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Abstract

We prove variants of Korn’s inequality involving the deviatoric part of the sym-
metric gradient of fields u : R

2 ⊃ Ω → R
2 belonging to Orlicz-Sobolev classes. These

inequalities are derived with the help of gradient estimates for the Poisson equation
in Orlicz spaces. We apply these Korn type inequalities to variational integrals of
the form

∫
Ω h
(
|εD(u)|

)
dx occurring in General Relativity and prove C1,α–regularity

results for minimizers under rather general conditions on the N–function h. A fur-
ther useful tool for this analysis is an appropriate version of the (Sobolev-) Poincaré
inequality with εD(u) measuring the distance of u to the holomorphic functions.

1 Introduction

Korn’s inequality is a classical tool in the analysis of problems arising in (linear) elasticity
or in fluid mechanics (see, e.g., [Ze]). Recently Dain [Da] discussed the following variant:
let Ω ⊂ Rn denote a bounded Lipschitz domain. For fields u : Ω → Rn we consider the
symmetric gradient

ε(u) :=
1

2

(
∂iu

j + ∂ju
i
)
1≤i,j≤n

and its deviatoric part

εD(u) := ε(u) − 1

n
(div u) 1,

1 denoting the unit matrix. Then we have the inequality

(1.1)

∫

Ω

|∇u|2 dx ≤ C

[∫

Ω

|u|2 dx +

∫

Ω

∣∣εD(u)
∣∣2 dx

]

being valid for functions u from the Sobolev class W 1
2 (Ω; Rn) (see [Ad] for a definition) and

for dimensions n at least 3. This is the result of Theorem 1.1 in [Da], and as remarked
later inequality (1.1) is false if the case n = 2 is considered: the validity of (1.1) for
domains Ω ⊂ R2 would imply that the kernel of εD is of finite dimension but εD(u) = 0

Acknowledgement. The author likes to thank Professor Shulin Zhou for his valuable comments and
suggestions.

1



on Ω if and only if u is holomorphic. The interest for estimates of the form (1.1) becomes
clear, when we look at variational integrals like

(1.2) I[u, Ω] :=

∫

Ω

H
(
εD(u)

)
dx

and ask for their coercivity if for example Dirichlet boundary data are prescribed. Here
we note that energies involving εD(u) naturally occur in General Relativity as outlined
in the paper of Bartnik and Isenberg [BI]. Before passing to the twodimensional case we
refer the reader to the thesis [Sc] in which for n ≥ 3 several variants of (1.1) valid in

the spaces W 1
p (Ω; Rn) and

◦

W 1
p(Ω; Rn) with arbitrary exponent p ∈ (1,∞) are presented

together with applications concerning the question of smoothness of (local) minima of the
energy from (1.2) at least for densities of quadratic growth. From now on we assume that
Ω is a bounded Lipschitz domain in R2. Then we have

THEOREM 1.1. For any p ∈ (1,∞) there is a constant C = C(p, Ω) such that

(1.3) ‖∇u‖Lp(Ω) ≤ C
∥∥εD(u)

∥∥
Lp(Ω)

is true for any function u ∈
◦

W1
p(Ω; R2).

COROLLARY 1.1. For p ∈ (1,∞) let Xp :=
{
u ∈ Lp

loc(Ω; R2) : εD(u) ∈ Lp
loc(Ω; S2)

}
,

where εD(u) is defined in the sense of distributions and where S2 is the space of symmetric
(2 × 2)–matrices. Then we have Xp = W 1

p,loc(Ω; R2).

Both results have been established in the recent paper [FS], where it is also shown how
to get C1,α–regularity of local I–minimizers with the help of (1.3) at least when H is
uniformly elliptic, i.e. it holds

(1.4) λ |τ |2 ≤ D2H(σ)(τ, τ) ≤ Λ |τ |2

for all σ, τ ∈ S2 with constants λ, Λ > 0.

The main purpose of the present note is to establish an interior regularity result for (local)
minima of the functional defined in (1.2) in the case that

(1.5) H(σ) = h (|σ|) , σ ∈ S
2 ,

for a suitable N -function h, which means that we consider densities depending on the
modulus of εD(u), and from the foregoing explanations it should be clear that this requires
a variant of Theorem 1.1 for Orlicz spaces. To be precise, let h : [0,∞) → [0,∞) denote
a function of class C2 satisfying the following hypotheses:

(A1) h is strictly increasing and convex together with h′′(0) > 0 and lim
tց 0

h(t)

t
= 0 ;
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(A2) there is a constant k > 0 such that h(2t) ≤ k h(t) for all t ≥ 0 ;

(A3) we have
h′(t)

t
≤ h′′(t) for all t ≥ 0 .

Let us add some comments: from (A1) it follows that h(0) = 0 = h′(0) and h′(t) > 0 for
all t > 0. (A3) implies that t 7→ h′(t)/t is increasing, moreover we get

(1.6) h(t) ≥ 1

2
h′′(0)t2, t ≥ 0 ,

so that h is of at least quadratic growth. (A2) is the (∆2)–condition, hence with m ≥ 2
and c > 0 we find (see, e.g., [RR])

(1.7) h(t) ≤ c(tm + 1) ,

and by convexity h′(t) grows at most like tm−1. Note also that (A1) together with (1.6)
gives that h is a N -function in the sense of [Ad, Section 8.2], for which

(1.8)
1

k
h′(t)t ≤ h(t) ≤ th′(t), t ≥ 0 ,

holds. (1.8) is a simple consequence of of the above assumptions. According to (1.5) we
have (σ ∈ S2)

min

{
h′′(|σ|), h′(|σ|)

|σ|

}
≤ D2H(σ) ≤ max {. . .}

(in the sense of bilinear forms), hence by (A3)

(1.9) h′′(0) ≤ h′(|σ|)
|σ| ≤ D2H(σ), σ ∈ S

2 ,

which means that

h′′(0)|τ |2 ≤ h′(|σ|)
|σ| |τ |2 ≤ D2H(σ)(τ, τ)

is valid for all τ , σ ∈ S2.

Observing

th′(t) =

∫ t

0

d

ds
[sh′(s)] ds = h(t) +

∫ t

0

sh′′(s) ds

we see that (A3) implies the validity of

a(h) := inf
t>0

th′(t)

h(t)
≥ 2 .

Therefore h is a N–function of (global) type (∇2), which follows from Corollary 4 on
p. 26 in [RR].

After these preparations we can state the following variants of Theorem 1.1 and Corollary
1.1
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THEOREM 1.2. Suppose that h shares the properties (A1–3) stated above. Then there
is a constant C = C(h, Ω) such that

(1.10)

∫

Ω

h (|∇u|) dx ≤ C

∫

Ω

h
(
|εD(u)|

)
dx

holds for any function from the Orlicz-Sobolev class
◦

W 1
h(Ω; R2), and this is true for N-

functions h just satisfying (∆2) ∩ (∇2).

COROLLARY 1.2. With h as in Theorem 1.2 we define the local space

Xh :=
{
u ∈ Lh,loc(Ω; R2) : εD(u) ∈ Lh,loc(Ω; S2)

}
.

Then it holds Xh = W 1
h,loc(Ω; R2).

REMARK 1.1. For a definition of the Orlicz classes Lh,loc(. . .) and the related Orlicz-

Sobolev spaces
◦

W1
h(. . .), W 1

h,loc(. . .) we refer the reader to the textbooks [Ad] or [RR].

REMARK 1.2. The proof of Theorem 1.2 is based on Theorem 3.1 established by Jia, Li
and Wang in their work [JLW], and there is also a strong connection to the recent papers
[YSZ], [BYZ] of Byun, Sun, Yao and Zhou. It will become clear that we do not need the
full strength of our assumptions (A1–3) for the function h in order to establish Theorem
1.2. This will be the case for the investigation of the regularity of I–minimizers.

Suppose next that we are given a function

(1.11) u0 ∈ W 1
h (Ω; R2)

and define the class

(1.12) K := u0+
◦

W
1
h(Ω; R2) .

Then we have

THEOREM 1.3. Suppose that h satisfies (A1–3) and let (1.5) hold. Then, with I, u0

and K being defined in (1.2), (1.11) and (1.12) respectively, the variational problem

(1.13) I[ · , Ω] → min in K

admits a unique solution u such that u ∈ W 2
2,loc(Ω; R2) and therefore

(1.14) |∇u| ∈ Ls
loc(Ω) for any s < ∞ .

If in addition to (A3) it holds

(1.15) h′′(t) ≤ a(1 + t2)
ω
2

h′(t)

t
, t ≥ 0 ,

for some a > 0 and with exponent ω ∈ [0, 2), then u is of class C1,α(Ω; R2) for any α > 0.
These regularity results extend to local minima v ∈ Xh of the functional I[ · , Ω].
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Our paper is organized as follows: Section 2 contains the proofs of Theorem 1.2 and
Corollary 1.2. Moreover, as an application, we sketch how to get the existence part of
Theorem 1.3. Section 3 is devoted to the proof of the higher integrability result (1.14)
following ideas used in [Fu] in the setting fluids. The interior differentiability of the
minimizer is discussed in Section 4 based on arguments developed with Bildhauer and
Zhong in the paper [BFZ]. Here we will also make use of a particular Sobolev–Poincaré
type inequality, whose proof is presented in the Appendix.

2 Proof of Theorem 1.2 and application to problem

(1.13)

Let φ denote a N–function of type (∆2) ∩ (∇2). If w ∈
◦

W 1
φ(Ω) is a weak solution of

∆w = div f with f ∈ Lφ(Ω; R2), then it was kindly pointed out to us by S. Zhou, that
Jia, Li and Wang [JLW] have shown the validity of the basic estimate

(2.1)

∫

Ω

φ (|∇w|) dx ≤ C

∫

Ω

φ (|f |) dx

for a constant C being independent of w and f by the way extending earlier work of
Meyers [Me] concerning the case φ(t) = tp. Now, if v is in C∞

0 (Ω; R2), we obtain from
formula (26) in Dain’s paper [Da] the equation

(2.2) ∆vj = 2∂iε
D(v)ij , j = 1, 2 ,

where here and it what follows the sum is taken w.r.t. indices repeated twice. Letting
w = vj , f = (2εD(v)ij)1≤i≤2, we have by (2.2) that ∆w = div f and by applying (2.1)
to each component vj we deduce the validity of (1.10) for test functions v and for N–

functions h from the class (∆2) ∩ (∇2). Since
◦

W 1
h(Ω; R2) is the closure of C∞

0 (Ω; R2) in

W 1
h (Ω; R2), we finally arrive at inequality (1.10) for any function in

◦

W1
h(Ω; R2). Of course,

inequality (2.1) is of central importance for proving Theorem 1.2. We therefore add the
following comment: if we require that we have a(h) > 2, then φ(t) := h(

√
t), t ≥ 0, is a

N–function in (∆2) ∩ (∇2), and Theorem 1.12 in [BYZ] gives the estimate
∫

Ω

φ
(
|∇w|2

)
dx ≤ C

∫

Ω

φ
(
|f |2
)

dx

for the unique weak solution w of ∆w = div f with zero trace, provided we know |f |2 ∈
Lφ(Ω). By the definition of φ this implies (2.1) now for h, which means that under the
additional hypothesis a(h) > 2 Theorem 1.2 can be derived from [BYZ]. The statement
of Corollary 1.2 follows from standard arguments: fix a subdomain Ω′

⋐ Ω and a function
η ∈ C∞

0 (Ω), 0 ≤ η ≤ 1, such that η ≡ 1 on Ω′. Moreover, let w(ν) be a sequence of
mollifications of a given function w ∈ Xh. From

∣∣εD
(
ηw(ν)

)∣∣ ≤ c
[
η
∣∣εD(wν)

∣∣ + |∇η||w(ν)|
]
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in combination with standard properties of the mollification operator we deduce

sup
ν

∫

Ω

h
(
|εD(ηw(ν))|

)
dx < ∞ ,

and this together with (1.10) shows that ηw(ν) is a bounded sequence in the reflexive

space
◦

W 1
h(Ω; R2), hence ηw(ν) ⇁: v for some v from this space. At the same time we

have ηw(ν) → ηw in e.g. L2(Ω; R2), thus ηw = v, and we end up with w = v on Ω, which
shows that w ∈ W 1

h,loc(Ω; R2) by arbitrariness of Ω′.

Next we establish the existence of a unique solution to problem (1.13): since K 6= ∅, we
can consider a minimizing sequence {uk} ⊂ K. Clearly it holds

sup
k

∫

Ω

h
(
|εD(uk)|

)
dx < ∞ ,

hence

sup
k

∫

Ω

h
(
|εD(uk − u0)|

)
dx < ∞ ,

and (1.10) gives boundedness of {uk − u0} in
◦

W 1
h(Ω; R2). By the reflexivity of the space

◦

W 1
h(Ω; R2) (see [Ad], 8.28 Theorem) we find a weak limit u in this class at least for a

suitable subsequence of {uk−u0}, and obviously we have that u := u0 +u is in K together
with

(2.3) I[u, Ω] = inf
K

I[ · , Ω] ,

since by lower semicontinuity we have

∫

Ω

H
(
εD(u)

)
dx ≤ lim inf

k→∞

∫

Ω

H
(
εD(uk)

)
dx .

Let us assume that (2.3) holds for a second function ũ ∈ K. If εD(u) 6= εD(ũ) on a set
with positive measure, then the strict convexity of H implies on this set

H

(
εD

(
u + ũ

2

))
<

1

2
H
(
εD(u)

)
+

1

2
H
(
εD(ũ)

)
,

which together with (2.3) leads to the contradiction

I

[
u + ũ

2
, Ω

]
< inf

K

I[ · , Ω] .

Therefore we must have εD(u − ũ) = 0 and by quoting (1.10) one more time we get
∇u = ∇ũ, hence u = ũ. �
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3 Proof of the higher integrability result (1.14)

Let all the assumptions of Theorem 1.3 hold and consider the unique solution u of problem
(1.13) constructed in the previous Section. Since we do not know, if u is smooth enough
in order to carry out the subsequent calculations, we have to replace (1.13) by a suitable
regularization admitting regular solutions. We recall the following technical lemma being
established in [BF]:

LEMMA 3.1. For ℓ ∈ N consider functions ηℓ ∈ C1 ([0,∞)) such that 0 ≤ ηℓ < 1,
η′

ℓ ≤ 0, |η′| ≤ c/ℓ, η ≡ 1 on [0, 3
2
ℓ] and η ≡ 0 on [2ℓ,∞). Let

hℓ(t) :=

∫ t

0

s gℓ(s) ds, t ≥ 0 ,

where

gℓ(t) := g(0) +

∫ t

0

ηℓ(s)g
′(s) ds

with g(t) := h′(t)/t, t ≥ 0.

Then it holds:

a) hℓ satisfies (A1–3) with constants being independent of ℓ. If h satisfies (1.15) then
the same is true for hℓ, again with an uniform constant.

b) Hℓ(σ) := hℓ (|σ|) ≤ h (|σ|) = H(σ) , limℓ→∞ Hℓ(σ) = H(σ) , σ ∈ S2 .

c) Hℓ is of quadratic growth which follows from

(3.1) c |τ |2 ≤ D2Hℓ(σ)(τ, τ) ≤ Λ(ℓ) |τ |2 , σ, τ ∈ S2 ,

with c > 0 independent of ℓ and Λ(ℓ) not necessarily bounded as ℓ → ∞.

On account of (3.1) the variational problem

(3.2)ℓ Iℓ[v, Ω] :=

∫

Ω

Hℓ

(
εD(v)

)
dx → min in u0+

◦

W
1
2(Ω; R2)

is well-posed (recall (1.11) and (1.6)) with unique solution uℓ. This follows along the same
lines as in Section 2 using (1.3) with p = 2. The regularity properties of the functions uℓ

have been investigated in [FS] with the result:

LEMMA 3.2. The solutions uℓ of (3.2)ℓ belong to the space C1,α(Ω; R2)∩W 2
2,loc(Ω; R2).
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After these preparations we observe that by the minimality of uℓ and by Lemma 3.2 we
have

0 =

∫

Ω

∂µ

[
DHℓ

(
εD(uℓ)

)]
: εD(Ψ) dx , µ = 1, 2 ,

valid for Ψ ∈
◦

W 1
2(Ω; R2), and if we choose Ψ = η2∂µuℓ, η ∈ C∞

0 (Ω), the above equation
turns into (summation only w.r.t. µ = 1, 2 !)

∫

Ω

D2Hℓ

(
εD(uℓ)

) (
εD(∂µuℓ), ε

D(∂µuℓ)
)
η2 dx(3.2)

= −
∫

Ω

∂µ

[
DHℓ

(
εD(uℓ)

)]
: W µ dx ,

W µ := (W µ
ij)1≤i,j≤2 = η

[(
∂iη∂µuj

ℓ + ∂jη∂µui
ℓ

)
1≤i,j≤2

− (∂µu · ∇η)1
]

.

In order to simplify our exposition we just write v in place of uℓ. After an integration by
parts we deduce from (3.2)

∫

Ω

D2Hℓ

(
εD(v)

) (
εD(∂µv), εD(∂µv)

)
η2 dx(3.3)

=

∫

Ω

DHℓ

(
εD(v)

)
: ∂µW µ dx .

Note that the inequality stated before (1.9) holds for Hℓ and hℓ too, moreover, according
to Lemma 3.1 a) we have (A3) for hℓ, hence

(3.4) l.h.s. of (3.3) ≥
∫

Ω

h′
ℓ(|εD(v)|)
|εD(v)|

∣∣∇εD(v)
∣∣2 η2 dx .

At the same time we obtain (in what follows c always denotes a finite constant independent
of ℓ)

(3.5) r.h.s. of (3.3) ≤ c

∫

Ω

h′
ℓ

(
|εD(v)|

) [(
|∇η|2 + |∇2η|

)
|∇v| + η|∇η||∇2v|

]
dx .

Let ξ(η) := ‖∇η‖2
L∞(Ω) + ‖∇2η‖L∞(Ω). Then it holds

∫

Ω

h′
ℓ

(
|εD(v)|

)
|∇v|

[
|∇η|2 + |∇2η|

]
dx ≤ c ξ(η)

{∫

spt η

h′
ℓ

(
|εD(v)|

)2
dx +

∫

Ω

|∇v|2 dx

}
,
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and from Theorem 1.1 with p = 2 we get
∫

Ω

|∇v|2 dx ≤ c

{∫

Ω

|∇u0|2 +

∫

Ω

∣∣εD(v − u0)
∣∣2 dx

}

≤ c

{∫

Ω

|∇u0|2 dx +

∫

Ω

∣∣εD(v)
∣∣2 dx

}

(3.1)

≤ c

{∫

Ω

|∇u0|2 dx +

∫

Ω

Hℓ

(
εD(v)

)
dx

}

≤ c

{∫

Ω

|∇u0|2 dx +

∫

Ω

Hℓ

(
εD(u0)

)
dx

}

≤ c

{∫

Ω

|∇u0|2 dx +

∫

Ω

H
(
εD(u0)

)
dx

}
,

where we have used the Iℓ[ · , Ω]– minimality of v = uℓ and the fact that Hℓ ≤ H . This
yields

(3.6)

∫

Ω

h′
ℓ

(
|εD(v)|

)
|∇v|

[
|∇η|2 + |∇2η|

]
dx ≤ c ξ(η)

[
1 +

∫

spt η

h′
ℓ

(
|εD(v)|

)2
dx

]

for a constant c depending on the boundary datum u0. The remaining term on the
right-hand side of (3.5) is estimated as follows

∫

Ω

h′
ℓ

(
|εD(v)|

)
|∇η|η|∇2v| dx(3.7)

≤ δ

∫

Ω

η2
∣∣∇2v

∣∣2 dx + c(δ)ξ(η)

∫

spt η

h′
ℓ

(
|εD(v)|

)2
dx

with arbitrary parameter δ ∈ (0, 1). Putting together (3.4) - (3.7) we find
∫

Ω

η2h′
ℓ(|εD(v)|)
|εD(v)|

∣∣∇εD(v)
∣∣2 dx − δ

∫

Ω

η2
∣∣∇2v

∣∣2 dx(3.8)

≤ c(δ)ξ(η)

[
1 +

∫

spt η

h′
ℓ

(
|εD(v)|

)2
dx

]
.

Here δ and η are still under our disposal. We discuss the δ–term: it holds by Theorem
1.1 (p = 2)

∫

Ω

η2
∣∣∇2v

∣∣2 dx ≤ c

[∫

Ω

|∇ (η∇v)|2 dx +

∫

Ω

|∇η|2 |∇v|2 dx

]

= c

[∫

Ω

∇(η∂µv) : ∇(η∂µv) dx +

∫

Ω

|∇η|2|∇v|2 dx

]

≤ c

[∫

Ω

εD(η∂µv) : εD(η∂µv) dx +

∫

Ω

|∇η|2|∇v|2 dx

]

≤ c

[∫

Ω

η2εD(∂µv) : εD(∂µv) dx +

∫

Ω

|∇η|2|∇v|2 dx

]

= c

[∫

Ω

η2
∣∣∇εD(v)

∣∣2 dx +

∫

Ω

|∇η|2|∇v|2 dx

]
,
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and the integral involving |∇v| has been estimated before (3.6). Recalling that h′
ℓ(t)/t is

bounded from below by the positive constant occurring on the left-hand side of (3.1) and
choosing δ in an appropriate way we deduce from (3.8)

∫

Ω

η2h′
ℓ(|εD(v)|)
|εD(v)|

∣∣∇εD(v)
∣∣2 dx(3.9)

≤ c ξ(η)

[
1 +

∫

spt η

h′
ℓ

(
|εD(v)|

)2
dx

]
.

The remaining integral on the right-hand side of (3.9) is now discussed similar to the
pressure - term in [Fu]: let us fix a disc BR(z) and a number L > 0. Using (1.8) with hℓ

in place of h we get

∫

BR(z)

h′
ℓ

(
|εD(v)|

)2
dx =

∫

BR(z)∩[|εD(v)|≤L]

. . . dx +

∫

BR(z)∩[|εD(v)|>L]

. . . dx

≤ h′
ℓ(L)2πR2 + cL−2

∫

BR(z)∩[|εD(v)|>L]

hℓ

(
|εD(v)|

)2
dx

≤ πR2h′
ℓ(L)2 + cL−2

∫

BR(z)

hℓ

(
|εD(v)|

)2
dx

≤ πR2h′(L)2 + cL−2

∫

BR(z)

hℓ

(
|εD(v)|

)2
dx ,

where in the last inequality we have used (see Lemma 3.1)

h′
ℓ(t) = tgℓ(t) ≤ tg(t) = h′(t) .

Let r < R and specify η (in (3.9)) such that η = 1 on Br(z), spt η ⊂ BR(z), 0 ≤ η ≤ 1
and |∇νη| ≤ c(R − r)−ν, ν = 1, 2. We further let L = λ−1(R − r)−1 for some λ ∈ (0, 1)
and recall that h′(L)2 ≤ cL2m−2. Then (3.9) implies

∫

Br(z)

h′
ℓ(|εD(v)|)
|εD(v)|

∣∣∇εD(v)
∣∣2 dx(3.10)

≤ c(λ)(R − r)−β + cλ2

∫

BR(z)

hℓ

(
|εD(v)|

)2
dx .

In (3.10) β denotes a suitable positive exponent and for the derivation of (3.10) we have
used that ξ(η) ≤ c(R − r)−2 according to the choice of η. Note further that (3.10) is
valid for all λ ∈ (0, 1) and any radii 0 < r < R ≤ 1 such that BR(z) ⊂ Ω.

Now we select ρ ∈ (0, R) and define r := (ρ + R)/2. With η ∈ C∞
0 (Br(z)), 0 ≤ η ≤ 1,
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η ≡ 1 on Bρ(z) and |∇η| ≤ c/(r − ρ)(= 2c/(R − ρ)) we get with Sobolev’s inequality
∫

Bρ(z)

hℓ

(
|εD(v)|

)2
dx ≤

∫

Br(z)

(
ηhℓ

(
|εD(v)|

))2
dx

≤ c

[∫

Br(z)

|∇η|hℓ

(
|εD(v)|

)
dx +

∫

Br(z)

h′
ℓ

(
|εD(v)|

)
|∇εD(v)| dx

]2

≤ c(R − ρ)−2

[∫

BR(z)

hℓ

(
|εD(v)|

)
dx

]2

+ c

[∫

Br(z)

h′
ℓ

(
|εD(v)|

)
|∇εD(v)| dx

]2

.

The Iℓ–minimality of v gives
∫

BR(z)

hℓ

(
|εD(v)|

)
dx ≤

∫

Ω

hℓ

(
|εD(v)|

)
dx ≤ Iℓ[u0, Ω] ≤ I[u0, Ω] ,

hence ∫

Bρ(z)

hℓ

(
|εD(v)|

)2
dx(3.11)

≤ c(R − ρ)−2 + c

[∫

Br(z)

h′
ℓ

(
|εD(v)|

)
|∇εD(v)| dx

]2

.

Hölder’s inequality implies

[
. . .

]2

=



∫

Br(z)

(
h′

ℓ

(
|εD(v)|

)

|εD(v)|

)1/2

|∇εD(v)| ·
(
h′

ℓ

(
|εD(v)|

)
|εD(v)|

)1/2
dx




2

≤
∫

Br(z)

h′
ℓ

(
|εD(v)|

)
|εD(v)| dx

∫

Br(z)

h′
ℓ

(
|εD(v)|

)

|εD(v)| |∇εD(v)|2 dx ,

and according to (1.8) and the minimality of v we have as usual
∫

Br(z)

h′
ℓ

(
|εD(v)|

)
|εD(v)| dx ≤ cI[u0, Ω] .

Therefore (3.11) implies the bound
∫

Bρ(z)

hℓ

(
|εD(v)|

)2
dx(3.12)

≤ c(R − ρ)−2 + c

∫

Br(z)

h′
ℓ

(
|εD(v)|

)

|εD(v)|
∣∣∇εD(v)

∣∣2 dx ,

and if we use (3.10) on the right-hand side of (3.12), we end up with (recall the choice of
r)

∫

Bρ(z)

hℓ

(
|εD(v)|

)2
dx

≤ c(R − ρ)−2 + c(λ)(R − ρ)−β + cλ2

∫

BR(z)

hℓ

(
|εD(v)|

)2
dx .
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Since clearly β ≥ 2 this inequality yields after suitable choice of λ
∫

Bρ(z)

hℓ

(
|εD(v)|

)2
dx ≤ c(R − ρ)−β +

1

2

∫

BR(z)

hℓ

(
|εD(v)|

)2
dx .

Here ρ < R ≤ 1 are arbitrary with BR(z) ⊂ Ω. Lemma 3.1, p.161, of [Gi] then gives
∫

Bρ(z)

hℓ

(
|εD(v)|

)2
dx ≤ c(R − ρ)−β ,

hence it is shown that

(3.13) sup
ℓ

∫

eΩ

hℓ

(
|εD(uℓ)|

)2
dx < ∞

is true for any subdomain Ω̃ ⋐ Ω. If we apply (3.13) on the right-hand side of (3.10), we
see

sup
ℓ

∫

eΩ

h′
ℓ

(
|εD(uℓ)|

)

|εD(uℓ)|
∣∣∇εD(uℓ)

∣∣2 dx < ∞ ,

and since h′
ℓ(t)/t is increasing, we get

h′
ℓ(t)/t ≥ h′′

ℓ (0) = h′′(0) ,

and therefore it is shown that

(3.14) sup
ℓ

∫

eΩ

|∇εD(uℓ)|2 dx < ∞ .

Combining (3.14) with the argument used after (3.8) the uniform bound for the local
L2–norm of ∇εD(uℓ) implies

(3.15) sup
ℓ

∫

eΩ

∣∣∇2uℓ

∣∣2 dx < ∞ .

As stated before (3.6) we have

sup
ℓ

∫

Ω

|∇uℓ|2 dx < ∞

which in combination with (3.15) proves

(3.16) sup
ℓ

‖uℓ‖W 2

2
(eΩ) ≤ c(Ω̃) < ∞

for any subdomain Ω̃ ⋐ Ω. Due to (3.16) and the global W 1
2 - bound for the sequence

{uℓ} we find a function u ∈ W 1
2 (Ω; R2) ∩ W 2

2,loc(Ω; R2) such that uℓ ⇁ u weakly in
W 1

2 (Ω; R2) ∩ W 2
2,loc(Ω; R2). Now, proceeding exactly as done at the end of Section 3 in

[BF], it can be shown that u = u, thus u ∈ W 2
2,loc(Ω; R2), and our claim (1.14) follows by

Sobolev’s embedding theorem. �
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4 Proof of the interior differentiability of the mini-

mizer

Suppose that all the hypotheses of Theorem 1.3 are satisfied. We use the same notation
as in the previous Section and study the approximations hℓ, Hℓ, v = uℓ introduced in
Lemma 3.1 and Lemma 3.2. Again we start from the equation

0 =

∫

Ω

∂µ

[
DHℓ(ε

D(v))
]

: εD(Ψ) dx, µ = 1, 2 ,

and choose Ψ = η2(∂µv − κµ), where η ∈ C∞
0 (B2r(z)) for a disc B2r(z) ⋐ Ω is such that

0 ≤ η ≤ 1, η = 1 on Br(z) and |∇η| ≤ c/r. Moreover, κµ denotes a holomorphic function
B2r(z) → C being specified below. This gives

∫

B2r(z)

D2Hℓ

(
εD(v)

) (
εD(∂µv), εD(∂µv)

)
η2 dx(4.1)

= −
∫

B2r(z)

D2Hℓ

(
εD(v)

) (
εD(∂µv), V (µ)

)
η dx ,

V
(µ)
ij := ∂iη

(
∂µvj − κj

µ

)
+ ∂jη

(
∂µv

i − κi
µ

)
−∇η · (∂µv − κµ) δij .

The r.h.s. of (4.1) is estimated with the help of the Cauchy–Schwarz inequality applied
to the bilinear form D2Hℓ

(
εD(v)

)
, and by letting

Φℓ := D2Hℓ

(
εD(v)

) (
εD(∂µv), εD(∂µv)

)1/2

we deduce from (4.1)
∫

Br(z)

Φ2
ℓ dx ≤ c

∫

B2r(z)

Φℓ

(
D2Hℓ

(
εD(v)

) (
V (µ), V (µ)

))1/2
dx

≤ c

r

∫

B2r(z)

Φℓ

∣∣D2Hℓ

(
εD(v)

)∣∣1/2 |∇v − κ| dx .

Recall that h satisfies (1.15), thus (see Lemma 3.1 a)) we have the same inequality with
exponent ω and uniform constant for each function hℓ, which yields

∣∣D2Hℓ

(
εD(v)

)∣∣1/2 ≤ c
(
1 +

∣∣εD(v)
∣∣2
)ω/4

√
h′

ℓ(|εD(v)|)
|εD(v)| =: Ψ̃ℓ ,

and we arrive at

(4.2)

∫

Br(z)

Φ2
ℓ dx ≤ c

r

∫

B2r(z)

ΦℓΨ̃ℓ|∇v − κ| dx .

Note that (4.2) corresponds to (2.4) in [BFZ] and as outlined there we get from (4.2) by
choosing γ = 4/3

(4.3)

∫

Br(z)

− Φ2
ℓ dx ≤ c

(∫

B2r(z)

−
(
ΦℓΨ̃ℓ

)γ

dx

)1/γ
1

r

(∫

B2r(z)

− |∇v − κ|4 dx

)1/4

,
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∫
− denoting the mean value. According to the version of the Sobolev-Poincaré inequality
established in the Appendix we can select κµ in such a way that

‖∂µv − κµ‖L4(B2r(z)) ≤ c
∥∥εD(∂µv)

∥∥
Lγ(B2r(z))

= c
∥∥∂µ

(
εD(v)

)∥∥
Lγ(B2r(z))

.

Inserting this estimate into (4.3) we find

(4.4)

∫

Br(z)

− Φ2
ℓ dx ≤ c

(∫

B2r(z)

−
(
ΦℓΨ̃ℓ

)γ

dx

)1/γ (∫

B2r(z)

−
∣∣∇εD(v)

∣∣γ dx

)1/γ

,

and from the definition of the functions Φℓ, Ψ̃ℓ it is immediate that
∣∣∇εD(v)

∣∣ ≤ ΦℓΨ̃ℓ

holds. Thus (4.4) yields

(4.5)

∫

Br(z)

− Φ2
ℓ dx ≤ c

(∫

B2r(z)

−
(
ΦℓΨ̃ℓ

)γ

dx

)2/γ

.

Note that (4.5) corresponds to (2.6) in [BFZ], and if we abbreviate d := 2/γ, f := Φγ
ℓ ,

g := Ψ̃γ
ℓ , then (4.5) takes the form

(4.6)

(∫

Br(z)

− fd dx

)1/d

≤ c

∫

Br(z)

− fg dx .

Returning to (3.3) and recalling the uniform local higher integrability of ∇v = ∇uℓ for any
finite exponent, we see that f is in Ld

loc(Ω) uniformly w.r.t. the approximation parameter
ℓ. In order to apply Lemma 1.2 of [BFZ] to inequality (4.6) it remains to check that

exp(βΨ̃2
ℓ) = exp(βgd) belongs to L1

loc(Ω) (uniformly in ℓ) for any β > 0. To this purpose
we let

Ψℓ :=

∫ |εD(v)|

0

√
h′

ℓ(t)

t
dt

and deduce from the inequality stated after (3.13) that

sup
ℓ

∫

Ω∗

|∇Ψℓ|2 dx ≤ c(Ω∗) < ∞

is true for any subdomain Ω∗ ⋐ Ω, moreover, we clearly have
∫

Ω

Ψ2
ℓ dx ≤ c

∫

Ω

hℓ

(
|εD(v)|

)
dx ≤ c

∫

Ω

hℓ

(∣∣εD(u0)
∣∣) dx ≤ c

∫

Ω

h
(∣∣εD(u0)

∣∣) dx ,

hence

(4.7) sup
ℓ

‖Ψℓ‖W 1

2
(Ω∗) ≤ c(Ω∗) < ∞

for Ω∗
⋐ Ω. Trudinger’s inequality (see [GT], Theorem 7.15) in combination with (4.7)

implies the bound

(4.8)

∫

Bρ

exp(β0Ψ
2
ℓ) dx ≤ c(ρ) < ∞
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for discs Bρ ⋐ Ω and for some exponent β0. But as outlined after (2.10) in [BF] the
estimate (4.8) in combination with (1.15) gives

∫

Bρ

exp
(
βΨ̃2

ℓ

)
dx ≤ c(β, ρ)

for any β > 0. Returning to (4.6) and applying Lemma 1.2 of [BFZ] we get for all β > 0

(4.9)

∫

Bρ

Φ2
ℓ ℓnc0β(e + Φℓ) dx ≤ c(β, ρ)

with a suitable constant c0. Estimate (4.9) corresponds to (2.10) in [BFZ] and as in this
reference we deduce from (4.9) that

(
σℓ := DHℓ

(
εD(v)

))

∫

Bρ

|∇σℓ|2 ℓnα (e + |∇σℓ|) dx ≤ c(α, ρ)

holds for all exponents α > 0 and all discs Bρ ⋐ Ω, which gives the uniform continuity of
the tensors σℓ due to results of Kauhanen, Koskela and Malý [KKM]. But then we have
the uniform continuity of the tensors εD(uℓ) so that each partial derivative ∂γuℓ solves an
elliptic system of the form

0 =

∫

Ω

Ax

(
εD(w), εD(ϕ)

)
dx , ϕ ∈ C∞

0 (Ω; R2) ,

where Ax : S2×S2 → [0,∞) is a coercive bilinear form depending continuously on x. From
[Sc] we get ∂γuℓ ∈ C0,ν(Ω; R2) uniformly in ℓ for any ν ∈ (0, 1), so that u ∈ C1,ν(Ω; R2) is
established. �

Appendix. A Sobolev–Poincaré type inequality

involving εD

Here we are going to prove the inequality stated after (4.3), i.e. we claim

LEMMA A.1. Let B denote the unit disc in R2. Then, for each p ∈ (1, 2), there exists
a constant c(p) ∈ (0,∞) such that with p∗ := 2p

2−p
the estimate

(A1) ‖f − g‖Lp∗(B) ≤ c(p)‖εD(f)‖Lp(B)

holds for any function f ∈ W 1
p (Ω; R2), where g is a suitable holomorphic function B → C

depending on f .
If we allow values p ∈ (1,∞), then we obtain a variant of (A1) with p∗ being replaced by
p.
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Proof: Suppose that Lemma A.1 holds for functions in C∞(B; R2). For f ∈ W 1
p (B; R2)

we then consider fn ∈ C∞(B; R2) with corresponding holomorphic functions gn such that
‖f − fn‖W 1

p (B) −→ 0, n → ∞, and

(A2) ‖fn − gn‖Lp∗(B) ≤ c(p)‖εD(fn)‖Lp(B) ,

Sobolev’s theorem implies
sup

n
‖fn‖Lp∗(B) < ∞ ,

so that by (A2)
sup

n
‖gn‖Lp∗(B) < ∞ .

We may therefore pass to a subsequence such that e.g.

gn →: g in Lp∗(B′)

for each subregion B′ ⋐ B, g denoting a holomorphic function. But then again by (A2)

‖f − g‖Lp∗(B′) ≤ lim sup
n→∞

‖fn − gn‖Lp(B) ≤ c(p)‖εD(f)‖Lp(B) ,

and we get (A1) for the Sobolev function f by passing to the limit B′ ր B. Returning
to the smooth case we observe the validity of the representation formula (see, e.g. [Hö],
p.3, or [Sa], p.234)

(A3) f(z) =
1

2πi

∫

∂B

f(ξ)

ξ − z
dξ − 1

π

∫

B

∂zf(ξ)

ξ − z
dL2(ξ) ,

which follows from Gauß’ s theorem.
Here z is any point from the disc B, and on the r.h.s. of (A3) the term

∫
∂B

denotes the
complex line integral taken over the circle, whereas

∫
B

has to be calculated w.r.t. Lebesgue
measure L2. Finally, ∂zf is the Wirtinger derivative 1

2
(∂xf + i∂yf), z = x + iy, so that f

is holomorphic if and only if ∂zf = 0. Clearly g(z) := 1
2πi

∫
∂B

f(ξ)
ξ−z

dξ is holomorphic in B,

and from (A3) we obtain

(A4) |f(z) − g(z)| ≤ cV1/2

(
|εD(f)|

)
(z) ,

where V1/2 is the Riesz potential of |εD(f)| defined in [GT], formula (7.31), for the choices
µ = 1/2, n = 2. According to [St], Theorem 1 on p.119, or to Lemma 7.12 of [GT] and the
comments given after this lemma we have the continuity of V1/2 from Lp(B) into Lq(B)
for any q such that 1

p
− 1

q
≤ 1

2
, i.e. for any q ≤ 2p

2−p
= p∗. Combining this argument with

(A4), the desired inequality (A1) follows. �

16



References

[Ad] Adams, R. A., Sobolev spaces. Academic Press, New York-San Francisco-London
(1975).

[BI] Bartnik, R., Isenberg, J., The constraint equation. In: Chruściel, P. T., Friedrich,
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