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Abstract

We consider variational problems of splitting-type, i.e. we want to minimize∫
Ω

[f(∇̃w) + g(∂nw)] dx

where ∇̃ = (∂1, ..., ∂n−1). Thereby f and g are two C2-functions which satisfy
power growth conditions with exponents 1 < p ≤ q < ∞. In case p ≥ 2 there
is a regularity theory for minimizers u : Rn ⊃ Ω → RN without further
restrictions on p and q if n = 2 or N = 1. In the subquadratic case the
results are much weaker: we get C1,α-regularity, if we require q ≤ 2p + 2 for
n = 2 or q < p + 2 for N = 1. In this paper we show C1,α-regularity under
the bounds q < 2p+4

2−p
resp. q < ∞.

1 Introduction

In this paper we discuss regularity results for local minimizers u : Ω → RN

of variational integrals

I[u, Ω] :=

∫
Ω

F (∇u) dx (1.1)

where Ω denotes an open set in Rn and where F : RnN → [0,∞) satisfies an
anisotropic growth condition, i.e.

C1|Z|p − c1 ≤ F (Z) ≤ C2|Z|q + c2, Z ∈ RnN (1.2)

with constants C1, C2 > 0, c1, c2 ≥ 0 and exponents 1 < p ≤ q < ∞.
The study of such problems was pushed by Marcellini (see [Ma1] and [Ma2])
and today it is a well known fact that there is no hope for regularity of
minimizers if p and q differ too much (compare [Gi] and [Ho] for counter
examples). Under mild smoothness conditions on F (the case of (p, q)-elliptic
integrands) the best known statement is the bound

q < p + 2 (1.3)

for regularity proved by Bildhauer and Fuchs [BF1], where one has to suppose
local boundedness of minimizers. To get better results additional assump-
tions are necessary. Therefore we consider decomposable integrands, which
means we have

F (Z) = f(Z̃) + g(Zn) (A1)
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for Z = (Z1, ..., Zn) with Zi ∈ RN and Z̃ = (Z1, ..., Zn−1). Thereby f and g
are functions of class C2 and we assume power growth conditions:

λ(1 + |Z̃|2)
p−2
2 |X̃|2 ≤ D2f(Z̃)(X̃, X̃) ≤ Λ(1 + |Z̃|2)

p−2
2 |X̃|2,

λ
(
1 + |Zn|2

) q−2
2 |Xn|2 ≤D2g(Zn)(Xn, Xn) ≤ Λ

(
1 + |Zn|2

) q−2
2 |Xn|2

(A2)

for all Z = (Z̃, Zn), X = (X̃, Xn) ∈ RnN with positive constants λ, Λ and
exponents 1 < p ≤ q < ∞. Assuming (A2) it is easy to see, that we have a
condition of the form (1.2) for F .

In case p ≥ 2 Bildhauer, Fuchs and Zhong show, that local minimizers u ∈
W 1,p

loc ∩ L∞loc(Ω, RN) of (1.1) are of class C1,α without further assumptions on
p and q, if n = 2 or N = 1 (see [BF2] and [BFZ]). Additionally to (A1) and
(A2) in case n = 2 they have to suppose

f(Z1) = f̂(|Z1|) and g(Zn) = ĝ(|Z2|), (A3)

with two functions f̂ and ĝ which are strictly increasing. This is for using the
maximum principle of [DLM]. In [BF3] one can find partial regularity results
in this topic, but they are much weaker and not independent of dimension.

If we have a look at the subquadratic situation, we find strong restrictions
on p and q for receiving regular solutions:

• q < p + 2 for N = 1, see [BF1], and

• q ≤ 2p + 2 for n = 2, see [BF2], Remark 5.

Thereby in both cases the assumption u ∈ L∞loc(Ω, RN) is necessary which
we can get rid of if n = 2. The aim of this paper is to improve the above
statements for local minimizers of (1.1).

Definition 1.1 We call a function u ∈ W 1,1
loc (Ω, RN) a local minimizer of

(1.1), if we have for all Ω′ b Ω

•
∫

Ω′
F (∇u) dx < ∞ and

•
∫

Ω′
F (∇u) dx ≤

∫
Ω′

F (∇v) dx for all v ∈ W 1,1
loc (Ω, RN), spt(u− v) b Ω.

Our main Theorem reads as follows:

THEOREM 1.1 For any local minimizer u ∈ W 1,p
loc (Ω, RN) of (1.1) with

1 < p < 2 we have under the assumptions (A1) and (A2):
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(a) If we have n = 2, (A3) and

q <
2p + 4

2− p
, (A4)

then u ∈ C1,α(Ω, RN) for all α < 1.

(b) If N = 1 and u ∈ L∞loc(Ω), so one gets u ∈ C1,α(Ω) for all α < 1.

Remark 1.2 • If we have N = 1 Theorem 1.1 b) gives (together with the
results from [BFZ1]) C1,α-regularity for all choices of 1 < p ≤ q < ∞.
In the 2D-case we additionally have (A4). This hypothesis is needed
for calculating the term (Γi = 1 + |∂iu|2, i = 1, 2)∫

Γ
q−2
2

2 Γ1 dx.

Note that we have an arbitrary wide range of anisotropy for p → 2.
But for p → 1 the bound is also much better than the bound q ≤ 2p + 2
from [BF2].

• In the situation n = 2 we can get rid of the assumption u ∈ L∞loc(Ω, RN),
see [Bi2] (section 4) for details.

• Under suitable conditions on DxD eP f and DxDPng it is possible to ex-
tend our result to the non-autonomous situation, which means densities
F = F (x, Z) and “splitting-type” integrands (compare [BF2], Remark 3
and [BFZ1], Remark 1.4).

2 C1,α-regularity for n = 2

From now on we assume the conditions of Theorem 1.1 a). Let u ∈ W 1,p
loc (Ω, RN)

be a local minimizer of (1.1) and fix x0 ∈ Ω. Now it is possible to find
a radius R > 0 such that u ∈ L∞loc(∂BR(x0), RN) (compare [Bi2], section
4, for details). From (A3) and the maximum-principle of [DLM] we get
u ∈ L∞loc(BR(x0), RN). For 0 < ε � 1 (u)ε denotes the mollification of u with
radius ε (see [Ad]). Now we choose R0 < R and get supε>0 ‖(u)ε‖∞ < ∞.
For a fixed q̃ > max {q, 2} let

δ := δ(ε) :=
1

1 + ε−1 + ‖(∇u)ε‖2eq

Leq(B)

and Fδ(Z) := δ
(
1 + |Z|2

) eq
2 + F (Z)
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for Z ∈ RnN . With B := BR0(x0) we define uδ as the unique minimizer of

Iδ [w,B] :=

∫
B

Fδ(∇w)dx (2.1)

in (u)ε + W 1,eq
0 (B, RN). Some elementary properties of uδ are summarized in

the following Lemma (see [BF2], Lemma 1, for further references):

Lemma 2.1 • We have as ε → 0: uδ ⇁ u in W 1,p(B, RN) ,

δ

∫
B

(
1 + |∇uδ|2

) eq
2 dx → 0 and

∫
B

F (∇uδ)dx →
∫

B

F (∇u)dx.

• supδ>0 ‖uδ‖L∞(B) < ∞.

• ∇uδ ∈ W 1,2
loc ∩ L∞loc(Ω, RN).

We need the following Caccioppoli-type inequality which is standard to proof:

Lemma 2.2 For η ∈ C∞
0 (B), arbitrary γ ∈ {1, ..., n} and Q ∈ RnN we have∫

B

η2D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)dx

≤ c

∫
B

D2Fδ(∇uδ)([∂γuδ −Qγ]⊗∇η, [∂γuδ −Qγ]⊗∇η)dx

for a constant c > 0 independent of δ.

Analogous to [BF2] we must prove the following statement for Hδ which is
defined by

H2
δ := D2Fδ(∇uδ)(∂γ∇uδ, ∂γ∇uδ)

with sum over γ ∈ {1, 2}:

Lemma 2.3 • We have Hδ ∈ L2
loc(B) uniform in ε and

• uδ ∈ W 1,t
loc (B) uniform in ε for all t < ∞.

Proof: We consider for Γi,δ := 1 + |∂iuδ|2, i ∈ {1, 2},

f1(ρ) :=

∫
Bρ

Γ
p+2
2

1,δ dx and f2(ρ) :=

∫
Bρ

Γq
2,δ dx
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separately. Let η ∈ C∞
0 (Br) with 0 ≤ η ≤ 1, η ≡ 1 on Bρ and |∇η| ≤

c/(r − ρ)−1. Following [BF2] we see

f1(ρ) ≤ c

[
1 +

∫
Br

|∇η|ηΓ
p+1
2

1,δ dx +

∫
Br

η2Γ
p
2
1,δ|∂1∂1uδ| dx

]
for a constant c independent of ρ, r and δ using uniform bounds on uδ. By
Young’s inequality we get for a suitable β > 0 the upper bound

c(τ)(r − ρ)−β + τ

∫
Br

Γ
p+2
2

1,δ dx

for the first term on the r.h.s. (τ > 0 is arbitrary). For the second one we
obtain by (A2)∫

Br

η2Γ
p
2
1,δ|∂1∂1uδ| dx ≤ c(τ)

∫
Br

η2Γ
p−2
2

1,δ |∂1∂1uδ|2 dx + τ

∫
Br

η2Γ
p+2
2

1,δ dx

≤ c(τ)

∫
Br

η2H2
δ dx + τ

∫
Br

η2Γ
p+2
2

1,δ dx.

As a consequence

f1(ρ) ≤ c(τ)

∫
Br

η2H2
δ dx + c(τ)(r − ρ)−β + τ

∫
Br

Γ
p+2
2

1,δ dx. (2.2)

For f2(ρ) we receive (following ideas of [BF5]) by Sobolev’s inequality

f2(ρ) =

∫
Bρ

Γq
2,δ dx ≤

∫
Br

(
ηΓ

q
2
2,δ

)2

dx

≤ c

[∫
Br

|∇η|Γ
q
2
2,δ dx +

∫
Br

ηΓ
q−1
2

2,δ |∂2∇uδ| dx

]2

.

Using Lemma 2.1, we get

f2(ρ) dx ≤ c(r − ρ)−1 + c

[∫
Br

ηΓ
q−1
2

2,δ |∂2∇uδ| dx

]2

.

From Hölder’s inequality we deduce

[...]2 ≤ c

∫
Br

Γ
q
2
2,δ dx

∫
Br

η2Γ
q−2
2

2,δ |∂2∇uδ|2 dx

≤ c

∫
Br

η2H2
δ dx
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by Lemma 2.1, part 1. Combining this with (2.2) and choosing τ small
enough we receive∫

Bρ

(
Γ

p+2
2

1,δ + Γq
2,δ

)
dx ≤ c(r − ρ)−β + c

∫
Br

η2H2
δ dx +

1

4

∫
Br

Γ
p+2
2

1,δ dx. (2.3)

From Lemma 2.2 we deduce for Q = 0∫
Br

η2H2
δ dx ≤ c

∫
Br

D2Fδ(∇uδ)(∂1uδ ⊗∇η, ∂1uδ ⊗∇η) dx

+c

∫
Br

D2Fδ(∇uδ)(∂2uδ ⊗∇η, ∂2uδ ⊗∇η) dx

=: c [J1 + J2] .

Thus we have by (A2)

J2 ≤ c

∫
Br

|∇η|2Γ
q−2
2

2,δ Γ2,δ dx + c

∫
Br

|∇η|2Γ
p−2
2

1,δ Γ2,δ dx

+cδ

∫
Br

|∇η|2Γ
eq−2
2

δ Γ2,δ dx

≤ c

∫
Br

|∇η|2Γ
q
2
2,δ dx + c

∫
Br

|∇η|2Γ2,δ dx

+cδ

∫
Br

|∇η|2Γ
eq
2
δ dx ≤ c(r − ρ)−2,

if we note Lemma 2.1, part 1, and p ≤ 2 ≤ q. Examining J1 one sees

J1 ≤ c

∫
Br

|∇η|2Γ
q−2
2

2,δ Γ1,δ dx + c

∫
Br

|∇η|2Γ
p−2
2

1,δ Γ1,δ dx

+cδ

∫
Br

|∇η|2Γ
eq−2
2

δ Γ1,δ dx

≤ c(r − ρ)−2 + c

∫
Br

|∇η|2Γ
q−2
2

2,δ Γ1,δ dx. (2.4)

Considerating the last critical term, one can follow by Young’s inequality
(τ ′ > 0 is arbitrary)

c

∫
Br

|∇η|2Γ
q−2
2

2,δ Γ1,δ dx ≤ τ ′
∫

Br

Γ
p+2
2

1,δ dx + c(τ ′)

∫
Br

|∇η|2
p+2

p Γ
q−2
2

p+2
p

2,δ dx.

(A4) gives

q − 2

2

p + 2

p
< q.
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We deduce from Young’s inequality∫
Br

|∇η|2Γ
q−2
2

2,δ Γ1,δ dx ≤ c(τ ′)(r − ρ)−β + τ ′
∫

Br

Γ
p+2
2

1,δ dx + τ ′
∫

Br

Γq
2,δ dx.

(2.5)

Now we combine (2.4) and (2.5) and get by a suitable choice of τ ′

c

∫
Br

η2H2
δ dx ≤ c(r − ρ)−β +

1

4

∫
Br

Γ
p+2
2

1,δ dx +
1

4

∫
Br

Γq
2,δ dx. (2.6)

Inserting this into (2.3) we get∫
Bρ

(
Γ

p+2
2

1,δ + Γq
2,δ

)
dx ≤ c(r − ρ)−β +

1

2

∫
Br

(
Γ

p+2
2

1,δ + Γq
2,δ

)
dx.

for all ρ < r ≤ R′ < R0 with c = c(R′). From [Gi2] (Lemma 5.1, S.
81) we deduce uniform boundedness of ∂1uδ in Lp+2

loc (B, RN) and ∂2uδ in
L2q

loc(B, RN), as well as weak convergence of subsequences in these spaces. So
we get ∂1u ∈ Lp+2

loc (Ω, RN) and ∂2u ∈ L2q
loc(Ω, RN). By this result we can infer

from (2.6) uniform boundedness of Hδ in L2
loc(B). Since

|∇Γ
p
4
1,δ| ≤ Γ

p−2
4

1,δ |∂1∇uδ| ≤ cHδ,

|∇Γ
q
4
2,δ| ≤ Γ

q−2
4

2,δ |∂2∇uδ| ≤ cHδ

we obtain (by Lemma 2.1) uniform boundedness of Γ
p
4
1,δ and Γ

q
4
2,δ in W 1,2

loc (B)
and so we have arbitrary high uniform integrability of ∂1uδ and ∂2uδ. �

Now we define

h1,δ := Γ
2−p
4

1,δ , h2,δ := Γ
q−2
4

2,δ , h3,δ :=
√

δΓ
eq−2
4

δ

and hδ :=
(
h2

1,δ + h2
2,δ + h2

3,δ

) 1
2 .

We see following [BF2] for B2r(z0) b B

−
∫

Br(z0)

H2
δ dx ≤ c

 −
∫

B2r(z0)

(Hδhδ)
s dx


1
s
 −

∫
B2r(z0)

∣∣∇2uδ

∣∣s dx


1
s

, (2.7)

where −
∫

... denotes the mean value. Note h1,δ := Γ
2−p
4

1,δ ≥ Γ
p−2
4

1,δ on account of
p < 2. By definition of hδ, Hδ and (A2) we receive

|∇2uδ|2 ≤ cH2
δ h2

δ

7



and thereby  −
∫

Br(z0)

H2
δ dx


1
2

≤ c

 −
∫

B2r(z0)

(Hδhδ)
s dx


1
s

, (2.8)

which is exactly (30) in [BF2]. To use further arguments of [BF2], let

h̃1,δ := Γ
p
4
1,δ, h̃2,δ := Γ

q
4
2,δ, h̃3,δ :=

√
δΓ

eq
4
δ

and h̃δ :=
(
h̃2

1,δ + h̃2
2,δ + h̃2

3,δ

) 1
2
.

For κ := min {p/(2− p), q/(q − 2), q̃/(q̃ − 2)} > 1 (note p > 1 and q > 2, if
q ≤ 2 we have a range between p and q, small enough to quote the results of
[BF4]) we have

hκ
δ ≤ ch̃δ and thereby

h2
δ ≤ µh̃2

δ +
c

µ
for all µ > 0.

Now one can end up the proof as in [BF2].

3 C1,α-regularity for N = 1

In this section we work with the Hilbert Haar-regularization (see [BFZ]): Let
B := BR(x0) b Ω fixed, then we define uε as the unique minimizer of I[·, B]
in the space of Lipschitz-functions B → R on boundary data (u)ε (see [MM],
Thm. 4, p. 162), which denotes the mollification of u. So we can quote
(compare [BFZ], p. 4, and [MM], Thm. 5, p. 16)

Lemma 3.1 • We have as ε → 0: uε ⇁ u in W 1,p(B),∫
B

F (∇uε)dx →
∫
B

F (∇u)dx;

• supε>0 ‖uε‖L∞(B) < ∞;

• uε ∈ C1,µ(B) ∩W 2,2
loc (B) for all µ < 1.

8



With these preparations, Bildhauer, Fuchs und Zhong show

sup
ε>0

‖∇uε‖Lt(Bρ(x0)) < ∞ (3.1)

for all t < ∞ and all ρ < R (see [BFZ]). W.l.o.g. we assume p ≤ 2 ≤ q. In
this case we have (compare (A2))

λ(1 + |Z|2)
p−2
2 |X|2 ≤ D2F (Z)(X, X) ≤ Λ(1 + |Z|2)

q−2
2 |X|2. (3.2)

Now we can reproduce the proof of [Bi], Thm 5.22. Let Γε := 1 + |∇uε|2 and

τ(k, r) :=

∫
A(k,r)

Γ
q−2
2

ε (Γε − k)2 dx

with A(k, r) := Br ∩ [Γε > k]. By arguments from [Bi] one can show

τ(h, r) ≤ c

(r̂ − r)
n

n−1
1
s (h− k)

n
n−1

1
s

1
t

τ(k, r̂)
1
2

n
n−1

1
s [1+

1
t ]

for 0 < k < h and 0 < r < r̂ < R. Here s, t > 1 are chosen such that

1

2

n

n− 1

1

s

[
1 +

1

t

]
> 1

and c is independent of h, k, r, r̂ and ε. If we use [St], Lemma 5.1, we get
∇u in L∞loc(B, Rn) (see [Bi], p. 66, for details). According to the standard
theory for elliptic equations or variational problems with standard growth
conditions (compare [Gi2]) we can follow the claim of Theorem 1.1. �
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