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Abstract

In [Br] we prove partial regularity (and full regularity in 2D) for minimizers of
splitting-type variational problems under general growth conditions, which is
the corresponding generalization of the results due to splitting-type problems
with power growth conditions from Bildhauer and Fuchs [BF1], [BF2]. In this
article we extend the statements from [Br] for an additional z-dependence
without severe restrictions.

1 Introduction

The study of regularity properties of minimizers u : Q — R of energies
Iu, ] == / F(Vu)dz, (1.1)
Q

where (2 denotes an open set in R" and where F': R™ — [0, 00) satisfies an
anisotropic growth condition, i.e.

Ci|ZIP —ct S F(Z) < CylZ) " + ey,  Z €R™ (1.2)

with constants C',Cy > 0, ¢;,¢0 > 0 and exponents 1 < p < ¢ < o0,
was pushed by Marcellini (see [Mal] and [Ma2]). The research of Espotisto
Leonetti and Mingione [ELM] shows that the statements do not stay true if
one allows an additional z-dependence and considers minimizers of function-
als

J[u, Q] ::/QF(-,Vu)dx, (1.3)

for F': © x R"™ — [0,00). This is not only a technical extension of the
autonomous situation and additional assumptions are often necessary.

In the autonomous case it is already well-known, that we have no hope for
regularity of minimizers of (1.1), if p and ¢ are too far apart (compare the
counterexamples of [Gi] and [Ho]). To get better results one needs additional
assumptions. Therefore Bildhauer, Fuchs and Zhong consider decomposable
integrands, which means we have

F(2) = [(2) +9(Zn)

for Z = (Zy,...,Z,) with Z; € RN and Z = (Z,..., Zy_1). They assume
power growth conditions for the C2-functions f and g and get a very general



theory in the case p > 2 (see [BF1], [BF2] and [BFZ]). In [Br| we have
generalized this statements under the assumption

f(Z) =a(1Z]) and  g(Zy) = b(|Za|)

for N-functions a and b. Thereby the main assumptions are (h stands for a
or b)

W (#)
t

~ h”(t)

and superquadratic growth of h. The results of [Br| (where higher integra-
bility theorems from [BF3] built the basic) are

o full Ct-regularity for n = 2;
e partial C1®regularity in general vector case, if
b(t) < ct“a(t) and a(t) > 9tz 2 (1.4)
for an w < 2 and big values for ¢;

o full Ctregularity for N = 1 if b(t) < ct?a(t) and a(t) < ct?®b(t) for
t>1.

If one has a look at the statements in the power growth situation you see
that the conditions quoted above are natural generalizations to the case of

N-functions (except of the case N =1, see [BF1], [BF2] and [BFZ]).
From now on we consider minimizers of

TTul ;:/Q [a(.ul) + b(-.[0,u])] do. (1.5)

where a and b are of class C2(Q x [0, 00), [0, 00)) with the properties (h = a
or h =»b):

h(z,-) ist strictly increasing and convex with
h(z,t) h(z,t) (A1)

lim =0 and lim ——% =
t—0 t t—00 t

for all z € Q. Furthermore we assume for all ¢ > 0:

h (QJ, t) ”

~ K (z,t
S < (at) < h (@, 7)

t




uniformly in = € Q, with constants ?,ﬁ > 0. Let
a(x,t) < ¢1b(z,t) for all x € Q and big ¢ (A3)
for a ¢; > 0. For having superquadratic growth we suppose

B (z,t)

>hyg>0forallt>0 (A4)

and all z € Q. To handle the terms involving derivatives after the spatial
variable we need:

0,1 (2,1)| < coh'(x,t) for all (z,t) € @ x R (A5)
and all v € {1,...,n} with a constant ¢y > 0.

Remark 1.1 e The conditions (A1)-(A4) are the generalizations from
those of [Br] for a x-dependence. So it is possible to show a (p,q)-
growth condition as in (1.2) for the function F.

o A simple example is given by ((v,Z) € Q x R™V)
F(x,2) := a(x)a(|Z]) + B(x)b(| Z4])

for functions a and b of class C*([0, 00), [0, 00)) satisfying the autonomous
assumptions from [Br] and strictly positive functions a, 8 € C1(Q).

A first step is to get results on higher integrability, where no results are
known until now. We have

THEOREM 1.1 Higher integrability:
Suppose (A1)-(A5) and consider a local minimizer u € W2 0 L2 (9, RN)
of (1.5), then:

(a) b(-, |0nul)|0,ul? belongs to the space L} . (S2)

loc

(b) If we have
b(z,t) < ct?a(x,t) for large t (A6)

and an w < 2, then a(-, |Vu|)|Vul? belongs to the space L (). Fur-
thermore we have u € W72 (Q, RN).

loc



Remark 1.2 e The main problem in the proof of Theorem 1.1 is the
reqularization procedure: if we work with the ordinary reqularization
in this topic (see [BF1] for example), we do not have a convergence
us — u (ug is the minimizer of the reqularized problem) because of the
x-dependence (it is the same problem described in [BF4] and [Br2]).
The approach of [Br2] using a reqularization from below with a function
hyy <h (h=a orh =0, M > 1) does not solve the problem because
it is not possible to get a uniform variant of (A2) for the function hyy;.
Therefore we use a variant of reqularization described in [BF5].

e Note that in the non-autonomous situation superquadratic growth s
already needed for higher integrability different from the autonomous
case (compare [BF'3]).

e In comparison to [BF3] we need (A6) to get higher integrability. The
reason for this is that the assumption

b(z,t) < ct?a(x,t*)  (for large t)
stated in [BF3] does not extend to the reqularized functions apyr and byy.

Analogous to the proof from [Br| we need further assumptions in the general
vector case (z € {2 arbitrary, h = a or h = b):

B (x,t
(f’ ) < Wity for >0, ifw < 1, (A7)
as well as
a(z,t) > 9t> ™2 for large t (A8)

for an ¥ > 0, where w is defined in (A6).
THEOREM 1.2 Partial CY“-regularity:

(a) Assume (A1)-(A6) for an w < 2, (A7) and (A8). Furthermore we
suppsoe for all B € §2

argmin, .z a(y,t) is independent of t and (A9)
a(z,t) < 01 t%2FYa(y, t) for allt > 1 and all x,y € B (A10)

with constants 81 > 0 and 03 > 0. Then for any local minimizer u €
W20 Lo (RN of (1.5) exists an open subset Qo of Q such that

loc loc

Lo — Q) =0 and u € CY*(Qy, RY) for all a < 1.
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(b) If n = 2 then we have Qo = Q without (A3), (A6)-(A10) and the
assumption u € L2 (Q,RY).

loc

(c¢) If we have (A1), (A2) and (A4)-(A6) for an w < 2 as well as N =1,
then any local minimizer u € W22 N L(Q) of (1.5) belongs to the

loc loc
space CH¥(Q) for all a < 1, provided we assume

a(x,t) < ct®b(x,t) for large t (A11)
uniformly in x € Q.

Remark 1.3 e The results about partial reqularity from [Br] extend to
the case of non-autonomous with the only restriction that we have to
assume b(z,t) < ct“a(z,t) for an w really smaller than 2. The reason
for this is that we can not prove a uniform variant of b(t) < ct“a(x,t*)
to our regularization (see section 2).

o The results forn =2 or N =1 extend completely.

e As mentioned in [Br], section 4, we can remove the assumption u €
L2 (Q,RY) if n = 2.

Remark 1.4 e From (A9) we get the existence of y* € B such that

a(y*,t) < a(y,t) for all (y,t) € B x [0,00). This is necessary to prove

the continuous growth condition in the iteration of the blow up. If we

have a look at interesting examples for densities (see [Br2]), (A9) and

(A10) are natural conditions for a x-dependence.

e In [ELM] sharp conditions for reqularity of minimizers of non-autonomous
anisotropic variational integrals are provided. The authors use a con-
dition of the form (A9) (see (74)) and so we can proceed that this
assumption is necessary to get reqularity.

e Note that we are not able to consider minimizers of

p(x)

[l Bty + @+ )] o
Q
forp,q€ T/Vllocoo(Q, [2,00)), since the functions

p(z) a(z)

a(z,t) = (1+¢) > =1 and bz, t):=(1+¢) > —1

do not satisfy condition (A5).



2 Preparations and higher integrability

First we define the regularization. Let (h = a or h = b and ¢t > 0)

t
has(z,t) ::/ sgn(z, s)ds
0

where M > 1 and

h(x,t)
P

gM(LC,t) = g(JL‘,O) +/0 U(S)QI(I,S) dS, g(.ﬁl},t) =

Here n € C1(]0, 00)) denotes a cut-off function with the properties 0 < n <1,
n <0,n|<e¢/M,n=10n/[0,3M/2] and n =0 on [2M, cc).

Lemma 2.1 For the sequence (hy) we have:
o hy € CHQ x [0,00)), has(x,t) = h(x,t) for all t < 3M/2 and

]Vlfim hat(z,t) = h(z,t) for all (z,t) € Q x RY;

o hyr < h, gy < g and from (A2) follows hy, < c(M) on Q x R{;
e condition (A1) implies the same for hyy;

e By (A2) we get

uniformly in M ;
e inequality (A3) extends uniformly to ay and byy:

ans(z,t) < by (z,t) for all x € Q and large t;

e By (A4) we deduce the same inequality for hyy uniform in M :

(2, t)
t

250>0f0rallt20
if we assume additionally (A2);
o (A5) extends to hyy uniformly in M :
|0, By (2, 1) < Tohiyy(x,t) for all (z,t) € Q x R

and all v € {1,...,n};



e if we have
b(x,t) < ct?a(x,t*) for big t,
then the same is true for ayr and by uniformly in M.

Proof: By definition of hy; we get part 1 and the the first two statements
of part 2. For the rest we need the equity

M) _ gu(z,t) = 77(1t)M + /Ot {_M} W(z,s)ds — (2.1)

t t S

for (z,t) € Q x Rf. By definition of g we get g(x,0) = h"(z,0) and therefore

o) = 1w, 0)+ [t {2 HEI g,

= n(t) h/(f’t) 4 /Ot {"lf}) } W, :) ds.

We have

Py (z,t) = gu(z,t) + tgy (1)

and so we obtain

1) = tn(0)g/ (2, 1) = (1) [h"(x,w -

By (2.1) and (A2) follows for € := min {1,€}

zg[n(t)h’(x,t) +/0t{_?7'(8) h’(a:,s)ds}

t

R, t
€gu(z,t) =€ w(7:1)

A ~
\‘H
=~ .
——

By (A2) and (2.1) we get for h := max

oo = D ey gy - )
< h’M(tx,t) e 1] o )h’(j:“,t) SEh’M(tav,zf)



which proves part 4. Now one sees

2M
Wog(x,t) < cqu(a,t) < eg(x,0) + c/ 19 (z,5)|ds < c(M).
0

By ha(z,0) = 0 we receive

hM(.’L', t)

. _ / _
12% ; = Ry (z,0) =0.
Furthermore we obtain
1 t
tlim— sgu(z,s)ds = tlim tgn (z,t) = o0,
—00 0 — 00
noting
oM
i gus(e.8) = | {1/ (5)} gl 5)ds > 0
t=o0 3M/2

which follows by (2.1) and monotonicity of h. Using (A3) we deduce a' (x,t) <
cb (x,t) fiir t > to from (A2). So we have for t >ty by (2.1)

(@ t) _ @@t /Ot {_77’(.9) } o/ (2, 5) ds

t t S
<ec [n(t)b'(gz’t) + /t {—@} V(. ) ds}
et 0
s

if we assume 3M/2 > t,. Part 6: fiir t < 3M /2 we deduce from (A1) and
(A4)

In case 3M /2 < t < 2M follows

t

Ha(ot) 2 oo ) 2 € an(t)+ ho [ {=a/(0)) ds| = e

M/2
and for t > 2M we get
2M

Ry (x,t) > Eho/ {=1'(s)} ds = hge.
3M/2



The proof of the estimation for d,hy; can be found in [BF5] (p. 14). For the
last part we deduce from (A6) and (A2)

V(x,t) < ct*d (xz,t) for t > to.

By (2.1) this delivers for ¢+ > t, assuming 3M/2 > t, (note n'(t) = 0 for
t < 3M/2)

/
t
= ct‘“% for all ¢t > t.

Remark 2.2 e By [BF/] (Lemma A.1) (A1) and (A2) show
h(x,2t) < 2E+1h(:v,t) for allt > 0. (2.2)

Thus we get by Lemma 2.1 (part 3 and 4) an uniform Ay-condition for
har. From the same quotation we deduce

h'(z,2t) < QTLh’(x,t) for allt >0,
such that this extends to hyy uniformly, too.
e By monotonicity of h' (A1) and (A2) imply for p:= 2h-+1
ptth (z,t) < h(w,t) < th'(z,t) for allt >0
which extends to hyy uniformly.

After these preparations we define ujy; as the unique minimizer of (B :=
Br(xy) € Q arbitrary)

Tar[w] ::/BFM(-,Vw)dx ::/B [aM(-,|%w|)+bM(-,|8nw|) dx

inu+ VVO1 ’2(B ,RY). The regularization uy; has the following properties:
Lemma 2.3 Suppose (A1)-(A5). Then we have:

o uy; belongs to the space W22 (B,RN);

loc

9



o ayl-, \VﬁMDWuMP and bas(+, |Onuns|)|Opunr|? are elements of L}, .(B);

e ifn=2or N =1, then we obtain uy; € W,2>(B,RN);

loc

o foryv e {l,...n} Oup solves

/ D% Fy (-, Vup ) (Vw, Vi) do
B
—I—/ Oy DpFy (-, Vuy) - Vodz =0 for all p € Wy*(B,RY)
B

with spt(y) € B.

o uyy is in WY2(B,RY) uniformly bounded and we have

sup/ Fry (-, Vuy) de < oo;
M JB

e if we have u € LS(Q,RY) then sup,, ||unl,, < oo.

The first part follows from [BF4] (Lemma 2.5) and part 3 is proved in [BF5],
Thm. 1.1 (ii) and (iii), with p = ¢ = 2. For part 5 we quote [Br2] Lemma
1.2.

Part 2: Minimizing 7, is a variational problem with splitting condition and
power growth conditions with p = ¢ = 2. As remarked in [BF3] (Remark
3 b)) it is no problem to extend the approach from [BF3], Thm. 1, to the
non-autonomous situation and we get Vuy, € Li (B, R™). By quadratic
growth of ay; and by, we receive the required statement.

Surely 9 uy; is the solution if we only allow test-functions ¢ € C§°(B,RY).
But we have boundedness of D%Fy (-, Vuyr) (compare Lemma 2.1, part 2)
and 0, DpFy (-, Vuy) € L*(B,R™). The latter follows from Lemma 2.1
(part 2 and 4) in combination with (A5). Now we get part 4 by approxima-
tion.

Uniform boundedness of uy; is obtained by the maximum-principle of [DLM].

Proof of Theorem 1.1: Let
Tari=1+|Vuyl?, Thai=1+|Vuy|®> and Cpar =14 [Onunr]?.

We want to bound

/n%bM(-, Ontins )| Owtins |2 d
B

10



independent from M like in [BF3]. Thereby we consider n € C§°(B) with
0<n<1,n=1on B,(x) forr < Rand |Vn| < c¢/(R—r). After integrating
by parts and using the uniform bound on uy; (see Lemma 2.3) the only term
of interest is

/ 72410, [bag (- 10utiat )] || Bueas| e (2.3)
B
Here one can see

T, gc/ 2100 bar -+ [Otins [ Onting | da
B

—|—c/ 772kb§\4(-, |Ontns|)|Onins||OnOnuns| d
B
=cTy +cTy.

By Lemma 2.1 (part 7) follows

|0l (2, t)| = < cby(z,t)

t
/ Oy (x, 8) ds
0

and thereby with Young’s inequality

Ty ST/ 0 bar (-, |Onune])|Opun|? da
B

—i—c(T)/nzkbM(-,WnuM\)d:E.
B

Furthermore we get the inequality

T? §T/ **bas (-, [Onuins|)|Onuns | doe
B
by (-, 0n
+C(T)/ an—M( Ontiar]) 10, 0nups | dov.
B |On |
using Remark 2.2. If we absorb the 7-terms in (2.3) we get

/ 7251 |Outana ) Btang ?
B (2.4)

<c(r) + c/ n2k—bM<" [Ontiau]) |0, 0nuns|? do,
B ’anuM‘

where ¢(r) is a constant with ¢(r) — oo for r — R, but independent from
M. Estimating the integral on the r.h.s. of (2.4) we need a Caccioppoli-type
inequality as in [BF3] and the only term which needs a comment is

—/ OnDpFy (-, Vuyy) - V{n%@nuM} dx.
B

11



A first estimation shows the bound
¢ [l a9 {0} | do
B

se [ Byl Buurd )10, {1 Ouuas} do
B
= c[Wi + Wy
by Lemma 2.1, part 7. Now we consider both terms separately:

Wy <e / 7P (- [t )| Vil O] da
B

+c/ n?kay, (- |6uM|)|8n6uM| dx
B

=c Wi+ Wi].
By Young’s inequality we get

Wf < 7'/ n%—aM(ﬂvuMDWn%umzdx
B |VUM|
te(r) / 2 (o (V) S| da
B

which can be handled as in [BF4] (section 3). As an upper bound for W} we
obtain

/ ~ ~ ay (-, Vu
[P R[S da [ gyt )
B

— |Opup|? da.
B |VUM

We can estimate the second integral exactly as in [BF1] (section 3) because
all assumptions for a and b extend uniformly a,; and by,. If we use Remark
2.2 and Lemma 2.3 (part 5) we can estimate the first one independent from
M. So we get

/ anbM(~, lﬁnuM|)]8nuM|2dx < ¢(r). (2.5)
B
Now we want to bound
/ 0% an (-, |V )|V |? de. (2.6)
B

As before, after integrating by parts, the only difference to the calculations
of [BF4] is the integral

/uMan@7 [aM(-,|€uM|) Oyup dx.
B

12



Here we estimate
s < [ i*10as (e [Vusd [ Fusrl do
B
e [PV und) Sl 10,0, do
B
=cU, + cUj.
Using 2.2 and Lemma 2.1 (part 7) we receive
U, ST/ % an (-, [V )| Vun)? do
B
+e(T) / n*an (-, |Vual) do
B
as well as

U2 gT/ 2 g (- Vg ) [V e 2
B

+ (1) / n%MWv%qu dzx.
B ‘VUM|

We absorb the first term in (2.6) and for the second one we need a Caccioppoli-
type inequality as in [BF3]. Thereby we only have to consider

/ OyDpFup(-,Vuy) - V {anaqu} dz.
B
By Lemma 2.1 (part 7) we obtain the upper bound
¢ [ Va9 {0y} da
B

B
—clth + ).
It follows
U <c / 2571l (- [ Vuar ) [ V)0, war| da
B
+c / nzkalM(‘a |%UMD|57%UM|da:
B

=c[Uf +U7].

13



By Young’s inequality one sees
) ~
v ~
Ut < 7/ 772k—aM(L| uMl)\&,VuM]de
B |V
+e(T) / 1 an (-, [Vuy) do
B

which can be handled conventionally. Furthermore we get
U < [ PVt Oyuar) T do
B

+/ n%b;w(-,|8nuM|)]878nuM|dx.
B

For the second integral we deduce from Young’s inequality and Remark 2.2
the upper bound

by, (-
7-/n2kw|878nuMl2dl’+C(T)/UkaM('vlanuMDdx
B B

|anuM|

which is uncritical. For the observation of the first one we see

/ o — v "y aﬂu
/ P Tl B ) [Ty | de < / 2wt Onuai])
B

%u 2 dx
g Guun] M

+ / P¥bs (- | O] di
B

which can be bound as in [BF3] (section 3). Note that we need there-
fore bys(z,t) < ct?ap(z,t?), but we have the stronger inequality bys(z,t) <
ct?ap(z,t). So we get

/n%aM(-,y%uM\)ﬁuMy?dx < c(r). (2.7)
B
By Lemma 2.1 (part a and 6) we receive
/ n*|V2uy|? de < / D3 Ey (-, Vuar) (0, Vuar, 0, Vuyy) dz.
B B

Using a Caccioppoli-type inequality as in [BF3] we can bound this indepen-
dent from M (note that the r.h.s. of this inequality was bound in the rest
of the proof). So we obtain uniform boundedness of uy; in W;22(B,RN)
(remember Lemma 2.3, part 5) and as in [Br2] (end of section 2) we deduce

uy — uin W22(B,RY),

loc

Vuy — Vuin L2 (B, R™), (2.8)

loc

Vuy — Vu a.e.

14



for M — oco. This implies u € W22(Q, RY) and using Fatou’s Lemma (2.5)

loc

and (2.7) points out the claim of Theorem 1.1. O

3 Partial C'“regularity

We define the excess as
E(z,r):= ][ |Vu — (Vu)w|2 dy + ][ a(-, |Vu — (Vu)y,|) dy
Br(x) Br(x)

for a(z,t) := a(z,t)t* with the w € (0,2) from (A6). If r < Ry such that
X+02Ry < 2, then Theorem 1.1 guarantees together with (A10) the existence
of E(z,r). To show this we estimate

Fatlvu-ueay s ff a V) - Vue) dyd
B (x) By (z)B:(x)

< ][ } atw. Vu) dya:

By (z)By(z)
][ ][ a(y, |Vu(z)]) dydz.
By (z)Br ()

For the second term we use (A10) and assume w.l.o.g. |Vu(z)| > 1:

a(y, |Vu(2)]) < c[Vu(2)V | Vu(z)[“a(z, |Vu()])
< |Vu(2)[Pa(z, [Vu(2)).

If we distinguish into an integral over [|8,u| < |Vu|] and the complement we
see the existence of the excess.

LEMMA 3.1 Assume (A1)-(A10) for an w < 2 and fix an L > 0. Then
there is a C*(L), such that for every T € (0,1/4) exists an ¢ = e(1,L) > 0
with the following property: if

(Ve <L and E(x,r) +17 < (3.1)
for a ball B.(z) € 2 this implies
E(x,mr) < C*r*[E(z,r) + 7] (3.2)

where v* € (0,2) is arbitrary.

15



Proof: Now we extend the ideas of [Br|. For z € By := B;(0) let

U (2) == 1 (u(xm +Tmz) — Ay — rmAmz),

AmTm

A = (W) gy, 1y a0d Ay, i= (V)

Tm,Tm "

Thereby (f).. denotes the mean value of the function f over the ball B, (z).
For A2, := E(xy,, 1) + 1)l we deduce from (3.1)

A, < L, ][ (V| dz + X2 ][ (T + T2y A |V |)dz + X270 =1 (3.3)
Bl Bl

Whereas (3.2) reads after scaling as

][ IVt — (Vg )or|” dz

B

+A2 ][ A(Tm + T2, A [V, — (Vo) dz > Cor2.

B,

(3.4)

Using (3.3) we have after passing to subsequences

Ay =i A, Uy —u in WY(BL,RY), (@)o; =0, (Vi) =0 (3.5)
AV, — 0 in L*(By,R™) and a.e. on B;. (3.6)

If we have a look at the proof in [Br| it is no problem to verify the limit
equation and so we have to show

Vi, — Vi in L} (B), (3.7)

loc

lim A2 ][ (T + Tmz, Am |V — (V)| )dz = 0 for all r < 1. (3.8)

m—00
Br

to end up the proof of Lemma 3.1. If we want to establish a Caccioppoli-type
inequality as in Lemma 2.1 from [Br] we have to bound additionally to the
estimations there the integral (P € R™ is arbitrary)

/ OyDpFy (-, Vuy) : V {772 [Oyunr — P} da.
B
Using Lemma 2.1 (part 7) leads us to the terms
1l i [ a FuDlo: Tl do,
B
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T]@ = / a’M(~,ﬁuMl)\VuM—PI?ﬂVTHd%
B

T8 / Wy, (o 10tin )0, Outang | dor,
B

Ty, = / by (5 10nuns]) [Vuyr — Pln| V| da.
B

From Young’s inequality we deduce for 7 > 0 from Remark 2.2
v, - -
Tl < T/ Gl Vsl 5 G e+ c(T)/ ant(-, |V de.
B |Vuyl B

For T% the same arguments show the upper bound

(n) / g (1| Fund) di + () / ans (- [Tt ]) de

+c(n)/ Gl VD) 5 2 e
Bnsptn ‘VUM|

Similarly we get

by (-, 10,
m<r [ Ours Ontiatl) 1 o e+ o) [ bty
B |anUM\ B

TS < cfn) / by (- [Brung ) d + () / bar (- |0ptung ) da
B B

by (-, |Ohu ~
-I—c(?y)/ —M(’(,),' VD |G g2
Bnsptn nuM|

After absorption of the T-integrals we have to justify that we can interchange
limes and integral for M — oo in the remaining terms. We follow the argu-
mentation of [Br] and choose for an arbitrary x > 0 subset S C B such that
Vupr — V@ uniformly on S and £"(B — S) < k (therefore we need (3.6) and
Egorov’s Theorem). Then we can show as in [Br] that the integrals over B—S
are smaller than ck*. Furthermore we have to establish the convergence a.e.

from
~ ‘%uz\ﬂ / t ‘&ﬂt]\ﬂ b/ t
oy ::/ ,/GM(:’ Vgt i ::/ \/ M(tm’ ) gt
0 0

against @Z and 9™ (with a suitable definition). From the end of section 2 we
know Vujy; — Vu a.e. and so we have to establish the a.e.-convergence of

~ > la(x,t n = (Lt
X (7, 8) ;:/ \/—M(t )dt, X57 (@, ) :=/ \/—M<t )dt.
0 0
17




By Lemma 2.1 (part 2) this follows by Lebesgue’s theorem on majorized
convergence. Note that additionally in our calculations we have the terms

~ |Vu| / t [Onunr] b t
Vit ::/ Ve %dt’ UL 3:/ Va 'M(f_’ Lt
0 0

But by Lemma 2.1 (part 7) we can bound them by QZM und zZJ](\Z) (and these
can bound as in [Br]).

In the limit version of the essential Caccioppoli-type inequality we have to
add

T! ::/a(-,!%Dngdfﬂ,
B

T2 ;:/a/(.,\w)\w—Plann\dw,
B

T3 ::/b<-7|0nu|)772d%
B

7= [ (e 0uIVu~ Plal Vil do
B

on the r.h.s. For the proof of (3.7) we get after scaling

7”2

Trln = )\_ZL CL(:Um + Tm?%, ‘gm + )‘m€UM‘)n2 dz,

72 = T & (o + s o+ A Tt Ao Vit |1
m = )\_2 m + TmZ, | + U] )| um|77 2,
3 T?n (n)

T, = 2 b(@p 4 Tz, | AT+ X Ontin|)1? dz,

4 . i / (n) | |

T = v V (Zm + rmz, | A + XnOptin ) [ A Vg, [n—

m J By 'm

Whigh we have to bougd uniforinly in M. We separate into the sets [|Zm +
AnVuy,| < K] and [|A,, + AnVu,| > K] and use uniform boundedness of
A 22
T! <c(K)+ C(K)/ (T + Tmz, Am |[Vup|)dz < ¢ K)
By

by (3.3). Similarly we get by (A6) the same result for 7. From Remark 2.2
we deduce

TT?’L < 0(777 K) |vum| dz + 0(7], K) / a(xm + 7z, Am |vum|)dz

B BiN[...>K]

18



< c(n, K) + ¢(n, K)/ (T + T2, Am |V |)dz
By

<c(n, K).

where we use the L2-bound for Vu,, and (3.3). Analogously we estimate 774
using (A6). Proving (3.8) we define

~m m~ m Ag,?) manum
~ -:i [Arn+Xm V| a/(x’t)d ) 1 [Am”+X | b/(@"at)d
(U —=dt, ) = — — 2t
A 1) t Am Jial) t

If we follow the argumentation of [Br] we get uniform W,*-bounds again

(additionally to the terms there we have T, ..., T2 which are uncritical)

eey mo

and can end up the proof of the blow up lemma just like in [Br]. Now we
can iterate this lemma as in [BF6] for example. The only problem is the
inequality

E(x0,7) < c(1)E(x9, 7" R)
for 7*1R <r < 7*R. But by (A9) we can show
E(x0,7) < (1) E(zo, T"R) + ¢(T)r. (3.9)
By convexity and As-condition of @ we obtain

][ a(y, [Vuly) — (Vi)ra|) dy <c ][ Ay, |Vu(y) — (Vit)rkms) dy

Br(z0) By (zo)

te ATy = (Tl

B (z0)
For the first integral one directly sees the estimation
or) A Vul) - (Vs
BTkR(mo)
For the second one we use
y" = argming () a(y,t) (3.10)

which is independent from ¢ by (A9) and get the bound

][ @y, (V) = (V)raol) = @Y7 (V)i may = (Vit)rao])] dy

By (zo)
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AT, = (Tl dy

By (zo)

The first term can be estimated by

sup Vat@ (y + 1" = ), (Vi) repay = (Vi) |)| 1" =yl < c(7)r.
telo,

Remember (A5) and note the inequality

(Virisiay = (Vo] € Vi (V)ar]

Br(z0)

< ¢(7) ][ Vu — (V) kg 4| dz
BTkR(:Eo)

< ¢e(T) [E(mO,TkR) + 1} < ¢(7),

since E(xzo, 7¥R) < € (this is a consequence of the iteration of the blow up
lemma, compare [BF6]). Jensen’s inequality and (A9) lead us to

f Ay (Vi) gny — (V)] dy < ][ a(y", [Vu(y) — (Vu)ena|) dy

By (z0) By (zo)
< awIVuw) - (VD dy
By (z0)
<er) [ a|Vuly) = (Tu)ounal)dy
BTkR(xO)
by the choice of y* and we receive (3.9). O
Proof of Theorem 1.2 b): As remarked in [Br| we can deduce the 2D-result
from the proof of [BF5]. O

4 Regularity statements for N =1

Let N = 1. Firstly we show

Lemma 4.1 For allt < oo and all B, € B we have

sup [|[Vua || o5,y < o0
M
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We want to estimate
2% o2
s (- |Ontar )Ty do (4.1)
B
for a cut-off function n € C§°(B) such that n = 1 on B,.(z) for a p < R and

0 <n < 1. If we follow the lines of [BF3]| we get after integrating by parts
(using uniform local bounds on w,;, see Lemma 2.3, part 6))

a+2
/ 7% bas (-, |Opunt )T, 5y de < e(n) [L+ 11 + Ir + Is + 1] (4.2)
B

where we have

Il = / bM(u |anuMDFg,M dx
spt(n)
_ ~ a+2
SO R
sot(n) [ Vua[? 7|V |?
I3 = /77 |anbM(7|anuM|)|Fn,de
B

1y ::/ ’a’YDPFM('aVUM) : V[an“anrg,M” da.
B

Note that the terms I3 and I, are additionally to this one from [BF3] on
account of the z-dependence. Since we have ays(z,t) < ct?by(x,t) for large
t (see Lemma 2.1, part 6) we can bound I, by

N1

c(7) [1 —I—/ ay(- |€uM|)fMdm} ,
spt(n)

whereby we use a uniform As-condition for b;j. This follows from the uniform
version of (A2). We deduce from Lemma 1.1 (part 7) by Young’s inequality

a+1
L <ec / 7% bas (-, |Onun )T, 5 do
B

2% ex? 2k 5

o [ b o D5 d o) [ b O )T d
B B
and absorb the first term on the r.h.s. in (4.1). Furthermore we obtain
L < / 1720, Dp Far (-, Vuuar) : 9, Vun T2 | do
B

+2k‘/ |772k_187DpFM(-,VuM) : Vn@nuMFEMMx
B
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+a/ |772k8,prFM(-,VuM) : anVuMFﬁﬁnu?W\ dx
B
=D+ G+ 1

From splitting-structure and Lemma 2.1 (part 7) we deduce
I} <c / k), (- |%UM|)|0H6UM|F3M dx
B
c/nwm@mme@@mmﬁMm.
B

For the first integral we obtain by Remark 2.2 the upper bound
YAty " o
T / n2k—aM(L|VUMD|8nVuM|2FjMdm
B (V| ’
—|—C(T)/ n**ay(, |%UM|)F3M dx.
B

For the second one we use the same arguments. The 7-terms can be absorbed
in a Caccioppoli-type inequality (compare [BF3], section 5). Similarly we see

2 2%—2 1 & et
I; <c [ ™ "dy(, |VUM|)|V77|Fn,M dx
B
c/ﬁFW(waquyﬁ?m
M\ [Ontym e n v @T-
B

By Remark 2.2 we receive for the first term the estimation

~ a r(. \V; at2
[ ot Sl do s [ e Vo) G apese
B ’ B [V ’

The second one exactly corresponds to term S in [BF3] (section 3) and an
estimation of this leads us to I. The second integral in the estimation of I?
is bounded by ¢(n) [1 + I1] (remember Lemma 2.3, part 5). Putting all this
estimations together we finally obtain
2% o2
[ b i do

<c(n) {1 + / ( )bM(~, lﬁnuMDFE’dejL/ ay (-, |€UMDF]% dr| (4.3)
spt(n

spt(n)

+c/ nzkaM(-,|%uM|)F§’M dx
B
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if we use Remark 2.2. Now we have to separate the mixed integrand in the
last term =: Z. Therefore we define for 7 > 0 the N-function (we can neglect
the case a = 0)

Koz, t) = 1t byy(, ta) (4.4)
and see the inequality

K* (2, s) < sby(w, )" (f) with  bas(z,1) == taba(z, £5)
T

for the conjugate function IC:. By Lemma (4.3) (part 8) we obtain for ¢ > 1

ay(x,t) < ct?byy (2, t) _ ey (z, %) (4.5)

T T

Obviously we have

Q=

)

m(m,t) = Ayr(x, to) for Ay(z,t) == t2bys (2, 1),
ar(, ) 7H(E) = [Aar(z, ) TH(B)]”

Using Lemma 2.1 (part 4) one can show a uniform As-condition for Ay (z, -)
and thereby for bys(z, )™, So (4.5) implies

bar(z, )" (M) < c(r)te.

T

)

S

-1

By Young’s inequality for N-functions we get

I<c [1+/ an/CT(IanuMI“)dl"*/ 7K (an (- [Vunl)) da
B

B

<c [1 + T/ **bar (-, [Ontins|)|Onting |2 da
B
+c(7) / n*an (-, [Vuar]) |V |® d:c} .
B
Inserting this into (4.3) and absorb the 7-term we receive

2% a2
nbnr (-, |Opunt )T, 5 da
B

~a

< ¢(n) {1—1—/ bM(~,|8nuM|)]Fj7de+/ aM(~,|%uM|)Ff4dx )
spt(n) spt(n)
(4.6)
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Note that the relation between aj; and by is symmetric and they have exact
the same properties. Therefore we can show by the same arguments

2k — ~ot2
/ Pan (- (V) [Tof da
B ) N i (4.7)
< c(n) [1+ / bar (-1 |t T2 oy + / art (-, [Fun TG, de |
B B

Now we iterate (4.6) and (4.7) and use for the start of the induction oo = 0
together with Lemma 2.3 (part 5). This gives the claim of Lemma 4.1.
Now we have to show

Sup IVuarl oo,y < 00 (4.8)

for B, € B to follow the result of Theorem 1.2 ¢). Note that we have the
growth estimates

q—2

MXP < D2Fy(x, Z)(X, X) < A1+ |27 7| X2,
0, DpFu(Z)] < e(1+|2]) "7

for all Z, X € R™Y, all z € Q and all v € {1,...,n} uniformly in M. Using
this and Lemma 4.1 we can follow (4.8) by the arguments of [Br2] (Lemma

5.4). O
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