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Abstract

The Shape-From-Shading (SFS) problem is a fundamental and
classic problem in computer vision. It amounts to compute the 3-D
depth of objects in a single given 2-D image. This is done by exploit-
ing information about the illumination and the image brightness. We
deal with a recent model for Perspective SES (PSFS) for Lambertian
surfaces. It is defined by a Hamilton-Jacobi equation and comple-
mented by state constraints boundary conditions. In this paper we
investigate and compare three state-of-the-art numerical approaches.
We begin with a presentation of the methods. Then we discuss the
use of some acceleration techniques, including cascading multigrid, for
all the tested algorithms. The main goal of our paper is to analyze
and compare recent solvers for the PSFS problem proposed in the
literature.

1 Introduction

The Shape-From-Shading (SF'S) problem consists in the reconstruction of the
3-D depth of depicted objects of a single given grey value image. Thereby,
SF'S makes use of the image brightness as well as of information about the
direction of the light source. It is a classic inverse problem in computer
vision with many potential applications; see e.g. [8, 13, 14, 24] and references
therein.

We deal with a modern model for SF'S which includes perspective deforma-
tions and that can be cast into the format of a partial differential equation
(PDE), see [18]. Three different methods have been proposed in the recent
literature to tackle the corresponding problem, see [7, 18, 23]. The question
arises, which of these methods one should use for future developments in this
direction of research in SFS. In this paper, we are addressing this question,
comparing and evaluating the three mentioned schemes. In contrast to the
basic original versions of the algorithms, we consider various numerical ac-
celeration techniques that are relatively easy to implement and of practical
relevance for computer vision applications. Doing this, we extend some of the
methods used before in this field. Our extensive numerical experiments show
that an extended version of the algorithm proposed in [23] gives the best
performance; however, also for the other algorithms a significant efficiency
gain can be achieved.

Perspective Shape-From-Shading. Two key issues in mathematical mod-
els of SF'S are the surface reflectance and the camera model. We will employ
the classic assumption of a Lambertian surface reflectance [10]: the light
intensity at some point M on an object surface perceived by the observer



linearly depends on the cosine of the angle between the light source direc-
tion w and the normal to the surface at M. Compared to other possible
approaches; this surface model is relatively easy to access for modelling pur-
poses and theoretical analysis. The camera model is concerned with the pro-
jection performed when mapping the 3-D real world to 2-D images. In early
SE'S models, this projection is assumed to be orthographic. Concerning this
type of models, let us mention the pioneering work of Horn [12] who was also
the first who modelled SFS via a PDE. However, orthographic models were in
practice not too successful, as shown in two recent survey papers [8, 24]. As
an attempt to improve SF'S results, the orthographic camera model has been
substituted by employing a more realistic perspective projection [4, 16, 22].
In this paper, we use the perspective approach (PSFS). We also consider a
point light source located at the optical center as within some of the men-
tioned works concerned with PSFS, and we use the so-called light attenuation
term. This model for PSFS was shown to be well-posed in [18, 19] under
some assumptions which include the differentiability of the surface (see also
[3] where discontinuous brightness functions have been considered).
Mathematical formulation of PSFS. The PDE that arises is a static, hy-
perbolic Hamilton-Jacobi (HJ) equation. Making use of the Legendre trans-
form, one can formulate it equivalently as a Hamilton-Jacobi-Bellman (HJB)
equation and solve the corresponding optimal control problem. In both cases,
the equations are complemented by state constraint boundary conditions.
Algorithms. The first important developments for the PSFS model with
light attenuation are based on the control-theoretic formulation. In [18] and
related works of Prados and his co-workers, the dynamic programming prin-
ciple is used in the form of a top-down process, leading to an iterative algo-
rithm. The pointwise arising optimal control problem is solved analytically
in this approach. Then, in [7], a semi-Lagrangian method was developed
also based on the HJB equation. In this method, the domain of the opti-
mal control is discretised. An artificial iteration variable introduced into the
HJB equation gives here a recursive method. The third numerical approach
of importance was proposed in [23], where it was suggested to use the HJ
equation as a basis of the discretisation without refering to the optimal con-
trol problem. Using an artificial time variable, also this approach is iterative.
In our paper, we investigate these methods and their algorithmic extensions
obtained by acceleration techniques.

Related work. This paper complements and extends previous conference
papers of some of the authors [2, 7, 23]. In [7, 23] basic versions of two of the
investigated algorithms were introduced. In a later conference contribution
[2], the three algorithms discussed in the current paper were compared and
extended to some degree. However, no experimental convergence analysis was



given. The emphasis in that work was on the influence of parameters like
the stopping condition for the iterative schemes. Also, a cascading multigrid
(CM) method was only investigated for the direct method from [23] there.
The reason for this was, that the multigrid approach seems to be not popular
for solving hyperbolic first-order HJB equations; the papers one finds in the
literature are mainly based on [11] dealing with multigrid schemes for second-
order elliptic HJB equations.

Our contribution. In this paper we build upon the conference contribution
[2]. We use here the efficient algorithmic variants that were identified for all
three approaches in that work, namely with Gauf-Seidel-type updating and
fast sweeping. For these modifications, we briefly compile the most important
results from [2]. Based on the modified schemes, we extend the conference
paper here in the following directions:

(i) We study the numerical convergence properties of the schemes. This
investigation is particularly interesting since the algorithms differ very
much in the numbers of iterations needed for convergence as well as in
the computational effort per iteration.

(i1) We analyse experimentally the convergence properties of the CM ac-
celeration method for all the schemes. This investigation gives some
surprising results. We show that a generic parameter setting for the
CM method does not work well with the optimal control approaches.

(171) Based on the results of the first two points, we refine the CM approach
by identifying a good choice for the stopping condition employed on
the coarse grid levels.

With this systematic study of algorithms for the PSFS model we comple-
ment recent investigations of schemes for other SF'S models performed in [8].
Furthermore, we conjecture that our paper can be an important landmark
for works on numerical schemes for PSFS, as it summarizes and extends the
recent efforts of several research groups.

Paper organisation. In Section 2, we briefly review the PSF'S model with
light attenuation. The three numerical approaches of interest are introduced
in Section 3, where we also discuss the acceleration techniques used in our
tests. In Section 4, we are concerned with the comparative study of numerical
methods and in Section 5 we perform some additional experiments about
the speed of convergence of the methods and the effect of the acceleration
techniques. The last section contains our conclusions.



2 The Mathematical Model

In this section we recall the model for PSFS introduced in [15] with light
attenuation term.

Let (x,y) € R? be in the image domain €2, where Q is an open set. Further-
more:

o [ = I(z,y) is the normalised brightness function. We have I = @,

where F is the greylevel of the given image and o is the product of the
surface albedo (which tells us to which extent the surface reflects light)
by the light source intensity.

e f is the focal length, i.e. the distance between the optical center C' of
the camera and the 2-D plane to which the scene of interest is mapped.

Let M be a generic point on the surface . The unknown of the problem is
the function u : 2 — R such that

M = M(z,y) = u(z,y) m' (1)

where ;
m' = m and m=(z,y,—f), (2)

/IL'2 + y2 + f2
see Fig. 1. Note that, according to these notations, v > 0 holds as the
depicted scene is in front of the camera.
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Figure 1: The perspective SF'S model with a point light source at the optical
center.



We denote by r(x,y) the distance between the point light source and the
point M(z,y) on the surface. It holds u(x,y) = r(x,y)/f, since the light
source location coincides with the optical center.
The PDE associated to this PSFS model is obtained writing down the image
wrradiance equation:

R(n(x,y)) = I(x,y), (3)
making explicit the normal n to the surface and the reflectance function R
which gives the value of the light reflection on the surface as a function of its
normal.
We denote by w(x,y) the unit vector representing the light source direction
at the point M (z,y) (note that in the classic SF'S problem this direction is
constant),

(_$7 -y, f)
w(z,y) = : (4)
/IL'2 + y2 + f2
Taking into account additionally the assumption of a Lambertian surface, the
function R is defined as

A W(l‘,y)’fl(ZL‘,y)
R = . 5
(o)) = S )
In order to write down the corresponding PDE, it is useful to introduce the
new unknown v = In(u) (remember that u > 0). Equation (5) can be written
as a static HJ equation:

1

T 2 T o 6—2U(aﬂ,y) _
e Wy 0 ()

where

W(z,y, Vo) := VPVo(z,y)2 + (Vo(z,y) - (2,9)) + Qa,y)*  (7)

and

f‘

/2 +y2 +f2' (8)

The same equation admits also a 'control formulation’. Indeed, it is proved
in [17, 18, 19] that v is defined as the solution of the following HJB equation:

Qr,y) =

D | sup {=b{a,y,0) - Vola,y) ~ (ry,a)} =0 (9
a€B(0,1)

where B(0,1) denotes the closed unit ball in R? and the other terms in (9)
are defined as follows:

b(x,y,a) = _JGTDGG’7 g(xuyaa) = —[<.§L’,’y> f2 V - ”CLH27 (1())

bt



J(z,y) == I(z,y)fV/{? + 2% + ¢ (11)

where || - || denotes the Euclidean vector norm, and G and D are the 2 x 2
matrices:
1 y —x f 0
G(x,y).—\/ﬁ<x y )7 D(Jfay)-—( f2+x2+y2)
(12)

3 ALGORITHMS

We will proceed here as follows. First, we describe the set-ups of all the three
methods. Then, we proceed by giving relevant details of the discretisations
and the speed-up mechanisms we generally use for all the schemes. In the
last parts of this paragraph, we describe the CM acceleration method we
investigate in detail in this work, and we comment on the boundary condition.
In order to distinguish between the different algorithms, we will use from
now on the following abbreviations:

e PF denotes the numerical scheme introduced by Prados and Faugeras
[16] based on the optimal control approach using dynamic program-
ming, complemented with an upwind finite difference discretisation.

e CFS denotes the numerical scheme introduced by Cristiani, Falcone
and Seghini [7]. Tt is based on the same approach as PF but it uses
a semi-Lagrangian discretisation (see [9] for details) instead of finite
differences. We also refer to [6] for the approximation of a different
PSES model.

e VBW denotes the direct Hamilton-Jacobi-based method of Vogel, Breuf3
and Weickert [23].

Upwind-type discretisation of spatial derivatives. In the PF and VBW
methods, the discretization of spatial derivatives is made by using the stable
upwind-type discretisation of Rouy and Tourin [21]. This is as follows. Let h,
and h, be the spatial mesh widths in - and y-direction, respectively. Denot-
ing then by v; ; the value of v at the mesh point (ih,, jh,)?, the approximate
upwind differences of [21] read as

6x(ihm7jhy) A min (0, Ui+1’2_ Ui’j, viil’;l_ Ui’j) ; (13)
Vit ity ~ win (0, BN B Z0)
Y Y



In (13)-(14) neither iteration nor time levels of the values of v are specified
yet. The reason for this missing specification is that we use a Gauf-Seidel-
type updating and a sweeping technique in order to accelerate convergence.
This combination of techniques leads to a different choice of data labels for
each sweeping direction.

Let us remark, that in the original versions of the PF, the CFS and the
VBW schemes, acceleration techniques were barely considered: only the PF
scheme is originally used together with a Gau3-Seidel-type updating strategy,
see [18].

3.1 The PF scheme

The PF scheme proposed by Prados et al. [16, 17, 18, 19] is based on the
HJB formulation, see (9)-(12). For the numerical solution of the optimal
control problem, one has

(i) to discretise the occurring partial derivatives of v,

—2v

(i1) to discretise the source term e~ =Y, and

(111) to find an optimal control a € B(0, 1).

We address these points in this section. Having established the discrete
formulation, the equation is solved pointwise in an iterative way.

(i) In the PF scheme the first-order derivatives part of Vv are discretised
by using appropriate upwind discretisations as described in [21]. These
are summarized in Section 3.4 below.

i) e method is practically a semi-implicit scheme where the im-

i) The PF method is practically i-implicit sch here the i
plicitness stems from the corresponding treatment of the source term.
Newton’s method is used for every fixed point iteration.

(i7i) In order to solve the maximization problem in (9) we have to search
for an optimal @ in the entire unit ball. This is done in the PF scheme
by computing the analytical solution for a over B(0,1), which is a
quite complicated procedure, as one needs to take into account the
case distinctions w.r.t. the occurring upwind directions.

3.2 The CFS scheme

The CFS scheme developed in [7] is also an optimal control technique. The
HJB equation is also solved by means of a specific iterative fixed point proce-
dure. Although the resulting method is close to the PF scheme, the scheme
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is based on semi-Lagrangian approximation of the directional derivatives,
which automatically gives the upwind correction and results to be easier to
implement than PF.
Introducing an artificial time step 7, and an artificial time-dependency into
the process (indicated by a lower index 7), one may obtain from (9) the
semi-discrete scheme

_UT(x7 y)+ rg%(r]ll) {UT((ZE, y) + Tb(ZL', Y, a)) —+ Tf(;p’ Y, a)}+76_2v7(x7y) = 0.
ac s
15)

This equation can be solved iteratively by employing a sequence vgk), k =
0,1,..., marching in pseudo-time to infinity until a steady state of v, is
reached. To make the scheme fully-discrete, a grid {(z;,y;)}ij=1,.. .~ is in-
troduced and equation (15) is considered only at the grid nodes (z;,y;).
Moreover, since the term (z;,y;) + 7b(z;,y;,a) is not in general sitting on
the grid, the value of v, at that point is computed by linear interpolation
using the three nearest grid nodes (note that other more accurate but more
expensive choices are possible for the interpolation [9]).

Also the CFS algorithm is semi-implicit and employs Newton’s method for
resolving the source term.

Again the optimal control a has to be sought within the entire unit ball in
R2. This is obtained in the CFS scheme via a sampling procedure, making
use of 8 directions with 3 points in each direction additionally to the origin.

—~

3.3 The VBW scheme

In the VBW scheme introduced in [23], the Hamilton-Jacobi equation (6)-(8)
is used directly, without resorting to the optimal control approach.

Also the VBW scheme relies on the use of the upwind discretisation of Rouy
and Tourin [21], see the next paragraph.

The means to obtain an iterative scheme with this approach is to augment
the depth variable v(z, y) with an artificial time variable ¢, i.e. v = v(x,y,t).
One then solves instead of (6) the time-dependent PDE

a I(l‘,y) 2 —2
—uv(x,y,t) + 2W (z,y, Vv) = e 2v@wd) 16
5@ ¥ 0) 0@y (z,y,Vv) (16)

for the steady state defined by %v = 0, thus retrieving (6) for t — oo.
Denoting by n the time iteration, the scheme then reads

I, = = o
vyt =T <_Q_ij2\/f2|vvglj|2 + (Vof - (i) + Qf + e J) :



In the paper [23] the source term e~2 is treated implicitly, using Newton’s

method in each point and time step to solve the corresponding fixed point
equations. In a later work [2] an explicit discretisation of the source term is
used, a variant we also investigate here.

However, due to the direct Hamilton-Jacobi approach no optimal control
needs to be determined.

3.4 Acceleration techniques

We discuss here the acceleration techniques for the three methods.

The Gauf3-Seidel-type updating. The idea behind this acceleration tech-
nique is the same as with the Gauf3-Seidel method for solving linear systems
of equations. It is based on the observation, that at pixel (i, j) the data from
the pixels (7,7), (¢ £ 1,7) and (¢, £ 1) contribute in the upwind formulae.
Assume for instance that we iterate from left to right and from top to bottom
over the mesh points. Thus, ascending in ¢ and descending in j, we incorpo-
rate the available computed values into the computation of derivatives from
(13)-(14).

Using the iteration levels n and n + 1 together with a time step size 7, this
procedure gives the formulae

n n n+1 n
~ V! . — . U
Valihg, jhy,nt) ~ min [0, 201 2l L (17)
hy hy
n+1 n n n
~ UV =0 vt — U
V,(ihg, jhy,n7T) ~ min |0, 20 B2l ) (18)
hy hy
Let us emphasize that the values Uln;ﬁil and vznfllj in (17)-(18) were already

computed via the described method, so that the Gauf}-Seidel idea can be
applied.

Sweeping. We also employ a sweeping technique, see [25]. The motivation
of the sweeping method can be given as follows on a completely discrete level.
Let us consider the situation when one iterates in only one direction over the
points, e.g. always ascending in 7 and descending in j as described above. By
application of the Gauf-Seidel idea, one uses the values vlnfll] from the left
and Ufﬁl from above in order to accelerate convergence. This means, that
information is quickly propagated from top-left to bottom-right, but this is
a one-sided advantage.

As a remedy, it is obvious to proceed by iterating over the grid in a cyclic
way:



1. Left — Right, and Top — Bottom
2. Top — Bottom, and Right — Left
3. Right — Left, and Bottom — Top

4. Bottom — Top, and Left — Right

This procedure is called sweeping in the literature. As is easily seen, depend-
ing on the actual sweeping direction within the above cycle, different values
vl 4, have to be taken into account in (17)-(18).

The Cascading Multigrid Method.

In addition to the described improvements, we employ a cascading multigrid
(CM) method, see [1].

The CM routine is a relatively easy-to-use algorithm. Practically, it is a
coarse-to-fine strategy, where we start from a coarse level and iterate up
to the finest level identical with the original image domain. Thereby, the
refinement is always implemented by doubling the number of grid points in
each direction, involving linear interpolation from known values to the newly
inserted nodes. Of course, this implies that the original image must be given
in a size identical to a power of two. In our experiments, we always start at
the coarsest level with 2 x 2 pixels.

The CM method is closely related to other well-known strategies in image
processing like e.g. the Gaussian image pyramids, cf. [20]. Thus, it is a good
candidate for a numerical acceleration technique for applications in the field
we consider.

3.5 Boundary Conditions

An important issue is always the definition of correct boundary conditions
and their numerical implementation. In the PSFS model the presence of
the attenuation term 1/r? makes suitable to use state constraint boundary
conditions which can be easily implemented in the form of homogeneous
Dirichlet boundary conditions u(z,y) = % where U = max; y)co u(z,y) (this
is our choice for all tests of the paper). In fact, in the context of the upwind
differencing employed within the considered schemes, the correct, so-called
state constraints b.c. are satisfied automatically because of the effect of the
minimization procedure within the upwinding formulae. Other choices are
also possible: in particular situations the solution is known at the boundary,
then exact Dirichlet boundary conditions are the best choice. Alternatively,
homogeneous Neumann boundary conditions can be used whenever this in-
formation is not available.
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4 Comparisons of the Algorithms

For comparisons we use synthetic images, so that all the parameters for the
camera, the illumination and the true depth are known. The test surfaces are
(1) a newly rendered version of a ’classic’ benchmark in SFS [8, 24], namely
a Synthetic Vase on a flat background and (i) an Upside-down Pyramid on
a flat background already used in [5, 7] to compare the PSFS model we use
here with the one where the light source is assumed to be at infinite distance
[4]. See Figures 2-3 for the corresponding input images (256 x 256 pixels)
and the surface we expect to reconstruct. Note that the white part of the
background in the 3-D surfaces corresponds to the region not visible from the
optical center (because it is hidden by the vase or by the pyramid itself). In
the top and bottom side of the vase the effect of the perspective deformation
is clearly visible, this is due to the fact that the camera is not at infinite
distance from the object.

(a)

Figure 2: Synthetic vase. (a) Input image, 256 x 256 pixels. It is rendered
using the parameters f = 256 and ¢ = 165.10. (b) Ground truth.

For initialising the iterative process for all algorithms we solve the optimal
control problem analytically for the null control a = (0,0).

In all scheme variants we use the Gauf3-Seidel idea as well as Sweeping. The
stopping criterion is satisfied if the difference of two successive iterates is
less than 10~ in the maximum-norm. This choice is reasonable for PSFS
computations as identified in [2].

In our numerical tests, all the algorithms return qualitatively the same result,
so we report just one outcome. In Figure 4 we show the result for the
synthetic vase in two cases: 1) the computation is performed only on the vase,
2) the computation is performed in the whole square domain (including the

11



(a)

Figure 3: Synthetic upside-down pyramid. (a) Input image, 256 x 256 pixels.
It is rendered using the parameters f = 256 and o = 155.74. (b) Ground
truth.

background). We show the function —u (the reversed solution of the PSFS
equation), as well as the reconstructed surface computed by means of (1).
As it can be seen, the reconstruction of the vase itself is quite good, while
the background is estimated as a continuation of the vase boundary, leading
to a large error on the top and the bottom of the vase. In Figure 5 we show
the results for the upside-down pyramid (with and without background). As
in the previous test, the pyramid itself is approximated quite well, and the
background is again estimated as a continuation of the pyramid boundary.
The computational times we present were obtained using an implementation
in C on a standard PC (Linux, Pentium IV, 3.2 GHz, 2 GB RAM). Numer-
ical errors (in L' and L* norms) are computed comparing the approximate
function u (see Eq. (1)) with its exact value rather than comparing the exact
and approximate final surface. This is done because the surface is given in
parametric form and it is not defined on a regular grid. Errors are given in
terms of the relative depth error, i.e. in percentages of the true depth, as this
is meaningful in the context of the SF'S task. We also report the number of
iterations needed. Note that one iteration consists of four sweeps. The use of
the cascading multigrid algorithm is indicated by 'CM’. In this context, the
number of iterations only represents the iterations on the finest grid. The
results of our comparison (vase and pyramid, with and without background)
are summarized in Tables 1-4.

12



Figure 4: Results of the numerical tests for the synthetic vase. First row:
function —u (without and with background). Second row: reconstructed

surface (without and with background).

Table 1: Schemes comparison for the vase experiment, without background.

Algorithm | CM | L* error [%] | L™ error [%)] | Time [s] | Tterations
PF no 0.06 0.21 16.9 27
CFS no 0.47 1.71 9.7 19
VBW no 0.17 3.04 3.2 62

Table 2: Schemes comparison for

the vase experi

ment, with background.

Algorithm | CM | L* error [%] | L™ error [%)] | Time [s] | Tterations
PF no 1.10 10.42 125.5 38
CFS no 1.17 10.25 70.2 26
VBW no 1.98 10.41 20.4 100
VBW yes 1.90 10.04 8.1 29
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—u(z,y)

-205
-256
-307+

Figure 5: Results of the numerical tests for the upside-down pyramid. First
row: function —u (without and with background). Second row: recon-
structed surface (without and with background).

Table 3: Schemes comparison for the pyramid experiment, without back-

ground.
Algorithm | CM | L' error [%] | L™ error [%] | Time [s] | Iterations
PF no 2.95 5.16 46.1 23
CFS no 3.20 5.5 27.5 17
VBW no 3.01 0.47 6.9 63

As observable, the results for the images without background (continuous
surfaces) are very accurate for all methods, indicating that the model has
reached some level of maturity. On the contrary, results for images with

14



Table 4: Schemes comparison for the pyramid experiment, with background.

Algorithm | CM | L! error [%] | L™ error [%] | Time [s| | Iterations
PF no 10.06 22.52 90.8 24
CFS no 9.49 22.40 55.4 18
VBW no 10.01 22.48 12.6 63
VBW yes 10.19 21.51 8.2 28

background are largely inaccurate, this is due to the inability to catch the
discontinuities of the surface.

VBW is the fastest method, even without the CM correction which gives
an important additional speed-up. PF is the most accurate method for the
continuous case, but it is the slowest one. Its accuracy is probably due to
the fact that the optimal control is computed analytically. Finally, we note
that the differences between the errors are not so relevant as those for CPU
times.

5 Evaluation of acceleration techniques

In the previous experiments we used a fast sweeping technique for all the
methods. Now, we will analyse how big the impact of this technique is
on the computation times of the different methods. In addition, since we
discretised the source term in the VBW explicitly, we will investigate the
effect of discretising it implicitly as done in the other methods. We will do
this on the upside-down pyramid test image (with background).

Table 5: Analysis of the effect of fast sweeping and implicit discretisation of
the source term on the computation time for the pyramid image.

Method | Sweeping (y/n) | explicit/implicit | Time [s] | Iterations

PF n 1 139.71 147
CFS n 1 914 123
VBW n e 14.8 282
VBW n i 31.8 256
PF y i 90.8 24
CFS v i 55.4 18
VBW y e 12.6 63
VBW y i 28.7 63

15



Table 5 shows the computation times and number of iterations needed for
these experiments. Note that we do not report the depth errors here, since
none of the modifications will have any impact on them. In addition, one
iteration using the fast sweeping technique means iterating over the image in
four directions, i.e. one iteration here corresponds to four iterations without
sweeping. We observe that for the VBW method, the effect is rather small,
while the other methods are more sensitive to this acceleration technique. In
fact, the speed-up (which is the ratio between the two CPU times) is 1.54
for PF, 1.65 for CFS and 1.17 for VBW.

Discretising the source term implicitly slows down the VBW method quite a
bit, but it remains the fastest method.

In the next step, we analyse the convergence properties of the methods. As we
have already seen, the VBW method needs more iterations than the methods
employing an optimal control approach, but requires less computation time.
Obviously, the iteration steps are a lot cheaper for this method. Here, we aim
at understand how fast the algorithms approach the solution. Again, we do
this on the pyramid image. We stop each method as soon as the logarithmic
depth change is less than 10~ in all the pixels.
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Figure 6: Evolution of the maximal change in depth by iteration of the three
methods on the pyramid image (with fast sweeping).
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Figure 6 shows a graph of the convergence of the methods. As we can ob-
serve, the VBW method converges relatively fast up to a maximal change
per pixel of about 1073, and then converges very slowly. The optimal con-
trol methods are a bit slower in the beginning, in particular if we remember
the iterations to be much more expensive, but at very small changes, they
converge extremely fast. The CFS method reaches a maximum change of

10~* within two iterations from a maximum change of 1073, while the VBW
method takes more than 30 iterations for this.

Figure 7 shows the same
experiment without fast sweeping. We observe the same behaviour here.
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Figure 7: Evolution of the maximal change in depth by iteration of the three
methods on the pyramid image (without fast sweeping).

Finally, we investigate the effect of using a cascading multigrid scheme as a
solver. We will do that in the same way for all three methods, employing
fast sweeping as above, and we discuss the gain for each method. We do each
experiment twice: In the first experiment we iterate on the coarser levels until
convergence (107* as before). As usual, we begin at the coarsest level with
a 2 x 2 resolution. Then, we repeat the experiment doing only 5 iterations —

or until convergence if this happens earlier — on the coarser levels. We only

iterate until convergence on the finest level, imposing a limit of 100 on the
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number of iterations that is by far not reached in practice.

Table 6: Analysis of the effect of a cascading multigrid method on the com-

putation time for the pyramid image.

Method | CM (y/n) | coarse level iteration limit | Time [s] | Iterations (finest level)
PF n - 90.8 24
CFS n - 55.4 18

VBW n - 12.6 63
PF y none 89.6 20
CFS y none 54.8 15

VBW y none 8.9 28
PF y 5 84.6 20
CFS y 5 52.1 15

VBW y 5 8.4 28

Table 6 shows the computation times for both experiments and all the meth-
ods. We observe that the best choice in every case is to stop earlier the
computation on the coarser levels. The overall gain for the optimal control
approaches is very small, while for the VBW method we obtain a significant
speed-up here.

Conclusions and future work

We have shown that the considered schemes deliver visually equivalent results
of convincing quality, at least on continuous synthetic images. We have found
that the direct approach based on the Hamilton-Jacobi PDE is more efficient
compared to the schemes relying on the Hamilton-Jacobi-Bellman equation
but the former is not always the most reactive to the acceleration techniques.
Regarding the errors, outcomes are more test-dependent, and it is impossible
to say which method performs best. As expected, all methods give convincing
results for differentiable surfaces, while the errors increase in presence of edges
and, even more, if the surface is discontinuous.
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