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Abstract

In this article we prove regularity results for minimzers u : Rn ⊃ Ω → RN

of functionals
∫

Ω

[
(1 + |∇1u|2)

p(x)
2 + (1 + |∇2u|2)

q(x)
2

]
dx, where p and q are

Lipschitz-functions and ∇u = (∇1u,∇2u) is an arbitrary decompositon.

1 Introduction

The study of regularity properties for minimizers u : Ω → RN of energies

I[u, Ω] :=

∫
Ω

F (∇u) dx, (1.1)

where Ω denotes an open set in Rn and where F : RnN → [0,∞) satisfies an
anisotropic growth condition, i.e.

C1|Z|p − c1 ≤ F (Z) ≤ C2|Z|q + c2, Z ∈ RnN

with constants C1, C2 > 0, c1, c2 ≥ 0 and exponents 1 < p ≤ q < ∞, was
pushed by Marcellini (see [Ma1] and [Ma2]). Since the research of Esposito
Leonetti and Mingione [ELM] it is known that the statements do not stay
true if one allows an additional x-dependence and considers minimizers of
functionals

J [u, Ω] :=

∫
Ω

F (·,∇u) dx, (1.2)

for F : Ω × RnN → [0,∞). Already in the autonomous situation it is well-
known, that we have no hope for regularity for minimizers of (1.1), if p and
q are too far apart (compare the counterexamples of [Gi] and [Ho]). To get
better results additional assumptions are necessary. Therefore Fuchs and
Bildhauer consider decomposable integrands, which means we have

F (Z) = f(Z̃) + g(Zn)

for Z = (Z1, ..., Zn) with Zi ∈ RN and Z̃ = (Z1, ..., Zn−1) (note that this
condition is only an example, we could consider every other decomposition
of ∇u into two parts). Bildhauer, Fuchs and Zhong assume power growth
conditions for the C2-functions f and g with exponents p ≤ q and get a very
general regularity theory in case p ≥ 2 (see [BF1], [BF2] and [BFZ]). In [Br]
we generalize these statements under the assumption

f(Z̃) = a(|Z̃|) and g(Zn) = b(|Zn|)
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with N -functions a and b. Thereby the main assumptions are (h stands for
a or b)

h′(t)

t
≈ h′′(t)

and superquadratic growth of h. In [Br2] we extend the results for an x-
dependence without severe restrictions. If we want to study the behaviour of
minimizers of

F [w] :=

∫
Ω

[
(1 + |∇̃u|2)

p(x)
2 + (1 + |∂nu|2)

q(x)
2

]
dx (1.3)

the functions

a(x, t) :=
(
1 + t2

) p(x)
2 − 1 and b(x, t) :=

(
1 + t2

) q(x)
2 − 1

satisfy all conditons assumed in [Br2] (if p, q ≥ 2) except

|∂γh
′
(x, t)| ≤ ch

′
(x, t) for all (x, t) ∈ Ω× R+

0 (1.4)

and all γ ∈ {1, ..., n} for a constant a c ≥ 0. Note that (1.4) is the main
hypothese to handle the terms involving derivatives with respect to x in [Br2].
Instead of (1.4) we get here

|∂γh
′
(x, t)| ≤ c(ε)(1 + t2)

ε
2 h

′
(x, t) for all (x, t) ∈ Ω× R+

0 (1.5)

and all ε > 0. Let us state our new result.

THEOREM 1.1 Let u ∈ L∞
loc(Ω, RN) be a local minimizer of (1.3) in the

class W 1,2
loc (Ω, RN) and p, q ∈ W 1,∞

loc (Ω, [2,∞)). Then we have

(a) partial C1,α-regularity, if p ≤ q < p+2 on Ω (for n ≥ 5 we additionally
need p > ‖q − p‖∞ (n− 2)/2);

(b) full C1,α-regularity for n = 2;

(c) full C1,α-regularity for N = 1, if ‖p− q‖∞ < 2.

Remark 1.1 • Results due to minimizers like in 1.1 are not found in
literatur. A similar problem is minimizing∫

Ω

(1 + |∇w|2)
p(x)

2 dx.

Regularity results are stated in [CM].
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• Our result is not restricted to the special integrand in (1.3). We can
also consider functions a, b : Ω × [0,∞) → [0,∞) which satisfy all
assumptions from [Br2] except (A5) toghether with (1.5).

Remark 1.2 • Let us compare the statements of Theorem 1.1 with the
power growth situation: Fuchs and Bildhauer [BF1] proved full regu-
larity for n = 2 in the superquadratic situation which we can exactly
reproduce. In [BF2] they analyze the general vector case and get partial
regularity under the assumptions p ≤ q ≤ p + 2 and q ≤ pn/(n − 2).
The first one is nearly the same as in Theorem 1.1, we can not allow
an equality. If we have a look at the second one this corresponds to
p > ‖q − p‖∞ (n− 2)/2 in case of constants p and q but without equal-
ity, too. Only the scalar case is a real restriction: In [BFZ] no condition
between p and q is needed, but we have to suppose ‖p− q‖∞ < 2.

Remark 1.3 • If n = 2 then we do not have to assume local boundedness
of the minimizer. The idea to remove this is outlined in [Bi] (section 4).
In 2D it is possible to consider subquadratic problems with restriction
between p and q. In this case one can follow the approach of [BF5] and
[Br3].

• From our proof follows that we do not need superquadratic growth if
N = 1. We only have to suppose p > 1 on Ω. Then the regularized
problem (compare Lemma 2.2) has a Lipschitz-solution by [BF4] (Thm.
1.2).

• If n ≤ 4 then we can deduce from p ≥ 2 and p ≤ q < p+2 the inequality
p > ‖q − p‖∞ (n− 2)/2.

2 Proof of Theorem 1.1

Let

a(x, t) :=
(
1 + t2

) p(x)
2 − 1 and b(x, t) :=

(
1 + t2

) q(x)
2 − 1.

It is easy to prove that these functions satisfy the assumptions (A1)-(A4)
from [Br2] as well as (A9) and (A10). If we define the regularization uM as
there, then we can quote the following results. Thereby hM stands for the
approximation for h ∈ {a, b} and g(t) := h′(t)/t.

Lemma 2.1 For the sequence (hM) we have:
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(i) hM ∈ C2(Ω× [0,∞)) is a N-function, hM ≥ h0 > 0 uniformly in M ;

(ii) hM ≤ h and h
′′
M ≤ c(M) on Ω× R+

0 ;

(iii) we have for positive constants ε, h

ε
h
′
M(x, t)

t
≤ h

′′

M(x, t) ≤ h
h
′
M(x, t)

t

uniformly in M ;

(iv) if we have p ≤ q, then

aM(x, t) ≤ cbM(x, t) for all x ∈ Ω and all t ≥ 0;

(v) (1.4) extends to hM uniformly in M :

|∂γh
′

M(x, t)| ≤ c(ε)(1 + t2)
ε
2 h

′

M(x, t) for all (x, t) ∈ Ω× R+
0

and all γ ∈ {1, ..., n};

(vi) from q − p ≤ ω for a positive number ω follows

bM(x, t) ≤ ctωaM(x, t) uniformly in M ;

(vii) hM and h−1
M satisfy uniform ∆2-conditions, which follows from part

(iii);

(viii) we get from part (iii) and monotonicity of hM

λh′M(x, t)t ≤ hM(x, t) ≤ h′M(x, t)t uniformly in M.

Only part (v) is not the same as in [Br2], but can be proved similarly to
the appropriate version. Now we state the regularity results due to our
regularization uM which minimizes the functional

∫
B

FM(·,∇w) dx, where

FM(x, Z) := aM(x, |Z̃|) + bM(x, |Zn|) and B b Ω.

Lemma 2.2 (i) uM belongs to the space W 2,2
loc (B, RN);

(ii) aM(·, |∇ũM |)|∇̃uM |2 and bM(·, |∂nuM |)|∂nuM |2 are elements of L1
loc(B);

(iii) if n = 2 or N = 1 then we have uM ∈ W 1,∞
loc (B, RN);
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(iv) for γ ∈ {1, ..., n} ∂γuM solves∫
B

D2
P FM(·,∇uM)(∇w,∇ϕ) dx

+

∫
B

∂γDP FM(·,∇uM) : ∇ϕ dx = 0 for all ϕ ∈ W 1,2
0 (B, RN)

with spt(ϕ) b B;

(v) uM is in W 1,2(B, RN) uniformly bounded and we have

sup
M

∫
B

FM(·,∇uM) dx < ∞;

(vi) if we have u ∈ L∞
loc(Ω, RN) then supM ‖uM‖∞ < ∞.

Proof: By construction of FM we obtain the following growth conditions
(compare Lemma 2.2)

λ|X|2 ≤ D2
P FM(x, Z)(X, X) ≤ ΛM(1 + |Z|2) ε

2 |X|2,
|∂γDP FM(x, Z)| ≤ ΛM(1 + |Z|2) 1+ε

2 ,

for all X, Z ∈ RnN , all γ ∈ {1, .., n} and all x ∈ B for positive constants
λ, ΛM . If we follow the approach of [BF4] (Lemma 2.8 mit α = 0) for
p = 2 and q = 2 + ε, we see ∇uM ∈ L4

loc(B, RnN). Note that in case
α = 0 modulus dependence is not necessary. From the same proof we deduce
uM ∈ W 2,2

loc (B, RN) and so the first two statements of the Lemma. If we quote
[BF4] (Thm. 1.1) then follows uM ∈ W 1,∞

loc (B, RN) for n = 2 or N = 1 (we
can choose ε small enough to reach q < p(n + 1)/n). By approximation we
get part (iv). We can adopt the last two statements from [Br2].

Partial regularity:
Now we have to prove the higher integrability stated in [Br2] (Theorem 1.1)
This means we have to show

aM(·, |∇ũM |)|∇̃uM |2, bM(·, |∂nuM |)|∂nuM |2 ∈ L1
loc(B) uniformly. (2.1)

If we follow the lines of [Br2] (section2) we get by Young’s inequality and
Lemma 2.2 (part (v)) on account of (1.5)∫

B

η2kbM(·, |∂nuM |)|∂nuM |2 dx ≤ c(r) + c(r)

∫
B

η2kaM(·, |∇̃uM |)|∇̃uM |2ε dx

≤ c(r, τ) + τ

∫
B

η2kaM(·, |∇̃uM |)|∇̃uM |2 dx. (2.2)
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This is the analogy of inequality (2.5) in [Br2]. Whereas (2.7) of [Br2] now
reads as ∫

B

η2kaM(·, |∇̃uM |)|∇̃uM |2 dx

≤ c(r) + c(r)

∫
B

η2kbM(·, |∂nuM |)|∂nuM |2 dx. (2.3)

If we combine (2.2) and (2.3) and choose τ small enough we get (2.1) and
can go to the limit.
To modify the blow up-arguments from [Br2] we define on account of (1.5)
a(x, t) := a(x, t)tω+2ε. Here we have ω := ‖p− q‖∞ < 2 and we obtain
ω + 2ε < 2 for ε small enough. This proves the existence of the excess

E(x, r) := −
∫

Br(x)

|∇u− (∇u)x,r|2 dy + −
∫

Br(x)

a(·, |∇u− (∇u)x,r|) dy

for a small radius r. We have increased a in comparison with the version of
[Br2] and thereby we can prove the blow up Lemma as in [Br2] in spite of
(1.5). In the proof of the strong convergence of the scaled functions we need
instead of a(x, t) ≥ ϑt

ω
2
(n−2) the inequality

a(x, t) ≥ ϑt
ω+2ε

2
(n−2).

This follows from p > ‖p− q‖∞ (n− 2)/2 for a suitable choice of ε.

Full regularity for n = 2:
In [BF5], (2.5), the authors prove an inequality of the form (sum over γ ∈
{1, 2})∫

Br(z)

D2
P FM(·,∇uM)(∂γ∇uM , ∂γ∇uM) dx

≤ c(τ)(R− r)−β + τ

∫
BR(z)

(
aM(·, |∂1uM |)2 + bM(·, |∂2uM |)2

)
dx.

(2.4)

Thereby is Br(z) b BR(z) b B, τ > 0 arbitrary and β > 0 a suitable
exponent. On account of the x-dependence we have additionally to the terms
in [BFt] the integral

−
∫

BR(z)

η2∂γDP FM(·,∇uM) : ∂γ∇uM dx
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where η is a suitable cut-off function. Using (1.5) and the splitting-structure
we estimate this by

c

∫
BR(z)

η2a′M(·, |∂1uM |)(1 + |∂1uM |2)
ε
2 |∂γ∂1uM | dx

+c

∫
BR(z)

η2b′M(·, |∂2uM |)(1 + |∂2uM |2)
ε
2 |∂γ∂2uM | dx.

Using Young’s inequality we can bound the first term (compare lemma 2.1,
part (viii)) through

τ ′
∫

BR(z)

η2a′M(·, |∂1uM |)
|∂1uM |

|∂γ∂1uM |2 dx

+c(τ ′)

∫
BR(z)

η2aM(·, |∂1uM |)(1 + |∂1uM |2)ε dx.

For τ ′ � 1 one can absorb the first integral in the l.h.s. of (2.4). Therefore
we use the inequality

a′M(·, |Z̃|)
|Z̃|

|P̃ |2 ≤ cD2
P FM(x, Z)(P, P )

for Z, P ∈ RnN (compare Lemma 2.1, part (iii)). For the second one we
obtain

c(τ ′)

∫
BR(z)

η2aM(·, |∂1uM |)(1 + |∂1uM |2)ε dx

≤ τ ′′
∫

BR(z)

aM(·, |∂1uM |)2 dx + c(τ ′′)

∫
BR(z)

(1 + |∂1uM |2)2ε dx.

We can handle the r.h.s. conveniently, since we can assume ε ≤ 1/2 and
receive (compare Lemma 2.2, part (i))∫

BR(z)

(1 + |∂1uM |2)2ε dx ≤ c +

∫
BR(z)∩[|∂1uM |>1]

aM(·, |∂1uM |) dx ≤ c.

Analogously we can incorporate the term∫
BR(z)

η2b′M(·, |∂2uM |)(1 + |∂2uM |2)
ε
2 |∂γ∂2uM | dx

in (2.4). In [BF5] we can find the inequality∫
Bρ(z)

(
aM(·, |∂1uM |)2 + bM(·, |∂2uM |)2

)
dx

≤ c(R− ρ)−2 + c

∫
Br(z)

D2
P FM(·,∇uM)(∂γ∇uM , ∂γ∇uM) dx

(2.5)
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for ρ ∈ (0, R) (and r = (ρ+R)/2). In our approach we obtain on the r.h.s. of
this inequality additionally the term (if we estimate ∇xaM and ∇xbM using
(1.5)) [∫

Br(z)

aM(·, |∂1uM |)(1 + |∂1uM |2)
ε
2 dx

]2

+

[∫
Br(z)

bM(·, |∂2uM |)(1 + |∂2uM |2)
ε
2 dx

]2

.

We can handle both terms in a similar way and show the proceeding for the
first one. By Hölder’s inequality we receive the upper bound

YM :=

[∫
Br(z)

aM(·, |∂1uM |)sχ dx

] 2
χ

×[∫
Br(z)

aM(·, |∂1uM |)
χ−sχ
χ−1 (1 + |∂1uM |2)

ε
2

χ
χ−1 dx

]2χ−1
χ

.

Thereby we have s ∈ (0, 1) and χ ∈ (1, 2) such that sχ > 1. For the second
integral Y 2

M follows by Lemma 2.2 (part (vi))

Y 2
M =

∫
Br(z)∩[|∂1uM |≤1]

... +

∫
Br(z)∩[|∂1uM |>1]

...

≤ c +

∫
Br(z)

aM(·, |∂1uM |) dx ≤ c.

Note thate we have for t ≥ 1

aM(x, t)
χ−sχ
χ−1 (1 + t2)

ε
2

χ
χ−1 ≤ caM(x, t)

for ε small enough, since sχ > 1 (remember Lemma 2.1, part (i)). One sees
by the inequalities of Jensen and Young

YM ≤ c

[∫
Br(z)

aM(·, |∂1uM |)sχ dx

] 2
χ

≤ c

∫
Br(z)

aM(·, |∂1uM |)2s dx

≤ τ ′′′
∫

Br(z)

aM(·, |∂1uM |)2 dx + c(τ ′′′).

So we have to add

τ ′′′
∫

Br(z)

(
aM(·, |∂1uM |)2 + bM(·, |∂2uM |)2

)
dx (2.6)
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on the r.h.s. of (2.5). Combining (2.4)-(2.6) we have showed (for a suitable
choice of τ and τ ′′′)∫

Bρ(z)

(
aM(·, |∂1uM |)2 + bM(·, |∂2uM |)2

)
dx

≤ c(R− r)−β +
1

2

∫
BR(z)

(
aM(·, |∂1uM |)2 + bM(·, |∂2uM |)2

)
dx.

Now we get the uniform boundedness of uM in W 2,2
loc (B, RN) (compare Lemma

2.1, part (i)) and we can reproduce the proof of [BF5] for the rest, whereby
the terms which appear additionally on account of (1.5) are uncritical.

Full regularity for N = 1:
In case N = 1 it is possible to modify the N -function in [Br2], (4.4). There-
fore we need the inequalities

bM(x, t) ≤ ct2−2εaM(x, t) and aM(x, t) ≤ ct2−2εbM(x, t). (2.7)

By Lemma 2.1 (vi) this follows from ‖p− q‖∞ < 2 for ε � 1. So we can
separate the mixed integrands of the terms∫

B

η2kaM(·, |∇̃uM |)|Γ
α+2ε

2
n,M dx and

∫
B

η2kbM(·, |∂nuM |)Γ̃
α+2ε

2
M dx,

which occur additionally to the integrals in [Br2]. Finally we get instead of
[Br2], (4.6),∫

B

η2kbM(·, |∂nuM |)|Γ
α+2

2
n,M dx

≤ c(η)

[
... +

∫
B

η2kbM(·, |∂nuM |)|Γ
α+2ε

2
n,M dx +

∫
B

η2kaM(·, |∇̃uM |)Γ̃
α+2ε

2
M dx

]
as well as an analogous inequality for aM(·, |∇̃uM |)Γ̃

α+2
2

M instead of [Br2],
(4.7). Since we can assume ε ≤ 1/2 the first integral on the r.h.s. is bounded
by (using Young-inequality)

τ

∫
B

η2kbM(·, |∂nuM |)|Γ
α+2

2
n,M dx + c(τ)

∫
B

η2kbM(·, |∂nuM |)|Γ
α
2
n,M dx

for an arbitrary τ > 0. For the second one we can argue similarly and we
obatin∫

B

η2kbM(·, |∂nuM |)|Γ
α+2

2
n,M dx +

∫
B

η2kaM(·, |∇̃uM |)|Γ̃
α+2

2
M dx
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≤ c(η)

[∫
spt(η)

η2kbM(·, |∂nuM |)|Γ
α
2
n,M dx +

∫
spt(η)

η2kaM(·, |∇̃uM |)Γ̃
α
2
M dx

]
.

Now we can iterate as in [Br2] and obtain arbitrary high integrability of ∇uM

uniform in M (the starting point is α = 0, see Lemma 2.2, part (v)). This is
enough to end up the proof as mentioned there.
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