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Abstract

In this article we consider adaptive, PDE-driven morphological op-
erations for 3D matrix fields arising e.g. in diffusion tensor magnetic
resonance imaging (DT-MRI). The anisotropic evolution is steered by
a matrix constructed from a structure tensor for matrix valued data.
An important novelty is an intrinsically one-dimensional directional
variant of the matrix-valued upwind schemes such as the Rouy-Tourin
scheme. It enables our method to complete or enhance anisotropic
structures effectively. A special advantage of our approach is that
upwind schemes are utilised only in their basic one-dimensional ver-
sion. No higher dimensional variants of the schemes themselves are
required. Experiments with synthetic and real-world data substan-
tiate the gap-closing and line-completing properties of the proposed
method.

Keywords.Mathematical Morphology; PDEs; DT-MRI; Tensor field;
Dilation; Erosion

1 Introduction

One of the primary tasks of mathematical morphology is the enhancement
and extraction of shape information from image objects. This task is success-
fully tackled with a multitude of morphological operations based on the fun-
damental dilation and erosion processes. Dilation and erosion can be realised
in a set-theoretic or ordering based framework, see e.g. [29, 40, 30, 41, 42, 44],
but it may also be implemented within the context of partial differential equa-
tions (PDE) [1, 3, 12, 38, 45] and their numerical solution schemes (see [10]
as well as the extensive list of literature cited there). The PDE-based ap-
proach is conceptually attractive since it allows for digital scalability and
even adaptivity of the represented structuring element. This versatility was
exploited, for example in [9] and [11] to create adaptive, PDE-based dilation
processes for grey value images. In [15] the idea of morphological adaptivity
has been transferred to the setting of matrix fields utilising the operator-
algebraic framework proposed in [18]. Matrix fields offer the opportunity
of describing anisotropy in physical measurements and in image processing
models see [50],[28] for an overview. In diffusion tensor magnetic resonance
imaging (DT-MRI), for example, information about the diffusive properties
of water molecules is captured in symmetric positive definite matrices. The
corresponding matrix field reflects the structure of the tissue under exami-
nation. The goal of [15] was to enhance line-like and coherent structures in
DT-MRI data. In this article we propose a concept for PDE-based adaptive
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morphology for matrix fields, involving directional derivatives in the formu-
lation of the PDE-based dilation and erosion processes. In contrast to the
approach in [15] and as a 3D-extension of the work in [35] the numerical re-
alisation employed in this article takes advantage of the accurate calculation
of directional derivatives that relies on tri-linear interpolation.
We will start from a scalar adaptive formulation for d-dimensional data u in
form of the dilation PDE

∂tu = ‖M(u) · ∇u‖ (1)

with a data dependent, symmetric, positive semidefinite d × d-matrix M =
M(u). When considering three-dimensional matrix-fields, for example, in
DT-MRI data sets (d = 3) one has

M =





a11 a12 a13

a21 a22 a23

a31 a32 a33



 =





‖(a11, a11, a13)‖ ν⊤

‖(a21, a21, a23)‖µ⊤

‖(a31, a31, a33)‖ η⊤



 (2)

with unit vectors ν, µ, and η where, e.g.

ν =
1

‖(a11, a12, a1,3)‖





a11

a12

a13



 (3)

This turns (1) into

∂tu =
(

(a11∂xu + a12∂yu + a13∂zu)2

+ (a21∂xu + a22∂yu + a23∂zu)2

+ (a31∂xu + a32∂yu + a33∂zu)2
) 1

2

(4)

=
(

‖(a11, a12, a13)‖
2 (∂νu)2

+ ‖(a21, a22, a23)‖
2 (∂µu)2

+ ‖(a31, a32, a33)‖
2 (∂ηu)2

) 1

2

(5)

In [15] the partial derivatives ∂xu, ∂yu, and ∂zu in (4) were approximated
with the standard Rouy-Tourin scheme [37] in its two-dimensional version to
obtain a directional derivative. However, in [35] the directional derivatives
necessary for the steering process were realised directly by means of equation
(5) with better results than in [15]. Hence it is decisive for our approach to
implement the directional derivatives ∂νu, ∂µu, and ∂ηu in (5) via a direc-
tional version of the Rouy-Tourin scheme as an upwind scheme suitable for
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the numerical solution of a transport equation (5). As it will be explained in
Section 4 an important feature of the proposed approach is the fact that the
upwind schemes are employed only in their simplest one-dimensional variant
regardless of the dimensionality of the data set. No specially designed higher-
dimensional versions or operator splitting methods have to be engaged.
This opens the path for using a high resolution method such as the flux-
corrected-transport (FCT) scheme of [10] for which its 3D-version is not
easily obtained in adaptive form in the setting of matrix fields. In total the
novel features over [15] and [35] are the realisation of higher morphological
operators based on an adaptive directional version of the FCT scheme in
three spatial dimensions.
Equation (1) describes a dilation with an ellipsoidal structuring element since
an application of the mapping (x, y, z)⊤ 7→ M · (x, y, z)⊤ transforms a sphere
centered around the origin into an ellipsoid. The necessary directional infor-
mation of the evolving u contained in the matrix M(u) may be derived from
the so-called structure tensor. The structure tensor, dating back to [23, 5],
allows to extract directional information from an image. It is given by

Sρ(u(x)) := Gρ ∗
(

∇u(x) · (∇u(x))⊤
)

(6)

=
(

Gρ ∗
(

∂xi
u(x) · ∂xj

u(x)
))

i,j=1,...,d
(7)

Here Gρ∗ indicates a convolution with a Gaussian of standard deviation ρ.
For more details the reader is referred to [4] and the literature cited therein.
In [13, 22] Di Zenzo‘s approach [21] to construct a structure tensor for multi-
channel images has been extended to matrix fields yielding a standard struc-
ture tensor

Jρ(U(x)) :=

m
∑

i,j=1

Sρ(Ui,j(x)) (8)

with matrix entries Ui,j, i, j = 1, . . . , m. This tensor is a special case of the
full structure tensor concept for matrix fields as proposed in [19]. We will
review this full structure concept in Section 2.
The article is structured as follows: In Section 2 we briefly give an account
of basic notions of matrix analysis needed to establish a matrix-valued PDE
for an adaptively steered morphological dilation process. We introduce the
steering tensor that guides the dilation process adaptively in Section 3. It
is explained how the numerical FCT scheme is turned into a directional
variant that can be used on matrix fields in Section 4. Section 5 contains
the definitions of the morphological operators we are going to extend in their
directional versions to matrix fields. An evaluation of the performance of our
approach to adaptive morphology for matrix fields is the subject of Section
6. The remarks in Section 7 conclude this article.
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2 Matrix Analysis and an

Extended Structure Tensor Concept

This section contains the key definitions for the formulation of matrix-valued
PDEs. For a more detailed exposition the reader is referred to [18].
A matrix field is considered as a mapping U : Ω ⊂ R

d −→ Symm(R) from a
d-dimensional image domain into the set of symmetric m×m-matrices with
real entries, U(x) = (Up,q(x))p,q=1,...,m . The set of positive (semi-) definite
matrices, denoted by Sym++

m (R) (resp., Sym+
m(R)), consists of all symmetric

matrices A with 〈v, Av〉 := v⊤Av > 0 (resp., ≥ 0) for v ∈ R
m \ {0} . This set

is of special interest since DT-MRI produces data with this property. Note
that at each point x the matrix U(x) of a field of symmetric matrices can be
diagonalised yielding U(x) = V (x)⊤D(x)V (x), where V (x) is a orthogonal
matrix, while D(x) is a diagonal matrix. In the sequel we will denote m×m
- diagonal matrices with entries λ1, . . . , λm ∈ R from left to right simply by
diag(λi).
The extension of a function h : R −→ R to Symm(R) is standard [26]: With
a slight abuse of notation we set h(U) := V ⊤diag(h(λ1), . . . , h(λm))V ∈
Sym+

m(R), h denoting now a function acting on matrices as well. Specifying
h(s) = |s|, s ∈ R as the absolut value function leads to the absolute value
|A| ∈ Sym+

m(R) of a matrix A. It is natural to define the partial derivative
for matrix fields componentwise:

∂ωU = (∂ωUp,q)p,q=1,...,m (9)

where ω ∈ {t, x1, . . . , xd}, that is, ∂ω stands for a spatial or temporal deriva-
tive. Viewing a matrix as a tensor (of second order), its gradient would be a
third order tensor according to the rules of differential geometry. However,
we adopt a more operator-algebraic point of view by defining the generalised
gradient ∇U(x) at a voxel x = (x1, . . . , xd) by

∇U(x) := (∂x1
U(x), . . . , ∂xd

U(x))⊤ (10)

which is an element of (Symm(R))d, in close analogy to the scalar setting
where ∇u(x) ∈ R

d. For W ∈ (Symm(R))d we set |W |p := p
√

|W1|p + · · ·+ |Wd|p

for 0 < p < +∞ . It results in a positive semidefinite matrix from Sym+
m(R),

the direct counterpart of a nonnegative real number as the length of a vector
in R

d.
There will be the need for a symmetric multiplication of symmetric matrices.
We opt for the so-called Jordan product A • B := 1

2
(AB + BA) . It produces

a symmetric matrix, and it is commutative but neither associative nor dis-
tributive.
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Furthermore, for later use in numerical schemes we have to clarify the no-
tion of maximum and minimum of two symmetric matrices A, B. In direct
analogy with relations known to be valid for real numbers one defines [16]:

max(A, B) =
1

2
(A + B + |A − B|) (11)

min(A, B) =
1

2
(A + B − |A − B|) (12)

where |F | stands for the absolute value of the matrix F .
With this at our disposal we formulate the matrix-valued counterpart of (1)
as

∂tU = |M(U) • ∇U |2 (13)

with an initial matrix field F (x) = U(x, 0). Here M(U) denotes a symmetric
md×md-block matrix with d2 blocks of size m×m that is multiplied block-
wise with ∇U employing the Jordan product ”•”. Note that | · |2 stands
for the length of M(U) • ∇U in the matrix valued sense. The construction
of M(U) is detailed in Section 3 and relies on the full structure tensor.
The full structure tensor SL for matrix fields as defined in [19] reads

SL (U) := Gρ∗
(

∇U ·(∇U)⊤
)

(14)

=
(

Gρ∗
(

∂xi
U · ∂xj

U
))

i,j=1,...,d
(15)

with Gρ∗ indicating a convolution with a Gaussian of standard deviation ρ.
SL (U(x)) is a symmetric md×md-block matrix with d2 blocks of size m×m,
SL (U(x)) ∈ Symd(Symm(IR)) = Symmd(IR). Typically for the 3D medical
DT-MRI data one has d = 3 and m = 3, yielding a 9 × 9-matrix SL . It can
be diagonalised as SL (U) =

∑md
k=1 λkwkw

⊤

k with real eigenvalues λk (w.l.o.g.
arranged in decreasing order) and an orthonormal basis {wk}k=1,...,md of IRmd.
In order to extract useful d-dimensional directional information, SL (U) ∈
Symmd(IR) is reduced to a structure tensor S(U) ∈ Symd(IR) in a generalised
projection step [19] using the block operator matrix TrA := diag(trA, . . . , trA)
containing the trace operation. We set Tr := TrIm

where Im denotes the
m × m unit matrix. This operator matrix acts on elements of the space
(Symm(IR))d as well as on block matrices via formal block-wise matrix mul-
tiplication,





trA · · · 0
...

. . .
...

0 · · · trA









M11 · · · M1d...
. . .

...
Md1 · · · Mdd



 =





trA(M11) · · · trA(M1d)...
. . .

...
trA(Md1) · · · trA(Mdd)



 ,

(16)
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provided that the square blocks Mij have the same size as A. The projection
that is conveyed by the reduction process condenses the directional infor-
mation contained in SL (U), for a more detailed reasoning we must refer the
reader to [19] for the sake of brevity. The reduction operation is accompanied
by an extension operation: The Im-extension is the mapping from Symd(IR)
to Symmd(IR) conveyed by the Kronecker product ⊗ :







v11 · · · v1d
...

. . .
...

vd1 · vdd






7−→







v11 · · · v1d
...

. . .
...

vd1 · · · vdd






⊗ Im (17)

:=







v11Im · · · v1dIm
...

. . .
...

vd1Im · · · vddIm






. (18)

This resizing step renders a proper matrix-vector multiplication with the
large generalised gradient ∇U(x) possible. By specifying the matrix A in
(16) one may invoke a priori knowledge into the direction estimation [19].
The research on these structure-tensor concepts has been initiated by [49, 13].
The approaches to matrix field regularisation suggested in [20] are based on
differential geometric considerations. Comprehensive survey articles on the
analysis of matrix fields using various techniques can be found in [50].

3 Steering Matrix M(U) for Matrix Fields

With these notions we are in the position to propose the steering matrix M
in the adaptive dilation process for matrix fields. We proceed in four steps:

1. The matrix field IRd ∋ x 7→ U(x) provides us with a module field of
generalised gradients ∇U(x) from which we construct the generalised
structure tensor SL (U(x)) possibly with a certain integration scale ρ.
This step corresponds exactly to the scalar case.

2. We infer d-dimensional directional information by reducing SL (U(x))
with trA with the help of the block operator matrix given in (16). This
leads to a symmetric d × d-matrix S, for example S = Jρ if A = Im:

S(x) := TrA

(

SL (U(x))
)

. (19)

3. The symmetric d × d-matrix S is spectrally decomposed, and the fol-
lowing mapping is applied:

H :

{

R
d
+ −→ R

d

(λ1, . . . , λd) 7−→ 1
Pd

i=1
λi

(c1λ1, . . . , cdλd)
(20)
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where c = (c1, . . . , cd) is a vector with nonnegative entries. With the
choice of the vector c we select the eigendirection in which the process is
steered. For instance, specifying c1 = . . . = cd−1 = k and cd = K ≫ k
one obtains an ellipsoid associated with the matrix M which is flipped
if compared with S. Depending on the choice of K it can be more
excentric than the one accompanying S. H applied to S yields the
steering matrix M ,

M := H(S) . (21)

4. Finally we enlarge the d× d-matrix M to a md×md-matrix M by the
extension operation

M = M ⊗ Im . (22)

4 Directional Numerical Schemes in the

Matrix-Valued Setting

For the numerical solution of nonlinear PDEs governing the dilation or ero-
sion processes first-order finite difference methods such as the Osher-Sethian
scheme [31, 34, 43] and the Rouy-Tourin method [37, 46] are popular choices.
They are capable of correctly capturing propagating shocks, however, at the
price of introducing some dissipation and blurring of edges. A remedy is
provided by the flux-corrected transport (FCT) scheme introduced in [10]
for scalar-valued morphology. By construction it utilises a first order-scheme
as a primary step and then performs a careful correction of the introduced
dissipation in a second step. In the subsequent two sections we sketch the
directional versions of the Rouy-Tourin scheme and the FCT scheme with
their extensions to the matrix-valued setting.

4.1 Directional form of the Rouy-Tourin scheme

The first-order finite difference method of Rouy and Tourin [37] may be used
to solve the scalar PDE (5) in the isotropic case with M = Id. Let us denote
by un

i,j,k the grey value of a scalar 3D image data set u at the pixel centered

in (ihx, jhy, khz) ∈ IR3 at the time-level nτ of the evolution. Furthermore,
we employ standard forward, backward, and central difference operators, i.e.,

Dx
+un

i,j,k := un
i+1,j,k − un

i,j,k (23)
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and
Dx

−
un

i,j,k := un
i,j,k − un

i−1,j,k (24)

and finally
Dx

c un
i,j,k :=

(

un
i+1,j,k − un

i−1,j,k

)

/2 (25)

here in x−, but analogously in y− and z−direction as well. The Rouy-Tourin
method utilises an upwind approximation in the pixel (ihx, jhy, khz) of the
partial derivative ux (and analogously uy, uz):

ux≈
1

hx
max

(

max
(

−Dx
−
un

i,j,k, 0
)

, max
(

Dx
+un

i,j,k, 0
))

. (26)

For a unit vector ν = (ν1, ν2, ν3)
⊤ the directional derivative ∂νu of u may

be approximated by ∂νu = 〈ν,∇u〉 = ν1∂xu + ν2∂yu + ν3∂zu. Hence it is
close at hand to approximate numerically equation (4) directly. However,
this favours mass transport along the directions of the x−, y−, and z−axis
leading to a poor representation of the directional derivative. Instead we take
advantage of equation (5) in this article and propose an alternative involving
an interpolated function value ui+ν1,j+ν2,k+ν3

defined by the subsequent tri-
linear 1 approximation (27):

ui+ν1,j+ν2,k+ν3
= ui,j,k · (1 − hx|ν1|) · (1 − hy|ν2|) · (1 − hz|ν3|) (27)

+ui+sign(ν1),j,k · hx|ν1| · (1 − hy|ν2|) · (1 − hz|ν3|)

+ui,j+sign(ν2),k · (1 − hx|ν1|) · hy|ν2| · (1 − hz|ν3|)

+ui+sign(ν1),j+sign(ν2),k · hx|ν1| · hy|ν2| · (1 − hz|ν3|)

+ui,j,k+sign(ν3) · (1 − hx|ν1|) · (1 − hy|ν2|) · hz|ν3|

+ui+sign(ν1),j,k+sign(ν3) · hx|ν1| · (1 − hy|ν2|) · hz|ν3|

+ui,j+sign(ν2),k+sign(ν3) · (1 − hx|ν1|) · hy|ν2| · hz|ν3|

+ui+sign(ν1),j+sign(ν2),k+sign(ν3) · hx|ν1| · hy|ν2| · hz|ν3| .

This leads to forward and backward difference operators in the direction of
ν with ‖ν‖ =

√

ν2
1 + ν2

2 + ν2
3 = 1:

Dν
+un

i,j,k := un
i+ν1,j+ν2,k+ν3

− un
i,j,k (28)

Dν
−
un

i,j,k := un
i,j,k − un

i−ν1,j−ν2,k−ν3
(29)

and to a direct approximation of the directional derivative

∂νu = uν (30)

≈
1

h
max

(

max
(

−Dν
−
un

i,j,k, 0
)

, max
(

Dν
+un

i,j,k, 0
))

1For the sake of efficiency we use tri-linear interpolation, although higher order alter-
natives such as tri-cubic or spline interpolation can be employed as well.
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where h := min(hx, hy, hz) . Furthermore, the resulting approximation of the
directional derivatives is also consistent: tri-linear approximation implies

ui+ν1,j+ν2,k+ν3
= u((i + ν1)hx, (j + ν2)hy, (k + ν3)hz)

+O(max(hx, hy, hz)), (31)

and hence we have

1

h
Dν

+ui,j,k

=
1

h

(

u((i + ν1)hx, (j + ν2)hy, (k + ν3)hz) − u(ihx, jhy, khz)
)

+O(max(hx, hy, hz)) (32)

= uν + O(max(hx, hy, hz)) . (33)

Analogous reasoning applies to Dν
−
ui,j,k. With the calculus concept presented

in Section 2 it is now straightforward to define one-sided directional differ-
ences in ν-direction for fields of m × m-matrices:

Dν
+Un(ihx, jhy, khz)

:= Un((i + ν1)hx, (j + ν2)hy, (k + ν3)hz) − Un(ihx, jhy, khz) (34)

Dν
−
Un(ihx, jhy, khz)

:= Un(ihx, jhy, khz) − Un((i − ν1)hx, (j − ν2)hy, (k − ν3)hz) (35)

where Dν
+Un , Dν

−
Un ∈ Symm(IR). In order to avoid confusion with the

subscript notation for matrix components we wrote U(ihx, jhy, khz) to indi-
cate the (matrix-) value of the matrix field evaluated at the voxel centred at
(ihx, jhy, khz) ∈ IR3. The directions µ and η are treated accordingly. The
notion of supremum and infimum of two matrices – as needed in a matrix
variant of Rouy-Tourin – has been provided in Section 2 as well. Hence, hav-
ing these generalisations at our disposal a directionally adaptive version of
the Rouy-Tourin scheme is available now in the setting of matrix fields sim-
ply by replacing grey values un

i,j,k by matrices Un(ihx, jhy, khz) and utilising
the directional derivative approximations.

4.2 Directional FCT scheme

The FCT scheme in its original version [10] is by construction a new variant
of a technique originally proposed by Boris and Book [6, 7, 8] in the context of
fluid flow simulation. As shown in [10], the FCT scheme results in accurate
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and (largely) rotationally invariant discrete representations of continuous-
scale morphological dilation/erosion. For the sake of brevity we will not
provide a derivation of the scalar FCT scheme since it can be found in detail
in [10], see also [14] for its isotropic extension to matrix fields. We will
also provide the directional modifications of the FCT method in the two-
dimensional case only.
The basic idea of FCT is as follows. In a predictor step, the underlying PDE
is solved by a simple and stable scheme usually afflicted with a fairly high
diffusive numerical error. In a subsequent corrector step this error is negated
by stabilised backward diffusion. The proposed FCT scheme relies on one-
sided upwind differences as presented above. Using the Rouy-Tourin method
as a predictor, denoting the result pointwise as un+1,pred

i,j , the FCT method
relies on a corrector step, which will finally read as

un+1
i,j = un+1,pred

i,j + qn+1,pred
h − qn+1,pred

d . (36)

One can identify the term qn+1,pred
h in (36) as

qn+1,pred
h :=

(

(

τ

hx

∣

∣

∣
Dx

c u
n+1,pred
i,j

∣

∣

∣

)2

+

(

τ

hy

∣

∣

∣
Dy

cu
n+1,pred
i,j

∣

∣

∣

)2
)1/2

. (37)

For the term qn+1,pred
d in (36) we make use of the quantities

gi+1/2,j = mm

(

Dx
−
un+1,pred

i,j ,
τ

2hx
Dx

+un+1,pred
i,j , Dx

+un+1,pred
i+1,j

)

(38)

gi,j+1/2 = mm

(

Dy
−un+1,pred

i,j ,
τ

2hy

Dy
+un+1,pred

i,j , Dy
+un+1,pred

i,j+1

)

(39)

where mm(·, ·, ·) is the scalar minmod-function defined for three arguments
as

mm(a1, a2, a3) :=







inf(a1, a2, a3) for a1, a2, a3 > 0,
sup(a1, a2, a3) for a1, a2, a3 < 0,

0 else .
(40)

With these abbreviations we set

δxun+1,pred
i,j :=

τ

hx

∣

∣

∣
Dx

c u
n+1,pred
i,j

∣

∣

∣
+ gi+1/2,j − gi−1/2,j (41)

δyun+1,pred
i,j :=

τ

hy

∣

∣

∣
Dy

cu
n+1,pred
i,j

∣

∣

∣
+ gi,j+1/2 − gi,j−1/2 (42)

which finally yields the second new term in (36) as

qn+1,pred
d :=

(

(

δxun+1,pred
i,j

)2

+
(

δyun+1,pred
i,j

)2
)1/2

. (43)
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The directional version of the FCT-correction step (36) is now obtained by
replacing the finite differences Dx

(·) in x-direction in equations (37) to (43)

by the weighted finite differences ‖ν‖Dν
(·) in ν-direction with ν as in (3).

We proceed in the same way with the other directions, substituting Dy
(·)

by ‖µ‖Dµ
(·), and in the three-dimensional case, exchanging Dz

(·) by ‖η‖Dη
(·).

Together with the directional Rouy-Tourin scheme we obtain the directional
version of the FCT method which is used in this article.
The non-directional FCT method has been successfully transfered to the
setting of matrix fields in [14]. So it is no surprise that the directional
variant is readily extended to matrix fields. For details, especially concerning
the matrix-valued counterpart of the minmod-function of three arguments by
means of the Loewner ordering, the reader is referred to [14].

5 Morphological Operations

As indicated in the introduction the solution u of equation (1) mimics the
dilation process with an adaptive ellipsoidal structuring element E which
changes in time since it depends on u: E = Eu. Putting a minus sign on
the right-hand-side of (1) gives the PDE-formulation of the corresponding
adaptive erosion process. Using a common notation we express the dilation
and the erosion of an original image f with such a structuring element Eu by

f ⊕ Eu and f ⊖ Eu . (44)

The combinations of dilation and erosion lead to various morphological op-
erators such as opening and closing,

f ◦ Eu := (f ⊖ Eu) ⊕ Eu , (45)

f • Eu := (f ⊕ Eu) ⊖ Eu . (46)

In an image, boundaries of objects are loci of high grey value variations, and
as such they can be detected by derivative operators. The so-called Beucher
gradient

̺Eu
(f) := (f ⊕ Eu) − (f ⊖ Eu) , (47)

as well as the internal and external gradient,

̺−

Eu
(f) := f − (f ⊖ Eu) , ̺+

Eu
(f) := (f ⊕ Eu) − f , (48)

are morphological counterparts of the norm of the gradient f , ‖∇f‖, if f is
considered as a differentiable image.
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In [47] a morphological Laplacian has been introduced. We define a variant
by

∆Eu
f := ̺+

Eu
(f) − ̺−

Eu
(f) (49)

= (f ⊕ Eu) − 2 · f + (f ⊖ Eu) . (50)

This Laplacian is a morphological equivalent of the second derivative ∂ηηf
where η stands for the unit vector in the direction of the steepest slope. It
allows us to distinguish between influence zones of minima and maxima of
the image f . This is a vital property for the construction of so-called shock
filters [25, 27, 33]. Shock filtering amounts to applying either a dilation or
an erosion to an image, depending on whether the pixel is located within the
influence zone of a minimum or a maximum:

SEu
f :=











f ⊕ Eu , ∆Eu
f < 0,

f , ∆Eu
f = 0,

f ⊖ Eu , ∆Eu
f > 0.

(51)

A considerable number of variants of shock filters have been considered in
the literature [2, 24, 32, 36, 39, 48]. When they are applied iteratively, exper-
iments show that their steady state is given by a piecewise constant image
with discontinuities (“shocks”) between adjacent segments of constant grey
value. For more details about the morphological shock filter as introduced
above, see [17].
In the experimental Section 6 we will see the results obtained by the various
adaptive, PDE-driven morphological operators when applied to 2D and 3D
matrix fields.

6 Experiments

The matrix data are visualised as an ellipsoid in each voxel via the level
sets of quadratic form {v ∈ R

3v : v⊤U−2(i, j, k)v = const.}. It is associated
with the matrix U(i, j, k) ∈ Sym+

3 (R) representing the matrix field at voxel
(ihx, jhy, khz). By using U−2 the length of the semi-axes of the ellipsoid
correspond directly with the three eigenvalues of the matrix. Changing the
constant const. amounts to a mere scaling of the ellipsoids. Note that only
positive definite matrices produce ellipsoids as level sets of its quadratic form.
In the following we employ the Rouy-Tourin scheme, the FCT scheme, and
their corresponding directional versions. In all schemes we use a grid size
hx = hy = hz = 1.
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6.1 Synthetic data in 2D and 3D

Figure 1(a) exhibits a 32×32 matrix field composed of two interrupted diag-
onal stripes with different thickness, both built with cigar-shaped ellipsoids
of equal size but different orientation. The line-like structures are tilted with
respect to the x-axis by an angle of about 117 degrees. Figure 1(b) shows
the result of applying coherence-enhancing diffusion (CED) [19]. Figure 1(c)
contains the result of isotropic (classical) dilation [16] using the Rouy-Tourin
scheme, and Figure 1(d) the result of the proposed adaptive anisotropic di-
lation after applying the directional Rouy-Tourin scheme. The parameters
used were chosen in a way that every method fills in the missing tensors of
both stripes. Our approach is able to complete the line-like structures much
faster and more accurate than the other methods. Moreover, note that the
direction and amount of adaptive anisotropic dilation does not depend on the
orientation of the ellipsoids, but on the orientation and width of the struc-
tures. It is worth mentioning that the CED approach decreases the overall
size of matrices since the total mass, that is, the volume of the ellipsoids
is only redistributed due to the property of mass conservation. The same
experiment is performed on a 2D spiral data set with missing information,
whose outcome is depicted in Figure 2. Again, only the directional dilation
succeeds to close the gaps satisfactorily preserving the spiral structure of the
object. As expected, the adaptive dilation process is faster than the diffusion
based method and the classical isotropic dilation.
We now use both the directional Rouy-Tourin scheme and the directional
FCT scheme for dilating the test image with an interrupted circular structure
shown at the top of Figure 3. In the first test the dilation process is steered in
tangential direction while in a second test the radial direction is selected via
the choice of the parameter c = (c1, c2), namely c = (0.1, 10) in the first case
and c = (10, 0.1) in the second one. Both directional schemes were applied,
the results together with a scaled (×5) absolute difference image are depicted
in Figure 3. As expected the directional FCT method performs favourable
in terms of edge preservation over the directional Rouy-Tourin scheme.
A much more elaborate matrix field can be seen in Figure 4(a). This 3D data
set2 is sparsified by removing 80% of the matrices (Figure 4(b)). Both adap-
tive anisotropic dilation (Figure 4(c)) and closing (Figure 4(d)) performed
with the superior directional FCT scheme, provide a reasonable reconstruc-
tion of the original data.

2The 3D spiral data set is freely available as part of the Teem toolkit at
http://teem.sourceforge.net.
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6.2 Real world data: 3D DT-MRI

We also tested the proposed method on a real DT-MRI data set of a human
head consisting of a 128 × 128 × 38-field of positive definite matrices. Fig-
ure 5(a) displays part of the lateral ventricles as an actual three-dimensional
40 × 55 × 3-data set while Figure 5(b) shows only a 2D-slice. In the ex-
periments on real-world data we will always juxtapose the results of various
adaptive morphological operations when applied to 2D-slices and truly 3D
data. However, in order to avoid visual cluttering, we will in general extract
and depict from the processed 3D data an appropriate 2D-slice only. Note
that we use for the adaptive morphological operations from now on only the
directional FCT scheme in its 3D and 2D realisations.
In Figure 6 we zoom into the lateral ventricles to show the effect of applying
adaptive dilation and erosion in both the 3D and 2D setting. We see that the
adaptive dilation and erosion processes on matrix fields respect the underly-
ing shape of the ventricles if compared to the isotropic case [14]. We notice
that the results are quite similar in the 3D and in the 2D setting. However,
the 3D process seems to be more accurate at the price of a longer evolution
time (t = 3), than in the 2D case (t = 1).
The lateral ventricles serve also as a test case for the reconstructing opera-
tions of adaptive opening and closing, Figure 7. In 3D the lateral ventricles
are nicely recovered in a slightly simplified form, as expected, since it incor-
porates also information from neighbouring slices.
The difference in processing of 2D and 3D data sets becomes prominent in
the case of the morphological derivatives, e.g. the Beucher gradient. The
gradient operations detect the boundary of the ventricles, which are three-
dimensional anatomical structures. This boundary in a cross-section can
be seen clearly in Figure 8(a). In contrast to this, the boundaries are less
localised in the 2D case, Figure 8(b).
For the adaptive version of the morphological shock filter we obtain the
matrix valued equivalent of a piece-wise constant image both in the 3D and
the 2D case. In the three-dimensional setting, Figure 8(c), we observe a
slightly better localisation of the shock segments than in 2D, Figure 8(d).

7 Conclusion

We have presented a method for an adaptive, PDE-based dilation and ero-
sion processes in the setting of matrix fields. The evolution governed by
matrix-valued PDEs is guided by a steering tensor whose construction relies
on the full structure tensor for matrix data.
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In order to enable proper directional steering we extended the schemes of
Rouy-Tourin and the FCT method in two ways: First, turning them into
directional schemes based on directional finite differences via interpolation.
Second, by means of advanced matrix calculus, extending these directional
variants to matrix fields solving the matrix-valued adaptive PDEs of dila-
tion and erosion. Having these two key operations at our disposal we were
able to propose higher order morphological operators such as top hats and
morphological derivatives that are adaptive and act on matrix fields.
As a proof-of-concept we applied these adaptive morphological operations to
synthetic and real DT-MRI data. The tests reveal that the various adap-
tive morphological operators behave as one might expected from their scalar
counterparts. For instance, the adaptive dilation and closing are indeed ca-
pable of filling in missing data and to complete directional structures. We
also confirmed that the FCT performs preferable over the scheme of Rouy
and Tourin.
The proposed approach to adaptive morphology for matrix fields may have
its merits, for example, in the segmentation of directional structures or as a
preprocessing step for fiber tracking algorithms in medical imaging.
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(a) Original (b) Coherence-enhancing diffusion

(c) Isotropic dilation (d) Anisotropic dilation

Figure 1: Comparison of different methods in 2D. (a) Original matrix field
with ellipsoids in a line-like arrangement. (b) Coherence-enhancing diffusion
(CED) with ρ = 4, t = 3. (c) Isotropic (classical) dilation at t = 3 using the
Rouy-Tourin scheme. (d) Proposed adaptive, anisotropic dilation using the
directional Rouy-Tourin scheme with ρ = 4, c = (0.2, 20), t = 1.
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(a) Original 2D spiral (b) Coherence-enhancing diffusion

(c) Isotropic dilation (d) Anisotropic dilation

Figure 2: Comparison of different methods in 2D. (a) Original spiral with
missing tensors. (b) Coherence-enhancing diffusion (CED) with ρ = 3, t = 6.
(c) Isotropic dilation at t = 3 using the Rouy-Tourin scheme. (d) Proposed
adaptive, anisotropic dilation using the directional Rouy-Tourin scheme with
ρ = 3, c = (0.2, 20), t = 1.

22



Figure 3: Top row: Synthetic 2D circle with missing information. Second

row: From left to right: Dilation with directional Rouy-Tourin scheme in
the tangential direction and in the radial direction. Third row: The same
using the directional FCT scheme. Bottom row: Scaled absolute differences
between both schemes. 23



(a) Original 3D spiral (b) Sampled spiral (20%)

(c) Anisotropic dilation of (b) (d) Anisotropic closing of (b)

Figure 4: Adaptive, anisotropic dilation and closing in 3D using the direc-
tional FCT scheme with parameters ρ = 2, c = (0.2, 0.2, 20), t = 5.
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(a) Original 3D section of DT-MRI data (b) 2D slice with 40 × 55 matrices

Figure 5: Real world data used in our experiments.
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(a) Original

(b) 3D dilation (c) 2D dilation

(d) 3D erosion (e) 2D erosion

Figure 6: Adaptive, anisotropic dilation and erosion in 3D and 2D using the
directional FCT scheme with parameters ρ = 1, c = (0.05, 0.05, 5), t = 3 in
the 3D case, and ρ = 1, c = (0.05, 5), t = 1 in the 2D case.
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(a) Original

(b) 3D opening (c) 2D opening

(d) 3D closing (e) 2D closing

Figure 7: Adaptive, anisotropic opening and closing in 3D and 2D using the
directional FCT scheme with parameters ρ = 1, c = (0.05, 0.05, 5), t = 3 in
the 3D case, and ρ = 1, c = (0.05, 5), t = 1 in the 2D case.
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(a) 3D Beucher gradient (b) 2D Beucher gradient

(c) 3D shock filtering (d) 2D shock filtering

Figure 8: Adaptive, anisotropic Beucher gradient and shock filtering in 3D
and 2D using the directional FCT scheme with parameters ρ = 1, c =
(0.1, 0.1, 10), t = 5 in the 3D case, and ρ = 1, c = (0.1, 10), t = 2 in the
2D case.
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