S∪{X} is a • compact paving as well. This is a trivial remark, but its
trivial nature comes to an abrupt end when one passes to infinite products,
in particular to uncountable products.

We recall from [7] a few basic properties, of which 2) is the deepest one.

1.4 Properties. 1) If the paving S is • compact then S• is • compact as
well. 2) If the paving S is • compact then S⋆ is • compact as well. 3) Let
T be a nonvoid index set, and for each t ∈ T let St be a • compact paving
in Xt. Then the product paving S :=

∏

t∈T

St in X :=
∏

t∈T

Xt is • compact as

well.
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Preliminaries on Inner Premeasures. We start to recall from [9]
the simple remark 1.4 and the important transformation theorem 3.10 with
3.12.

1.5 Remark. Let S be a lattice with ∅ in X. The inner • premeasures
ϕ : S → [0,∞[ and the inner • premeasures ψ : S• → [0,∞[ are in one-to-
one correspondence via ϕ = ψ|S. Moreover ϕ• = ψ• = ψ⋆.

1.6 Theorem. Let H : X → Y be a map between X and Y , and let S in
X and T in Y be lattices with ∅ which fulfil

H(S•) ⊂ T• and H−1(T•) ⊂ S⊤S•.

If ϕ : S → [0,∞[ is an inner • premeasure and ψ := ϕ•

(

H−1(·)
)

|T < ∞,
then ψ : T → [0,∞[ is an inner • premeasure as well. It satisfies ψ• =
ϕ•

(

H−1(·)
)

partout and C(ψ•) = {B ⊂ Y : H−1(B) ∈ C(ϕ•)}.

1.7 Remark. Let H : X → Y be a map between X and Y , and assume
that the paving S in X is • compact and fulfils H−1({b}) ∈ S⊤S• for all
b ∈ Y . Then

H
(

⋂

M∈M

M
)

=
⋂

M∈M

H(M) for all M ⊂ S nonvoid • downward directed.

Thus if S is stable under finite intersections then H(S•) ⊂ (H(S)•.

We add another simple remark which extends [7] 2.11 and has a routine
proof. At last we recall the important recent result [14] 5.3.

1.8 Remark. Let P be a lattice with ∅ in X and S = P ∪ {X}. The
inner • prob premeasures ϑ : P → [0,∞[ and the inner • prob premeasures
ϕ : S → [0,∞[ with sup(ϕ|P) = 1 are in one-to-one correspondence via
ϑ = ϕ|P. It fulfils ϑ• = ϕ•.

1.9 Theorem. Assume that the set function ϕ : S → [0,∞[ on the lattice
S with ∅ can be extended to a content α : A → [0,∞] on a ring A ⊃ S

which is inner regular S, and that ϕ is downward • continuous at ∅. Then
ϕ is an inner • premeasure, and Φ := ϕ•|C(ϕ•) is an extention of α.

2. The Projective Limit Theorem for Inner Premeasures

In the present section the situation is as follows: Let T be an infinite index
set, and I = I(T ) consist of the nonvoid finite subsets p, q, · · · of T . We
assume a family (Yt)t∈T of nonvoid sets Yt with product set X = Π

t∈T
Yt, and

the finite partial products Yp = Π
t∈p

Yt for p ∈ I. Let Hp : X → Yp and

Hpq : Yq → Yp for p ⊂ q in I denote the canonical projections.

Next we assume a family (Kt)t∈T of lattices Kt in Yt such that Kt contains
the finite subsets of Yt and is • compact, where • = στ . We form the partial
products Kp =

(

Π
t∈p

Kt

)⋆
in Yp for p ∈ I, which retain these properties in view

of 1.2 and 1.4. The decisive construct is

S : = { Π
t∈T

St : St ∈ Kt ∪ {Yt} with St = Yt for almost all t ∈ T}⋆

=
(

⋃

p∈I

H−1
p

(

Π
t∈p

Kt

)

∪ {X}
)⋆

=
(

⋃

p∈I

H−1
p (Kp) ∪ {X}

)⋆
,
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which is a lattice in X with ∅ and X. Moreover S is • compact in view of
S ⊂

(

Π
t∈T

Kt ∪ {Yt}
)⋆

and 1.4. We add a few properties which have routine

proofs.

2.1 Properties. 1) For p ⊂ q in I we have

H−1
pq (Kp) ⊂ Kq⊤Kq and hence H−1

pq ((Kp)•) ⊂ Kq⊤(Kq)• from 1.1,

Hpq(Kq) ⊂ Kp and hence Hpq((Kq)•) ⊂ (Kp)• from 1.7.

2) For p ∈ I we have

H−1
p (Kp) ⊂ S and hence H−1

p ((Kp)•) ⊂ S• from 1.1,

Hp(S) ⊂ Kp⊤Kp and hence Hp(S•) ⊂ Kp⊤(Kp)• from 1.7.

We come to the projective limit theorem. The essentials of the present
version appeared for the first time in [9] 5.3, and the full assertion in [10]
theorem 9. In the sequel we shall often abbreviate ϕ•|C(ϕ•) =: Φ, etc.

2.2 Theorem. There is a one-to-one correspondence between

the families (ϕp)p∈I of inner • prob premeasures ϕp : Kp → [0,∞[ which
are consistent in the sense that ϕp = (ϕq)•(H

−1
pq (·))|Kp for p ⊂ q in I,

and the inner • prob premeasures ϕ : S → [0,∞[,

via ϕp = ϕ(H−1
p (·))|Kp for p ∈ I. It fulfils (ϕp)• = ϕ•(H

−1
p (·)) partout and

C((ϕp)•) = {B ⊂ Yp : H−1
p (B) ∈ C(ϕ•)} for p ∈ I.

Moreover if A ∈ S• and hence Hp(A) ∈ Kp⊤(Kp)• ⊂ C
(

(ϕp)•
)

for p ∈ I

from 2.1.2) then Φ(A) = inf
p∈I

(Φp(Hp(A)).

After this we turn to the variant announced above. We need a few prepa-
rations.

2.3 Remark. There is a one-to-one correspondence between

the above consistent families (ϕp)p∈I of inner • prob premeasures
ϕp : Kp → [0,∞[,

and the families (ψp)p∈I of inner • prob premeasures ψp : (Kp)• → [0,∞[,
consistent in the sense that ψp = (ψq)•(H

−1
pq (·))|(Kp)• for p ⊂ q in I,

via ϕp = ψp|Kp for p ∈ I. It fulfils (ϕp)• = (ψp)• for p ∈ I.

Proof. For each fixed p ∈ I one obtains from 1.5 a one-to-one corre-
spondence between the individual ϕp and ψp which fulfils (ϕp)• = (ψp)•.
It remains to show that (ϕp)p∈I is consistent ⇔ (ψp)p∈I is consistent. The
implication ⇐ is obvious. To see ⇒ we conclude from 2.1.1) that 1.6 can
be applied for p ⊂ q to Hpq : Yq → Yp and to Kq and Kp. Application to ϕq

and ϕp furnishes (ϕp)• = (ϕq)•(H
−1
pq (·)) partout and hence the assertion. ¤

Next we form two variants of S, the set systems in X defined to be

P :=
(

⋃

p∈I

H−1
p

(

Π
t∈p

Kt

))⋆
=

(

⋃

p∈I

H−1
p (Kp)

)⋆
and Q :=

(

⋃

p∈I

H−1
p

(

(Kp)•
))⋆

.

It is obvious that
⋃

p∈I

H−1
p

(

Π
t∈p

Kt

)

=
⋃

p∈I

{ Π
t∈T

St : St ∈ Kt for t ∈ p and St = Yt for t ∈ T r p}

is stable under finite intersections, and 1.1 then implies the same for the
two subsequent set systems. Thus P and Q are lattices with ∅ in X and
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P ⊂ Q. From 1.1 we see that Q ⊂ P• and hence Q• ⊂ P•, so that P• = Q•.
Moreover S = P ∪ {X} and hence S• = P• ∪ {X}. It follows that P and
Q are • compact. We need one more fact.

2.4 Property. For nonvoid M ⊂ T let YM = Π
t∈M

Yt, and HM : X → YM

denote the canonical projection. For • = στ then

Q• =
((

⋃

M•

H−1
M

(

Π
t∈M

Kt

))⋆)

•
=

((

⋃

M•

H−1
M

(

(( Π
t∈M

Kt)
⋆)•

))⋆)

•
.

Proof. ⊂) is clear from Q• = P•. ⊃) For A ∈ H−1
M

(

Π
t∈M

Kt

)

we have

A = H−1
M

(

Π
t∈M

St

)

with St ∈ Kt for t ∈ M , thus A = Π
t∈T

St with St = Yt for

t ∈ T r M . It follows that

A =
⋂

p⊂M

(

Π
t∈T

S
p
t

)

with S
p
t = St ∈ Kt for t ∈ p and S

p
t = Yt for t ∈ T r p.

Here Π
t∈T

S
p
t ∈ H−1

p

(

Π
t∈p

Kt

)

⊂ P ⊂ Q and hence A ∈ Q•. Thus we obtain the

first representation. The second one then follows from 1.1. ¤

2.5 Remark. There is a one-to-one correspondence between

the inner • prob premeasures ϕ : S → [0,∞[,
the inner • prob premeasures ϑ : P → [0,∞[,
and the inner • prob premeasures ψ : Q → [0,∞[,

via ϑ = ϕ|P and ϑ = ψ|P. It fulfils ϕ• = ϑ• = ψ•.

Proof. The correspondence ϕ 7→ ϑ follows from 1.8, because the projective
limit theorem 2.2 asserts for each p ∈ I that

sup
(

ϕ|H−1
p (Kp)

)

= sup
(

ϕ(H−1
p (·))|Kp

)

= supϕp = 1,

and hence that sup(ϕ|P) = 1. The correspondence ψ 7→ ϑ is clear from
P ⊂ Q and P• = Q• combined with 1.5. ¤

Now the variant of the projective limit theorem 2.2 reads as follows.

2.6 Theorem. There is a one-to-one correspondence between

the above consistent families (ψp)p∈I of inner • prob premeasures
ψp : (Kp)• → [0,∞[,

and the inner • prob premeasures ψ : Q → [0,∞[,

via ψp = ψ(H−1
p (·))|(Kp)• for p ∈ I. It fulfils (ψp)• = ψ•(H

−1
p (·)) partout

and C((ψp)•) = {B ⊂ Yp : H−1
p (B) ∈ C(ψ•)} for p ∈ I.

Moreover if A ∈ Q• and hence Hp(A) ∈ (Kp)•⊤(Kp)• ⊂ C((ψp)•) for p ∈ I

then Ψ(A) = inf
p∈I

Ψp(Hp(A)).

Proof. We have one-to-one correspondences

from 2.3 between the (ψp)p∈I and the (ϕp)p∈I ,
from 2.2 between the (ϕp)p∈I and the ϕ,
from 2.5 between the ϕ and the ϑ and between the ϑ and the ψ.
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The correspondences fulfil

ϕp = ψp|Kp and (ϕp)• = (ψp)• for p ∈ I,

ϕp = ϕ(H−1
p (·))|Kp and (ϕp)• = ϕ•(H

−1
p (·)) for p ∈ I,

ϑ = ϕ|P and ϑ• = ϕ•,

ϑ = ψ|P and ϑ• = ψ•.

Moreover C((ϕp)•) = {B ⊂ Yp : H−1
p (B) ∈ C(ϕ•)}. Thus for p ∈ I we obtain

(ψp)• = ψ•(H
−1
p (·)) partout, and H−1

p ((Kp)•) ⊂ Q from the definition of Q

implies that ψp = ψ(H−1
p (·))|(Kp)•. The final assertion then follows in the

same manner. ¤

3. The Topological Projective Limit Theorem

The present section retains the situation of the previous one, but specialized
as follows: The Yt for t ∈ T are assumed to be Hausdorff topological spaces,
with the Yp for p ∈ I as well as X and the YM for nonvoid M ⊂ T equipped
with the product topologies. Then we assume Kt = Comp(Yt) for t ∈ T and
• = τ . Thus [7] 2.4.2) asserts that

((

Π
t∈M

Kt

)⋆)

τ
=

((

Π
t∈M

Comp(Yt)
)⋆)

τ
= Comp(YM ) for nonvoid M ⊂ T,

in particular (Kp)τ = Comp(Yp) for p ∈ I. From the definition of Q and
from 2.4 we obtain

Q =
(

⋃

p∈I

H−1
p (Comp(Yp))

)⋆
and Qτ =

((

⋃

M 6=∅

H−1
M (Comp(YM ))

)⋆)

τ
.

After this the previous variant 2.6 has the immediate specialization which
follows.

3.1 Theorem. There is a one-to-one correspondence between

the consistent families (ψp)p∈I of Radon prob premeasures
ψp : Comp(Yp) → [0,∞[,

and the inner τ prob premeasures ψ : Q → [0,∞[,

via ψp = ψ(H−1
p (·))|Comp(Yp) for p ∈ I. It fulfils (ψp)τ = ψτ (H

−1
p (·))

partout and C((ψp)τ ) = {B ⊂ Yp : H−1
p (B) ∈ C(ψτ )} for p ∈ I.

Moreover if A ∈ Qτ and hence Hp(A) ∈ Comp(Yp)⊤Comp(Yp) ⊂ C((ψp)τ )
for p ∈ I then Ψ(A) = inf

p∈I
Ψp(Hp(A)).

We recall from our inner extension theorem and localization principle the
basic fact that Bor(Yp) ⊂ C((ψp)τ ) and hence H−1

p (Bor(Yp)) ⊂ C(ψτ ) for

p ∈ I. And we note that H−1
pq (Bor(Yp)) ⊂ Bor(Yq) for p ⊂ q in I, because

the projections Hpq : Yq → Yp are continuous. Thus the main part of the
above theorem can be reformulated as follows.

3.2 Theorem. There is a one-to-one correspondence between

the families (βp)p∈I of Radon prob measures βp : Bor(Yp) → [0,∞[,
consistent in the sense that βp = βq(H

−1
pq (·))|Bor(Yp) for p ⊂ q in I,

and the inner τ prob premeasures ψ : Q → [0,∞[,

via βp|Comp(Yp) = ψ(H−1
p (·))|Comp(Yp) for p ∈ I. It fulfils H−1

p (Bor(Yp))

⊂ C(ψτ ) and βp = Ψ(H−1
p (·))|Bor(Yp) for p ∈ I.
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However, it is quite clear that the full assertion cannot be obtained with-
out the use of inner premeasures on the side of the product space X. In
fact, to express the inner regularity behaviour of Ψ = ψτ |C(ψτ ) requires the
immense set system Qτ . An implication in the style of the conventional
projective limit theorems would read as follows.

3.3 Consequence. Let (βp)p∈I be a consistent family of Radon prob
measures βp : Bor(Yp) → [0,∞[ as above. Then there exists a unique prob
measure β : B → [0,∞[ on the σ algebra B := Aσ

(
⋃

p∈I

H−1
p (Bor(Yp))

)

in X

which fulfils βp = β(H−1
p (·))|Bor(Yp) for p ∈ I.

Proof. We know that B ⊂ C(ψτ ). Thus β := Ψ|B is as required. To see
the uniqueness of β note that for p ⊂ q in I one has Hp = Hpq ◦ Hq and
hence

H−1
p (Bor(Yp)) = H−1

q

(

H−1
pq (Bor(Yp))

)

⊂ H−1
q (Bor(Yq)),

which implies that
⋃

p∈I

H−1
p (Bor(Yp)) is stable under finite intersections. Thus

the uniqueness assertion follows from the classical uniqueness theorem [6]
3.1.σ). ¤

Nevertheless not even the full assertion 3.3 for arbitrary Hausdorff topo-
logical spaces Yt ∀t ∈ T seems to be in the literature. The most comprehen-
sive partial assertion known to the author is in Rao [16] Cor.9 pp.429-430,
where the Yt are assumed to have countable bases. Note that in this case

Bor(Yp) = Aσ
(

Π
t∈p

Bor(Yt)
)

and hence B = Aσ
(

⋃

p∈I

H−1
p

(

Π
t∈p

Bor(Yt)
))

,

in view of the well-known facts [6] 13.15 and 1.11. The usual formulations are
for Polish spaces Yt, for example in Bauer [1] 35.3, or for Borel spaces Yt, the
Borel subspaces of Polish spaces, for example in Kallenberg [3] 6.16 and in
Klenke [4] 14.36. These spaces are well-known to be metrizable topological
spaces with countable bases on which all finite Borel measures are Radon
measures.

We conclude with the remark that the immense domain C(ψτ ) of our
maximal prob measure Ψ = ψτ |C(ψτ ) contains the set systems

H−1
M (Comp(YM )) ⊂ Qτ ⊂ C(ψτ ) for nonvoid M ⊂ T,

and hence for M = T the set system Comp(X) ⊂ Qτ ⊂ C(ψτ ). But we do
not claim that the system Cl(X) of the closed subsets of X, which after [7]
2.4.1) is

Cl(X) =
((

⋃

p∈I

H−1
p

(

Π
t∈p

Cl(Yt)
))⋆)

τ
=

((

⋃

p∈I

H−1
p (Cl(Yp)

)⋆)

τ
,

be contained in Q⊤Qτ ⊂ C(ψτ ), and neither that Bor(X) be contained in
C(ψτ ), as it would of course be desirable.

4. The Projective Limit Theorem under weakened Inner

Regularity

The present section retains the situation of section 2. However, the actual
modified set-up requires that the inner premeasures be abandoned on the
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side of the partial products Yp ∀p ∈ I. In return we assume an additional
family (At)t∈T of σ algebras At ⊃ Kt, and form the partial product σ algebras
Ap = Aσ

(

Π
t∈p

At

)

⊃ Kp in Yp for p ∈ I. We note that H−1
pq (Ap) ⊂ Aq and

hence H−1
p (Ap) ⊂ H−1

q (Aq) for p ⊂ q in I. The present projective limit
theorem then reads as follows.

4.1 Theorem. Let (αp)p∈I be a family of prob measures αp : Ap → [0,∞[
which is consistent in the sense that αp = αq(H

−1
pq (·))|Ap for p ⊂ q in

I. Assume that α{t} =: αt is inner regular Kt for t ∈ T . Then the set
functions ϕp := αp|Kp form a consistent family (ϕp)p∈I of inner • prob
premeasures ϕp : Kp → [0,∞[, and its counterpart ϕ : S → [0,∞[ after 2.2
fulfils H−1

p (Ap) ⊂ C(ϕ•) and αp = Φ(H−1
p (·))|Ap for p ∈ I.

4.2 Consequence. On the σ algebra

A := Aσ
(

⋃

p∈I

H−1
p (Ap)

)

= Aσ
(

⋃

p∈I

H−1
p

(

Π
t∈p

At

))

⊂ C(ϕ•)

in X there exists a unique prob measure α : A → [0,∞[ which fulfils αp =
α(H−1

p (·))|Ap for p ∈ I. This is α = Φ|A.

The conventional projective limit theorems of the actual kind are of course
restricted to the main assertion of the consequence 4.2 (and to • = σ), for
example in Bogachev [2] Vol.II theorem 7.7.1 (here without the uniqueness
assertion). As before in 3.3, the prob measure α : A → [0,∞[ receives no
statement of inner regularity.

The proof of the above results requires the subsequent lemma.

4.3 Lemma. Let (Bt)t∈T be a family of algebras Bt ⊃ Kt, and form the
partial products Bp :=

(

Π
t∈p

Bt

)⋆
in Yp for p ∈ I (which are algebras after

1.2 and fulfil H−1
pq (Bp) ⊂ Bq and hence H−1

p (Bp) ⊂ H−1
q (Bq) as above).

Let (βp)p∈I be a consistent family of prob contents βp : Bp → [0,∞[. If the
β{t} =: βt are inner regular Kt for t ∈ T , then the βp are inner regular Kp

for all p ∈ I.

Proof. i) Let B ∈ Π
t∈p

Bt, that is B = Π
t∈p

Bt with Bt ∈ Bt, and ε > 0.

There exist Kt ∈ Kt with Kt ⊂ Bt and βt(Bt r Kt) < ε
#(p) for t ∈ p. For

K := Π
t∈p

Kt ∈ Π
t∈p

Kt ⊂ Kp then K ⊂ B and

B r K ⊂
⋃

s∈p

(Bs r Ks) × Ypr{s} =
⋃

s∈p

H−1
{s}p(Bs r Ks) ∈ Bp,

βp(B r K) ≦ Σ
s∈p

βp

(

H−1
{s}p(Bs \ Ks)

)

= Σ
s∈p

βs(Bs \ Ks) < ε.

ii) Let B ∈ Bp, that is B =
n
∪

l=1
Bl with Bl ∈ Π

t∈p
Bt, and ε > 0. From

i) we obtain K l ∈ Π
t∈p

Kt with K l ⊂ Bl and βp(B
l \ K l) < ε

n
. It follows

that K :=
n
∪

l=1
K l ∈ Kp with K ⊂ B and B r K ⊂

n
∪

l=1
(Bl \ K l). Therefore

βp(B \ K) < ε. ¤

Proof of 4.1. i) We form Bp :=
(

Π
t∈p

At

)⋆
for p ∈ I, which after 1.2 is an

algebra in Yp with Ap = Aσ(Bp) = Rσ(Bp) ⊃ Bp ⊃ Kp. The restriction



PROJECTIVE LIMIT THEOREM 9

αp|Bp is a prob content on Bp which is inner regular Kp from the above
lemma 4.3, and its restriction αp|Kp = ϕp to Kp is downward • continuous
at ∅ since Kp is • compact. Thus 1.9 asserts that ϕp : Kp → [0,∞[ is an
inner • premeasure, and in fact an inner • prob premeasure since sup ϕp =
sup(αp|Bp) = 1, and that Φp = (ϕp)•|C((ϕp)•) is an extension of αp|Bp.
That means Bp ⊂ C((ϕp)•) and αp = Φp on Bp. The classical uniqueness
theorem [6] 3.1.σ) then implies that αp = Φp on Ap ⊂ C((ϕp)•), so that Φp

is an extension of αp.
ii) Now αp = αq(H

−1
pq (·))|Ap for p ⊂ q in I says that

(ϕp)• = (ϕq)•(H
−1
pq (·)) on Ap, in particular on Kp,

and hence that the family (ϕp)p∈I is consistent. For its counterpart ϕ : S →
[0,∞[ after 2.2 it follows that H−1

p (Ap) ⊂ H−1
p (C((ϕp)•) ⊂ C(ϕ•), and for

A ∈ Ap we have

αp(A) = Φp(A) = (ϕp)•(A) = ϕ•(H
−1
p (A)) = Φ(H−1

p (A)). ¤

Proof of 4.2. We know that H−1
p (Ap) ⊂ A ⊂ C(ϕ•) for p ∈ I, and that

α = Φ|A is as required. Thus it remains to prove the uniqueness assertion.
Let λ : A → [0,∞[ be a prob measure which fulfils αp = λ(H−1

p (·))|Ap

for p ∈ I. Then α = λ on
⋃

p∈I

H−1
p (Ap) ⊂ A, which is stable under finite

intersections and even an algebra. Thus the classical uniqueness theorem [6]
3.1.σ) implies that α = λ. ¤

5. The Compactification Catastrophe

The final section likewise retains the situation of section 2. But on top
of it we put a kind of abstract compactification which reads as follows: We
assume a family (Ỹt)t∈T of sets Ỹt ⊃ Yt, and define as before the product set

X̃ and the finite partial products Ỹp for p ∈ I with the canonical projections

H̃p and H̃pq for p ⊂ q in I. Next we assume a family (K̃t)t∈T of lattices

K̃t ⊃ Kt in Ỹt with the previous properties to contain the finite subsets of Ỹt

and to be • compact, and moreover with the properties

for K ⊂ Yt : K ∈ K̃t ⇒ K ∈ Kt and K ∈ (K̃t)• ⇒ K ∈ (Kt)•,

and Ỹt ∈ K̃t.

The last point Ỹt ∈ K̃t is the decisive one: it is the reason that the transition
to the new entities can be viewed as a compactification (a simple example

is Yt = R with Kt = Comp(R) and Ỹt = R with K̃t = Comp(R) in the usual

topologies). As before we then form the partial products K̃p for p ∈ I and

the construct S̃ in X̃. Of course all these formations retain the previous
properties. Moreover we introduce the injections Ep : Yp → Ỹp for p ∈ I,
and note a few properties which have routine proofs.

5.1 Properties. We have E−1
p (B) = B ∩ Yp for B ⊂ Ỹp. For p ∈ I

moreover

E−1
p (K̃p) ⊂ Kp⊤Kp and hence E−1

p ((K̃p)•) ⊂ Kp⊤(Kp)• from 1.1,

and of course Ep(Kp) ⊂ K̃p and Ep((Kp)•) ⊂ (K̃p)•.

After this we assume a consistent family (ϕp)p∈I of inner • prob premea-
sures ϕp : Kp → [0,∞[, and its counterpart ϕ : S → [0,∞[ after 2.2. Then
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5.1 asserts that 1.6 can be applied for p ∈ I to Ep : Yp → Ỹp and to Kp and K̃p.

Application to ϕp furnishes the inner • prob premeasure ϕ̃p : K̃p → [0,∞[ de-

fined to be ϕ̃p := (ϕp)•(E
−1
p (·))|K̃p. It fulfils (ϕ̃p)• = (ϕp)•(E

−1
p (·)) partout,

that is

(ϕ̃p)•(B) = (ϕp)•(B ∩ Yp) for B ⊂ Ỹp.

It follows that the family (ϕ̃p)p ∈ I is consistent: For p ⊂ q in I and B ⊂ Ỹp

we have

((ϕ̃q)•
(

H̃−1
pq (B)

)

= (ϕq)•
(

H̃−1
pq (B) ∩ Yq

)

= (ϕq)•
(

{u ∈ Yq : H̃pq(u) = Hpq(u) ∈ B and hence ∈ B ∩ Yp}
)

= (ϕq)•
(

H−1
pq (B ∩ Yp)

)

= (ϕp)•(B ∩ Yp) = (ϕ̃p)•(B),

because (ϕq)•(H
−1
pq (·)) = (ϕp)• partout from 1.6 as seen in the proof of 2.3.

Thus we obtain from 2.2 for the family (ϕ̃p)p∈I the counterpart ϕ̃ : S̃ →
[0,∞[.

Our aim is to look at this inner • prob premeasure ϕ̃ : S̃ → [0,∞[,
produced via a certain compactification, as for its behaviour on X, in par-
ticular in comparison with the inner • prob premeasure ϕ : S → [0,∞[, our
previous direct result from the projective limit theorem 2.2.

5.2 Proposition. Assume that S ∈ S̃• with S ⊂ X. Then there exist
families (Kt)t∈T of subsets Kt ∈ Kt such that S ⊂ Π

t∈T
Kt =: K. These

families fulfil ϕ̃•(S) ≦ inf
p∈I

ϕp

(

Π
t∈p

Kt

)

(note that in case • = τ the second

member is = ϕτ (K) with K ∈ Sτ ).

Proof. i) We see from 2.1 and from Ỹt ∈ K̃t for t ∈ T that

Ht(S) = H̃t(S) ∈ H̃t(S̃•) ⊂ K̃t⊤(K̃t)• = (K̃t)•,

where several times {t} has been abbreviated into t. It follows that Ht(S) ∈
(Kt)•, and hence that Ht(S) ⊂ Kt for some Kt ∈ Kt. Thus we obtain in fact
S ⊂ Π

t∈T
Kt for a family (Kt)t∈T as claimed. ii) From 2.2 we know that

ϕ̃•(S) = inf
p∈I

(ϕ̃p)•(H̃p(S)) = inf
p∈I

(ϕ̃p)•(Hp(S)) = inf
p∈I

(ϕp)•(Hp(S)).

Thus if S ⊂ Π
t∈T

Kt as above, then Hp(S) ⊂ Π
t∈p

Kt ∈ Kp for p ∈ I and hence

the assertion. ¤

5.3 Consequence. Assume that

(◦) inf
p∈I

ϕp

(

Π
t∈p

Kt

)

= 0 for all families (Kt)t∈T in (Kt)t∈T .

Then ϕ̃•(S) = 0 for all S ∈ S̃• with S ⊂ X, and hence ϕ̃•(X) = 0.

Thus in the situation (◦) the present compactification ends up with the
maximum possible disaster: the maximum possible contrast to X ∈ C(ϕ•)
and Φ(X) = 1 (but note that we did not claim X ∈ C(ϕ̃•)). Of course as a
rule (◦) is not fulfilled - it cannot happen when Yt ∈ Kt for all t ∈ T , and
it has been seen in [12] section 4 to be not true for the two most prominent
stochastic processes in case • = τ . However, there is the familiar product
example that (◦) can occur for both • = στ when T is uncountable.
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5.4 Example. For each t ∈ T let γt : Kt → [0,∞[ be an inner • prob
premeasure which fulfils γt < 1 (obvious examples on R are those with
unbounded support in the sense of [6] pp.94-95). For p ∈ I let ϕp = Π

t∈p
γt be

the product inner • prob premeasure of the respective γt in the sense of [7]
section 1. It is clear that the family (ϕp)p∈I is consistent. Now fix a family
(Kt)t∈T of sets Kt ∈ Kt. Since γt(Kt) < 1 for all t ∈ T and T is uncountable
there exists an uncountable subset M ⊂ T and a positive number c < 1 such
that γt(Kt) ≦ c for t ∈ M . It follows that

ϕp

(

Π
t∈p

Kt

)

= Π
t∈p

γt(Kt) ≦ c#(p) for the p ∈ I with p ⊂ M,

and hence inf
p⊂M

ϕp

(

Π
t∈p

Kt

)

= 0. ¤
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