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Abstract

In this article we prove regularity results for minimzers v : R* D> Q — RY
p(z) q(z)

of functionals [, [(1 +|Viul?) 2 + (14 |Vaul?) 2)} dx, where p and ¢ are

Lipschitz-functions and Vu = (Vu, Vou) is an arbitrary decompositon.

1 Introduction

The study of regularity properties for minimizers u : Q — R of energies
Iu, Q] = / F(Vu)dz, (1.1)
Q

where () denotes an open set in R® and where F': R™ — [0, c0) satisfies an
anisotropic growth condition, i.e.

Ci|ZIP —c) S F(Z) < Oyl Z) T+ ey,  Z €R™

with constants C,Cy > 0, ¢1,¢5 > 0 and exponents 1 < p < 7 < 00, was
pushed by Marcellini (see [Mal] and [Ma2]). Since the research of Esposito
Leonetti and Mingione [ELM] it is known that the statements do not stay
true if one allows an additional z-dependence and considers minimizers of
functionals

J[u, Q] ::/QF(-,Vu)d:B, (1.2)

for F': Q x R™ — [0,00). Already in the autonomous situation it is well-
known, that we have no hope for regularity for minimizers of (1.1), if p and
g are too far apart (compare the counterexamples of [Gi] and [Ho]). To get
better results additional assumptions are necessary. Therefore Fuchs and
Bildhauer consider decomposable integrands, which means we have

F(Z) = f(Z) + 9(Zn)
for Z = (Zy,....Z,) with Z; € RN and Z = (Zy,..., Z,_1) (note that this
condition is only an example, we could consider every other decomposition
of Vu into two parts). Bildhauer, Fuchs and Zhong assume power growth
conditions for the C?-functions f and g with exponents p < g and get a very

general regularity theory in case p > 2 (see [BF1], [BF2] and [BFZ]). In [Br]
we generalize these statements under the assumption

f(Z) =a(Z]) and g(Zy) = b(|Za))
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with N-functions a and b. Thereby the main assumptions are (h stands for
a or b)

W(#)
t

~ hl/ (t)

and superquadratic growth of h. In [Br2] we extend the results for an z-
dependence without severe restrictions. If we want to study the behaviour of
minimizers of

Flu] ;:/Q [0+ [Fu)™ 4 (14 )] (1.3)

the functions

p(z) a(z)

a(z,t):=(1+¢) > =1 and bz, t):=(1+¢) > -1
satisfy all conditons assumed in [Br2] (if p, ¢ > 2) except
0,1 (2,1)| < ch(x,t) for all (z,t) € Q x RS (1.4)

and all v € {1,...,n} for a constant a ¢ > 0. Note that (1.4) is the main
hypothese to handle the terms involving derivatives with respect to z in [Br2].
Instead of (1.4) we get here

0,0 (,1)| < c(€)(1 +t2)2h (x,t) for all (z,t) € Q@ x RS (1.5)
and all € > 0. Let us state our new result.

THEOREM 1.1 Let u € L2 (Q,RY) be a local minimizer of (1.3) in the

loc

class W22 (Q,RN) and p,q € WE(€,[2,00)). Then we have

loc loc

(a) partial CY*-regularity, if p < q < p+2 on Q (for n > 5 we additionally
need p > |lq — pll, (n —2)/2);

(b) full CY*-regularity for n = 2;
(¢) full CH*-regularity for N =1, if ||p — gl < 2.

Remark 1.1 o Results due to minimizers like in 1.1 are not found in
literatur. A similar problem is minimizing

p(z)

/(1 + |[Vw|?) 2 da.
Q

Regularity results are stated in [CM].
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e Our result is not restricted to the special integrand in (1.3). We can
also consider functions a,b : € x [0,00) — [0,00) which satisfy all
assumptions from [Br2] except (A5) toghether with (1.5).

Remark 1.2 o Let us compare the statements of Theorem 1.1 with the
power growth situation: Fuchs and Bildhauer [BF1] proved full regu-
larity for n = 2 in the superquadratic situation which we can exactly
reproduce. In [BF2] they analyze the general vector case and get partial
reqularity under the assumptions p < ¢ < p+ 2 and ¢ < pn/(n — 2).
The first one is nearly the same as in Theorem 1.1, we can not allow
an equality. If we have a look at the second one this corresponds to
p>|lg —pll, (n—2)/2 in case of constants p and q but without equal-
ity, too. Only the scalar case is a real restriction: In [BFZ] no condition
between p and q is needed, but we have to suppose ||p — q||,, < 2.

Remark 1.3 e [fn =2 then we do not have to assume local boundedness
of the minimizer. The idea to remove this is outlined in [Bi] (section 4).
In 2D it 1s possible to consider subquadratic problems with restriction
between p and q. In this case one can follow the approach of [BF5] and
[Br3].

o From our proof follows that we do not need superquadratic growth if
N = 1. We only have to suppose p > 1 on 2. Then the reqularized
problem (compare Lemma 2.2) has a Lipschitz-solution by [BF4] (Thm.
1.2).

o [fn <4 then we can deduce fromp > 2 and p < q < p+2 the inequality
p>llg—pl(n—2)/2.

2 Proof of Theorem 1.1

Let

p(x) a(z)

a(z,t):=(1+¢*) > =1 and bz, t):=(1+¢) > —1.

It is easy to prove that these functions satisfy the assumptions (A1l)-(A4)
from [Br2] as well as (A9) and (A10). If we define the regularization uy, as
there, then we can quote the following results. Thereby h,, stands for the
approximation for h € {a,b} and g(t) := h'(t)/t.

Lemma 2.1 For the sequence (hy) we have:



(i) hyr € C?(2 x [0,00)) is a N-function, hyr > ho > 0 uniformly in M ;
(ii) har < h and Ry, < (M) on Q x RJ;

(i4i) we have for positive constants € h

’

hys(z,t) h/M(x,t)

t

g < By (x,t) <h
uniformly in M;

() if we have p < q, then

an(z,t) < by(z,t) for all x € Q and all t > 0;

(v) (1.4) extends to hys uniformly in M :
10, By (2, )| < c(e)(1 4 t2)2hy,(x, 1) for all (z,) € Q x R
and all vy € {1,...,n};
(vi) from q —p < w for a positive number w follows

by (x,t) < ct“ap(x,t) uniformly in M;

(vii) har and hy} satisfy uniform Ag-conditions, which follows from part
(iii);
(viii) we get from part (iii) and monotonicity of hyy

Ay (2, 0)E < hpy(x,t) < Wy (x, )t uniformly in M.

Only part (v) is not the same as in [Br2], but can be proved similarly to
the appropriate version. Now we state the regularity results due to our
regularization uy; which minimizes the functional [, Fp/(-, Vw)dz, where

Fa(z, Z) == ap(x,1Z]) + by (x| Z,]) and B € Q.
Lemma 2.2 (i) uy belongs to the space W22 (B, RN);
(ii) ars (-, |Van )| Vun|? and bag (-, [0puns])|Opuns|? are elements of LL (B);

loc

(iii) if n =2 or N =1 then we have uy; € W,o°(B,RN);

loc



(iv) fory € {1,...,n} Oyupn solves
/D%FM(-,VUM)(Vw,Vgp) dx
B
+/ Oy DpFy (-, Vuy) - Vodz =0 for all p € Wy*(B,RY)
B

with spt(y) € B;

(v) upr is in WH2(B,RY) uniformly bounded and we have

sup/ Fuy (-, Vuy) de < oo;
M JB

(vi) if we have u € L2.(Q,RY) then sup,, ||unml,, < oo.

loc

Proof: By construction of F); we obtain the following growth conditions
(compare Lemma 2.2)

NX|? < D2 Fy(x, Z)(X, X) < Apr(1+ |Z

2)%
1+e

|87DPFM(1‘7Z)| S AM(l + |Z|2) 2,

X2

for all X,Z € R"™, all v € {1,..,n} and all + € B for positive constants
A Ay If we follow the approach of [BF4] (Lemma 2.8 mit @ = 0) for
p=2and ¢ = 2+¢, we see Vuy € L} (B,R™). Note that in case
a = 0 modulus dependence is not necessary. From the same proof we deduce
up € W22(B,RY) and so the first two statements of the Lemma. If we quote

[BF4] (Thm. 1.1) then follows uy € W,o°(B,RY) for n = 2 or N = 1 (we

loc
can choose € small enough to reach ¢ < p(n + 1)/n). By approximation we

get part (iv). We can adopt the last two statements from [Br2].

Partial regularity:
Now we have to prove the higher integrability stated in [Br2] (Theorem 1.1)
This means we have to show

CLM(', |VﬂM|)|6UM|2, bM(, |0nuM|)|0nuM|2 < L}OC(B) uniformly. (21)

If we follow the lines of [Br2] (section2) we get by Young’s inequality and
Lemma 2.2 (part (v)) on account of (1.5)

/ 772kbM(-, |8nu]\4|)|8nu]\4|2 dx < c(r) +c(r)/ n2kaM(-, |6uM|)|%uM|2e dx

B B

< e(r,T) —I—T/ % an (-, [Vua )| Vun|? da. (2.2)
B
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This is the analogy of inequality (2.5) in [Br2]. Whereas (2.7) of [Br2] now
reads as

/n%aM(., )| S| d

B

<c(r)+ c(r)/ n%bM(-, |0nu]\4|)|8nu]\4|2 dz. (2.3)
B

If we combine (2.2) and (2.3) and choose 7 small enough we get (2.1) and
can go to the limit.

To modify the blow up-arguments from [Br2] we define on account of (1.5)
a(z,t) == a(z,t)t“T?. Here we have w = |[p—¢|, < 2 and we obtain
w + 2¢ < 2 for € small enough. This proves the existence of the excess

E(z,r):= ][ |Vu—(Vu)w|2dy—|— ][ a(-, |Vu — (Vu)y,|) dy

B, (CE) B, (fﬂ)

for a small radius . We have increased @ in comparison with the version of
[Br2] and thereby we can prove the blow up Lemma as in [Br2| in spite of
(1.5). In the proof of the strong convergence of the scaled functions we need
instead of a(x,t) > ¥t2 ("2 the inequality

a(z,t) > 9tz (D),

This follows from p > ||p — ¢||, (n —2)/2 for a suitable choice of e.

Full regularity for n = 2:
In [BF5], (2.5), the authors prove an inequality of the form (sum over v €

{1,2})
<c(r)(R—r)" + T/ (an(, |Ovuar|)? + bas (-, lé?guM\)z) dz.
Br(z)
(2.4)
Thereby is B,(z) € Bgr(z) € B, 7 > 0 arbitrary and § > 0 a suitable

exponent. On account of the x-dependence we have additionally to the terms
in [BFt] the integral

—/ T]QaWDpFM(', VUM) . &,VUM dx
Br(2)



where 7 is a suitable cut-off function. Using (1.5) and the splitting-structure
we estimate this by

c / g (- 10vun ) (1 + |Brun2)'
Br(z)

8781UM| dx

+C/ 020 (-, 100unt] ) (1 + |Oauns|?) 210, 0auns | da.
BR(Z)

Using Young’s inequality we can bound the first term (compare lemma 2.1,
part (viii)) through

!/ . a
7_// 7,IZG’M(7| IUMD’a»yal’LLMde
Br(2) |81UM’

() / (- Bruns ) (1 + |0yune ) d.
Br(z)

For 7" < 1 one can absorb the first integral in the Lh.s. of (2.4). Therefore
we use the inequality

o
7N ~
%uﬁ\? < cD%Fy(x, Z)(P, P)

for Z, P € R"™ (compare Lemma 2.1, part (iii)). For the second one we
obtain

(') / (-, Brunt ) (1 + |0yune P)° do
Br(z)

gT"/ aM(.,|aluM|)2da:+c(T")/ (1+ |Ovuns 2)% de.
Br(#) B

Rr(2)

We can handle the r.h.s. conveniently, since we can assume € < 1/2 and
receive (compare Lemma 2.2, part (i))

/ (1 + [Qrup |*)* do < c+/ ay (-, |Orup]) dx < c.
Br(2)

BR(Z)Q[|81UM|>1}

Analogously we can incorporate the term
[ b0 1+ (e ?) 10, B d
Br(z)
in (2.4). In [BF5] we can find the inequality

/ (ane (- |01une])? + bar (-, |Oouns])?) da
Bol) (2.5)

<c(R—p)?+c D3 Ey (-, Vuar) (0, Vuyr, 0,Vuyy) do
By (2)



for p € (0, R) (and r = (p+ R)/2). In our approach we obtain on the r.h.s. of
this inequality additionally the term (if we estimate V,ay; and V,by, using

(1.5))

2
B, (2)

We can handle both terms in a similar way and show the proceeding for the
first one. By Holder’s inequality we receive the upper bound

Yy = [/ an(-, [Oruar)®X dx} " x
By (2)

[ [t o
Br(2)

Thereby we have s € (0,1) and x € (1,2) such that sy > 1. For the second
integral Y2 follows by Lemma 2.2 (part (vi))

Y]@:/ +/
Br(2)N[|01u |<1] r(2)N[|01unr|>1]

< c+/ ay (-, |Ovun]) dx < c.
B, (2)

2x=1

X—sX X X
x—1 -

(L )55 ]

Note thate we have for ¢t > 1

an(z,t) 51 (14 £2)55T < cay(a, t)

for € small enough, since sy > 1 (remember Lemma 2.1, part (i)). One sees
by the inequalities of Jensen and Young

2
Vuse| [ autoud ] < [t lon® i
BT(Z) BT(Z)
< 7'"'/ an (- [Ovun|)? do + (7).
B, (z)

So we have to add

7'”// (ane (-, |O1un])® + bar (-, [O2une])?) da (2.6)
B (2)



on the r.h.s. of (2.5). Combining (2.4)-(2.6) we have showed (for a suitable
choice of 7 and 7")

/ (ane (-, 1vunt])? + bar (-, [Boung|)?) dx
By ()

1
SeBR-n)7+ 5/3 e (anr (- [Ovune])? + bas (-, |Oauna])?) da.

Now we get the uniform boundedness of uy in W;2*(B, RY) (compare Lemma
2.1, part (i)) and we can reproduce the proof of [BF5| for the rest, whereby
the terms which appear additionally on account of (1.5) are uncritical.

Full regularity for N = 1:
In case N =1 it is possible to modify the N-function in [Br2], (4.4). There-
fore we need the inequalities

bu(z,t) < ct* > ap(w,t) and  apy(w,t) < ct® by, t). (2.7)
By Lemma 2.1 (vi) this follows from |p —g¢||,, < 2 for e < 1. So we can
separate the mixed integrands of the terms
2% - gt 2% etk
/ n*Fan (-, |VuM|)\Fnju dr and / b (, [Opun )T, 2 de,
B B

which occur additionally to the integrals in [Br2]. Finally we get instead of
[Br2], (4.6),

ok a<2|»2
1"0u (45 |Onun )T, 5y doe
B

~ a+2e

at2e ~ at2e
< ¢(n) { —i—/Bn%bM(-, |8nuMD|Fn7]2\4 dI"‘/BT]%CLM(', |Vuy )T, 2 dx

~ ~at2
as well as an analogous inequality for an (-, |Vuy|)[',; instead of [Br2],

(4.7). Since we can assume € < 1/2 the first integral on the r.h.s. is bounded
by (using Young-inequality)

at2 a
T/ b (-, |Onune ) |1, 5 d + C(T)/ b (-, |Onunt|) |7 5y d
B B

for an arbitrary 7 > 0. For the second one we can argue similarly and we
obatin

% af? 2%k = o2
0 bar (- |Onun )| T2 do + | P an (-, [Vun )Ty 7 de
B B
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< (n) [ / I + | ot Sy o).
spt(n

spt(n)

Now we can iterate as in [Br2] and obtain arbitrary high integrability of Vu,,
uniform in M (the starting point is a = 0, see Lemma 2.2, part (v)). This is
enough to end up the proof as mentioned there.
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