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Abstract

We discuss regularity results concerning local minimizers u : Rn ⊃ Ω → Rn

of variational integrals like∫
Ω

{F (·, ε(w))− f · w} dx

defined on energy classes of solenoidal fields. For the potential F we assume
a (p, q)-elliptic growth condition. In the situation without x-dependence it is
known that minimizers are of class C1,α on an open subset Ω0 of Ω with full
measure if q < pn+2

n
(for n = 2 we have Ω0 = Ω). In this article we extend

this to the case of non-autonomous integrands. Of course our result extends
to weak solutions of the corresponding nonlinear Stokes type system.

1 Introduction

In the classical formulation the Stokes problem reads as follows (see [La], p.
35): find a velocity field v : Ω → Rn and a pressure function π : Ω → R such
that 

∆v = ∇π − f on Ω,
div v = 0 on Ω,
v = v0 on ∂Ω.

(1.1)

Here Ω denotes a domain in ⊂ Rn (n ≥ 2), f : Ω → Rn is a system of
volume forces and v0 : ∂Ω → Rn represents the boundary function. For
results concerning existence and regularity of solutions of (1.1) we refer to
[La]. If F (ε) = 1

2
|ε|2, then solutions of (1.1) are clearly minimizers of

J [w] :=

∫
Ω

{F (ε(w))− f · w} dx (1.2)

in a suitable function class of solenoidal fields.
A natural extension of this problem is to consider minimizers of (1.2) with
potentials F being of power growth (compare [La], p. 192), i.e. we have

λ(1 + |ε|2)
p−2
2 |σ|2 ≤ D2F (ε)(σ, σ) ≤ Λ(1 + |ε|2)

p−2
2 |σ|2 (1.3)

for all ε, σ ∈ S with positive constants λ,Λ and an exponent p > 1 (S is the
space of symmetric n×n-matrices and ε(w) denotes the symmetric gradient).
So we get a nonlinear variant of the first equation in (1.1):

div {∇F (ε(v))} = ∇π − f on Ω.
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For further examples and references we refer to [BF1] (introduction). Bild-
hauer and Fuchs consider the same problem under anisotropic growth condi-
tions, they assume

λ(1 + |ε|2)
p−2
2 |σ|2 ≤ D2F (ε)(σ, σ) ≤ Λ(1 + |ε|2)

q−2
2 |σ|2 (1.4)

with a C2-density F and exponents 1 < p ≤ q < ∞. The result of their
paper is (partial) C1,α-regularity provided

q < p
n+ 2

n
. (A1)

This is the same result as they achieved in [BF3] in the framework of classical
variational calculus (note that full regularity theorems are not known for our
type of variational problems instead of the studies in [BF3]). In this setting it
is known since the work of [ELM] that an extension to the non-autonomous
situation is problematical if we require anisotropic growth conditions. Fuchs
and Bildhauer [BF2] show regularity statements by supposing the stronger
hypothesis

q < p
n+ 1

n
(1.5)

which is a sharp bound under the assumptions stated there. In [Br2] we de-
velop conditions concerning the density F (especially for their x-dependence)
to close the gap between the autonomous and the non-autonomous situation.
Here we extend this argument to the case of variational problems of the form
(1.2).
Firstly, we have to assume that it holds

F (x, ε) = g(x, |ε|) (A2)

for a C2-function g : Ω× [0,∞) → [0,∞) in order to introduce a suitable reg-
ularization of our problem. From the physical point of view this assumption
seems to be quite natural. If (A2) holds, then (1.3) reads as

λ(1 + t2)
p−2
2 ≤ g′(x, t)

t
≤ Λ(1 + t2)

q−2
2 ,

λ(1 + t2)
p−2
2 ≤ g′′(x, t) ≤ Λ(1 + t2)

q−2
2 .

(A3)

Furthermore we suppose that

|∂γg
′′(x, t)| ≤ Λ2

[
g′′(x, t)(1 + t2)

κ
2 + (1 + t2)

p+q
4
−1
]

(A4)
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is true for all (x, t) ∈ Ω × [0,∞) and γ ∈ {1, ..., n} with 0 ≤ κ � 1 as well
as

|∂2
γg
′′(x, t)| ≤ Λ3(1 + t2)

q−2
2 . (A5)

A typical example is ∫
Ω

(1 + |ε(w)|2)
µ(x)

2 dx −→ min

for a Lipschitz-function µ : Ω → (1,∞) and it is easy to show the validity
of all our conditions for this density. For an extensive list of potentials we
refer to [Br2] (section 6), where one can find examples with a nontrivial x-
dependence and an arbitrarily wide range of anisotropy.
Now we state our main result concerning local minimizers of

J[w] :=

∫
Ω

{F (·, ε(w))− f · w} dx (1.6)

in the class

K :=
{
w ∈ W 1,p

loc (Ω,Rn) : divw = 0
}
.

THEOREM 1.1 Under the assumptions (A1)-(A5) where all involved deri-
vatives are supposed to be continuous and the volume force f is assumed to
be sufficient regular we have:

(a) For a local minimizer u ∈ K of (1.6) there is an open subset Ω0 with
full Lebesgue-measure such that u belongs to the space C1,α(Ω0,RN) for
any α ∈ (0, 1) provided q ≥ 2.

(b) If n = 2 and q < p+ 2 we get Ω0 = Ω.

Remark 1.1 • It is possible to include the case q < 2. In this situation
we need another blow up argument. The ideas to prove this can be found
in [Br2] (section 3) and [BF4]. But the arguments used there have to
be adjusted to the fluid case. If we have a look at the 3D case then we
obtain partial regularity (increase q if necessary, see (A1)) if p > 6/5.
For n = 2 the assumption q ≥ 2 is no restriction at all.

• We prove our result in the case f ≡ 0 for a technical simplification but
an extension is easy if f is located in some appropriate Morrey space.
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2 Auxiliary results

In this section we prove regularity statements for the non-autonomous isotro-
pic situation. The following results should not be surprising but it is hard
to find a reference in literature. We consider a function G : Ω̃× S → [0,∞)
satisfying

a(1 + |ε|2)
p−2
2 |τ |2 ≤ D2

εG(x, ε)(τ, τ) ≤ A(1 + |ε|2)
p−2
2 |τ |2 ,

|∂γDεG(x, ε)| ≤ A(1 + |ε|2)
p−1
2 ,

(2.1)

for all ε, τ ∈ S, all x ∈ Ω̃ and all γ ∈ {1, ..., n}. Thereby Ω̃ denotes an open
set in Rn, we suppose p ∈ (1,∞) and a,A are positive constants.

Lemma 2.1 Suppose that v ∈ W 1,p
loc (Ω̃,Rn) is a local minimizer of the energy

w 7→
∫
eΩ
G(·, ε(w)) dx subject to the constraint divw = 0. Then we have

a) v ∈ W 2,t
loc (Ω̃,Rn) for t := min {2, p};

b) (1 + |ε(v)|2) p
4 ∈ W 1,2

loc (Ω̃) together with

∇
{

(1 + |ε(v)|2)
p
4

}
=
p

2
(1 + |ε(v)|2)

p
4
−1|ε(v)|∇|ε(v)|;

c) DεG(·, ε(v)) ∈ W 1,p/(p−1)
loc (Ω̃,S) and

∂γ {DεG(·, ε(v))} = ∂γDεG(·, ε(v)) +D2
εG(∂γε(v), ·), γ = 1, ..., n.

Proof: The starting point is the Euler equation∫
eΩ

DεG(·, ε(v)) : ε(ϕ) dx = 0 (2.2)

being valid for any ϕ ∈ W 1,p(Ω̃,Rn) with divϕ = 0 and compact support in

Ω̃. From (2.2) Bildhauer and Fuchs [BF1] deduce in the autonomous case
(∆hf is the difference quotient from f in the γth direction for h 6= 0)∫

Br′

η2Bx(ε(∆hv), ε(∆hv)) dx =

∫
Br′

Bx(ε(∆hv), hε(ψ)−∇η2 �∆hv) dx.

(2.3)

Thereby we have η ∈ C∞0 (BR) for a ball BR b Ω̃ such that η ≡ 1 on Br,
η ≡ 0 outside of Br′ , η ≥ 0 and |∇η| ≤ c/(r′ − r) where r < r′ < R. The
function ψ belongs to the space W 1,p

0 (Br′ ,Rn) such that

divψ =
1

h
∇η2∆hv,
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together with

‖∇ψ‖p ≤
c

h

∥∥∇η2∆hv
∥∥

p
. (2.4)

In our situation Bx stands for the bilinear form

Bx :=

∫ 1

0

D2
εG(x+ theγ, ε(v)(x) + thε(∆hv)(x)) dt.

In the autonomous situation one has

∆h {DG(ε(v))} (x) = Bx(ε(∆hv), ·).

Here we get on account of the x-dependence

∆h {DεG(x, ε(v)(x))} =

∫ 1

0

∂γDεG(x+ theγ, ε(v)(x) + thε(∆hv)(x)) dt

+Bx(ε(∆hv), ·)

where we abbreviate the linear form defined by the first integral on the r.h.s.
by Lx. As a consequence we have to add∫

Br′

Lx :
[
hε(ψ)−∇η2 �∆hv − ε(∆hv)η

2
]
dx

on the r.h.s. of (2.3). This leads us to the estimation of the following three
integrals (using (2.1))

J1 :=

∫
Br′

∫ 1

0

(1 + |ε(v)(x) + thε(∆hv)(x)|2)
p−1
2 |hε(ψ)| dtdx,

J2 :=

∫
Br′

∫ 1

0

(1 + |ε(v)(x) + thε(∆hv)(x)|2)
p−1
2 |∇η2 �∆hv| dtdx,

J3 :=

∫
Br′

η2

∫ 1

0

(1 + |ε(v)(x) + thε(∆hv)(x)|2)
p−1
2 |ε(∆hv)| dtdx.

Considering J1 one sees by Young’s inequality and (2.1)

J1 ≤ c
∫

Br′

∫ 1

0

(1 + |ε(v)(x) + thε(∆hv)(x)|2)
p
2 dtdx

+ch2

∫
Br′

|Bx||ε(ψ)|2 dx.
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Following [BF1] (calculations after (3.7)) we can bound both terms by

c(r′ − r)−2

(
1 +

∫
BR+h

|∇v|p dx

)

where h is chosen sufficiently small. For J2 we obtain

J2 ≤ c(r′ − r)−2

∫
Br′

∫ 1

0

(1 + |ε(v)(x) + thε(∆hv)(x)|2)
p
2 dtdx

+c

∫
Br′

|∆hv|p dx.

On account of

‖∆hv‖Lp(Br′ )
≤ ‖∇v‖Lp(BR)

since v ∈ W 1,p
loc (Ω̃,Rn) we receive for J2 the same estimation as for J1 and

thereby

J1 + J2 ≤ c(r′ − r)−2

(
1 +

∫
BR+h

|∇v|p dx

)
. (2.5)

Having a look at the last integral we obtain by Young’s inequality

J3 ≤ c(δ)
∫

Br′

∫ 1

0

(1 + |ε(v)(x) + thε(∆hv)(x)|2)
p
2 dtdx

+δ

∫
Br′

η2

∫ 1

0

(1 + |ε(v)(x) + thε(∆hv)(x)|2)
p−2
2 |ε(∆hv)|2 dtdx

for an arbitrary δ > 0. Whereas the first term on the r.h.s. is bounded by
the r.h.s. of (2.5), the last integral can be absorbed in the l.h.s. of (2.3) on
account of (2.1). Let

ω(r) :=

∫
Br

Bx(ε(∆hv), ε(∆hv)) dx

then the authors of [BF1] prove starting from (2.3) the inequality

ω(r) ≤ 1

2
ω(r′) + c(r′ − r)−2

(
1 +

∫
BR+h

|∇v|p dx

)
. (2.6)
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We have additional terms to their calculations but if one sees in (2.5) they
can be bounded by the r.h.s. of (2.6) as well and we can satisfy the same
inequality. From (2.6) we deduce by [Gi] (Lemma 3.1, p. 161)

ω(r) ≤ c(r′ − r)−2

(
1 +

∫
BR+h

|∇v|p dx

)
, 0 < r < r′ ≤ R. (2.7)

If p ≥ 2 we have (compare (2.1))

ω(r) ≥ c|ε(∆hv)|2

and (2.7) implies (by quoting Korn’s inequality) part a) of Lemma 2.1 in this
situation. If p < 2 then (... = ε(v)(x) + thε(∆hv)(x))∫

Br

|ε(∆hv)|p dx =

∫
Br

∫ 1

0

(1 + |...|2)
p−2
2

p
2 |ε(∆hv)|p(1 + |...|2)

2−p
2

p
2 dtdx

≤ cω(r) +

∫
Br

∫ 1

0

(1 + |...|2)
p
2 dx

≤ cω(r) + c

(
1 +

∫
BR+h

|∇v|p dx

)
.

In this case we receive Lemma 2.1 part a) by (2.7), too. With a minor
modification in case p < 2 we can quote part b) from [BF1] (p. 9). Since we

know ∂γε(v) ∈ Lt
loc(Ω̃,S) we have after passing to a subsequence a.e.

∆hε(v)
h→0→ ∂γε(v).

Therefore we get a.e.

Bx(ε(∆hv), ·)
h→0→ D2

εG(x, ε(v))(∂γε(v), ·),

Lx
h→0→ ∂γDεG(x, ε(v))

which means we obtain a.e.

∆h {DG(ε(v))} (x)
h→0→ D2

εG(x, ε(v))(∂γε(v), ·) + ∂γDεG(x, ε(v)). (2.8)

If we are able to bound ∆h {DG(ε(v))} in L
p/(p−1)
loc (Ω̃,S) we get together with

(2.8) the claim of part c) using [Mo] (Thm. 3.6.8 (b)). In addition to the

calculations from [BF1] we only have to show a uniform L
p/(p−1)
loc -bound on

Lx. We clearly get by Jensen’s inequality and the growth of ∂γDε∫
BR

|Lx|p/(p−1) dx ≤ c

(
1 +

∫
BR+h

|∇v|p dx

)
and the claim follows. �
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3 Regularization and higher integrability

First of all we present our regularization where the main ideas arise from
[CGM]. For M � 1 let

gM(x, t) :=


g(x, t), for 0 ≤ t ≤M

g(x,M)+ g′(x,M)(t−M) +
t∫

M

ρ∫
M

g′′(x, τ)h(x, τ)dτdρ, for t > M

and finally FM(x, ε) := gM(x, |ε|). As proved partly in [BF2] and partly in
[Br2] this function has the following properties if we suppose (A2)-(A5) and
the continuity of the involving derivatives of g:

Lemma 3.1 (i) FM(x, ε) ≤ F (x, ε) for all ε ∈ S;

(ii) for |ε| ≤M is FM(x, ε) = F (x, ε);

(iii) FM(x, ε) growth isotropic: i.e.

a |ε|p − b ≤ FM(x, ε) ≤ AM |ε|p +BM

for all ε ∈ S with uniform constants a > 0, b ∈ R and constants AM

and BM depending on M .

(iv) FM(x, ε) is uniform (p, q)-elliptic, which means we have for ε, τ ∈ S
and γ ∈ {1, ..., n}

λ(1 + |ε|2)
p−2
2 |τ |2 ≤ D2

εFM(x, ε)(τ, τ) ≤ Λ3(1 + |ε|2)
q−2
2 |τ |2 ,

|∂γDεFM(x, ε)| ≤ Λ3(1 + |ε|2)
q−1
2

with constants λ,Λ3 > 0.

(v) FM(x, ε) is p-elliptic, i.e. for ε, τ ∈ S is

λ(1 + |ε|2)
p−2
2 |τ |2 ≤ D2

εFM(x, ε)(τ, τ) ≤ ΛM(1 + |ε|2)
p−2
2 |τ |2 ,

|∂γDεFM(x, ε)| ≤ ΛM(1 + |ε|2)
p−1
2

with a uniform constant λ and a constant ΛM depending on M .

(vi) For all ε, τ ∈ S it holds∣∣∂2
γDεFM(x, ε)

∣∣ ≤ Λ4(1 + |ε|2)
q−1
2 ,∣∣∂γD

2
εFM(x, ε)(τ, ε)

∣∣ ≤ Λ4

∣∣D2
εFM(x, ε)(τ, ε)

∣∣ (1 + |ε|2)
ε
2

+Λ4(1 + |ε|2)
p+q−2

4 |τ |

uniformly in M with Λ4 ≥ 0.
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With these preparations we define the regularization uM of the problem (1.6)
as the unique minimizer of (note we assume w.l.o.g. f ≡ 0)

JM [w] =

∫
B

FM(·, ε(w)) dx

in u+W 1,p
0 (B,Rn) subject to the constraint divw = 0 with a ball B = B2R b

Ω. This is the solution of an isotropic problem and so we get the regularity
statements from Lemma 2.1 for uM . Now we want to prove

Lemma 3.2 Under the assumptions of Theorem 1.1 we get

ε(u) ∈

{
L

pn
n−2

loc (Ω,S) if n ≥ 3
Ls

loc(Ω,S), for all s <∞, if n = 2.

Also u belongs to the space W 2,t
loc (Ω,Rn) for t := min {p, 2}.

For our proof we need a inequality of Caccioppoli-type:

Lemma 3.3 Let ΓM := 1 + |ε(uM)|2. Then there is a constant c > 0 inde-
pendent from M such that∫

B

η2Γ
p−2
2

M |∇ε(uM)|2 dx ≤ c ‖∇η‖2
∞

∫
spt∇η

Γ
q
2
Mdx+ c

∫
spt η

Γ
q
2
Mdx

for all η ∈ C1
0(B).

Proof: We get (compare [BF1], (4.9), which is unaffected by the x-dependence)∫
B

η2∆h {DεFM(·, ε(uM))} : ε(∆huM) dx

= −2

∫
B

η∆hτM : (∇η �∆h [uM −Qx]) dx

and thereby with an obvious definition for Bx and Lx∫
B

η2Bx(∆hε(uM),∆hε(uM)) = −2

∫
B

η∆hτM : (∇η �∆h [uM −Qx]) dx

−
∫

B

η2Lx : ∆hε(uM) dx. (3.1)

Here is pM ∈ W 1,p/(p−1)(B) a pressure function such that

∇pM = div σM ,
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σM := DεFM(·, ε(uM)),

τM := σM − pMI,

η a suitable cut-off function and Q ∈ S an arbitrary matrix. The l.h.s. of
(3.1) is non-negative and on account of convergence a.e. we get by Fatou’s
lemma ∫

B

η2D2
ε (∂γε(uM), ∂γε(uM)) dx ≤ lim inf

h→0
|r.h.s. of (3.1)|. (3.2)

Now we have to show, that we can change limes and integral in the terms
on the r.h.s. of (3.1). For the first term this is already established in [BF1].
Therefore we have to find an exponent s > 1 such that Lx : ∆hε(uM) is
uniformly bounded in Ls

loc (than we quote Vitali’s convergence theorem).
We have by Jensen’s inequality for r < 2R∫

Br

|Lx : ∆hε(uM)|s dx

≤ c(M)

∫
Br

∫ 1

0

(1 + |ε(uM) + th∆hε(uM)|2)
sp
4 ×

(1 + |ε(uM) + th∆hε(uM)|2)
s(p−2)

4 |∆hε(uM)|s dtdx

≤ c(M)

∫
Br

Bx(∆hε(uM),∆hε(uM)) dx+ c(M)

(
1 +

∫
Br+h

|ε(uM)|
sp

2−s dx

)

using Lemma 3.1 part (v). If we remember Lemma 2.1 and its proof we get

λ

∫
B

η2Γ
p−2
2

M |∇ε(uM)|2 dx ≤ −2

∫
B

η∂γτM : (∇η � ∂γ [uM −Qx]) dx

−
∫

B

η2∂γDεFM(·, ε(uM)) : ∂γε(uM) dx (3.3)

which corresponds to (4.10) in [BF1]. The first integral is bounded by(∫
B

η2|∇τM |2Γ
2−q
2

M dx

) 1
2
(∫

B

|∇η|2Γ
q−2
2

M |∇uM −Q|2 dx
) 1

2

. (3.4)

We get (sum over γ)

|∇σM |2Γ
2−q
2

M ≤ cΓ
2−q
2

M [∂γDεFM(·, ε(uM)) : ∂γσM

+ D2
εFM(·, ε(uM))(∂γε(uM), ∂γσM)

]
≤ cΓ

2−q
4

M Γ
q
4
M |∇σM |
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+cΓ
2−q
4

M D2
εFM(·, ε(uM))(∂γε(uM), ∂γε(uM))

1
2 |∇σM |

by the formula for ∂γσM given in Lemma 2.1 (remember the growth estimates
in Lemma 3.1 (iv)) and thereby on account of |∇τM | ≤ c|∇σM |

|∇τM |Γ
2−q
4

M ≤ cΓ
q
4
M + cD2

εFM(·, ε(uM))(∂γε(uM), ∂γε(uM))
1
2 .

Therefore we bound the r.h.s. of (3.4) by

τ

∫
B

η2D2
ε (∂γε(uM), ∂γε(uM)) dx

+c(τ)

(∫
B

|∇η|2Γ
q−2
2

M |∇uM −Q|2 dx+

∫
B

η2Γ
q
2
M dx

)
. (3.5)

After absorption of the τ -term (remember (3.2)) we can bound the remaining
term by (note q ≥ 2)

c ‖∇η‖2
∞

[∫
spt∇η

Γ
q
2
M dx+

∫
spt∇η

|∇uM −Q|q dx
]

+ c

∫
spt η

Γ
q
2
M dx

≤ c ‖∇η‖2
∞

∫
spt∇η

Γ
q
2
M dx+ c

∫
spt η

Γ
q
2
M dx (3.6)

using Korn’s inequality and choose Q as a suitable skew-symmetric matrix.
Now have to estimate

I := −
∫

B

η2∂γDεFM(·, ε(uM)) : ∂γε(uM) dx

=

∫
B

∂γ

{
η2∂γDεFM(·, ε(uM))

}
: ε(uM) dx

=

∫
B

η2∂2
γDεFM(·, ε(uM)) : ε(uM) dx

+

∫
B

η2∂γD
2
εFM(·, ε(uM))(∂γε(uM), ε(uM)) dx

+

∫
B

∂γDεFM(·, ε(uM)) : ε(uM)∂γη
2 dx

:= I1 + I2 + I3.

Lemma 3.1 (vi) gives

I1 ≤ c

∫
spt η

Γ
q
2
Mdx
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and from Lemma 3.1 (iv) we deduce

I3 ≤ c ‖∇η‖∞
∫

spt∇η

Γ
q
2
Mdx ≤ c ‖∇η‖2

∞

∫
spt∇η

Γ
q
2
Mdx+ c

∫
spt η

Γ
q
2
Mdx.

For I2 we conclude from Lemma (2.1) (vi)

I2 ≤ c

∫
B

η2
∣∣D2

εFM(·, ε(uM))(∂γε(uM), ε(uM))
∣∣ (1 + |∇uM |2)

κ
2 dx

+ c

∫
B

η2Γ
p+q−2

4
M |∇ε(uM)| dx.

We can bound the first integral by

τ

∫
B

η2D2
εFM(·, ε(uM))(∂γε(uM , ∂γε(uM))dx

+ c(τ)

∫
B

η2D2
εFM(·, ε(uM)(ε(uM , ε(uM))(1 + |ε(uM)|2)κdx.

If we know

κ <
1

2

(
p
n+ 2

n
− q

)
,

we can increase q to q + 2κ w.l.o.g. Now we can absorb the first term (see
(3.2)) and bound the second one by

c

∫
spt η

Γ
q
2
Mdx.

For arbitrary τ > 0 we obtain by Young’s inequality∫
B

η2Γ
p+q−2

4
M |∇ε(uM | dx ≤ τ

∫
B

η2Γ
p−2
2

M |∇ε(uM |2 dx+ c(τ)

∫
spt η

Γ
q
2
Mdx

which we handle conventionally and we finally receive the equation from
Lemma 3.3. �

Proof of Lemma 3.2: If we follow the lines of [BF1] (proof of Corollary
4.2) and [Br] (proof of Lemma 2.1) we get by Lemma 3.3

ε(uM) ∈

{
L

pn
n−2

loc (B, S) if n ≥ 3
Ls

loc(B, S), for all s <∞, if n = 2
(3.7)
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uniformly. Note that the integrability of ε(uM) which we need is obtained by
Lemma 2.1 (b) and Sobolev’s inequality. To transfer the integrability to the
solution u we have to show the convergence uM → u. By a combination of
Lemma 3.3 and the uniform W 1,q

loc (B,RN)-bound of uM (see (3.7)) we obtain

∇ε(uM) ∈ Lt
loc(B, Sn) uniformly. (3.8)

Since uM is a JM -minimizer on boundary data u we get uniform Lp-bounds
for ε(uM) using Lemma 3.1 (i), (iii). As a consequence we can bound uM

in W 1,p(B,Rn) uniformly by Korn’s inequality. Using Korn’s inequality for
another time we obtain by (3.8) for all γ ∈ {1, ..., n}

‖∂γuM‖W 1,t ≤ c
{
‖∂γuM‖Lt + ‖ε(∂γuM)‖Lt

}
≤ c

and so we can follow after passing to a subsequence

uM ⇁: v in W 2,t
loc (B,R

N) and

∇uM → ∇v almost everywhere on B

for a function v ∈ W 2,t
loc (B,RN). As in [Br2] (end of section 2) we can follow

u = v and thereby the claim of Lemma 3.2. �

4 Partial regularity

As in [Br2] (section 3) we get

Lemma 4.1 Let HM := Γ
p
4
M , Γ := 1 + |ε(u)|2 and H := Γ

p
4 . Than we have

• H ∈ W 1,2
loc (B),

• HM ⇁ H in W 1,2
loc (B) for M →∞ and

• ε(uM) → ε(u) almost everywhere on B for M →∞.

• For η ∈ C∞0 (B) and arbitrary balls B b Ω we have∫
B

η2|∇H|2 dx ≤ c ‖∇η‖2
∞

∫
spt∇η

Γ
q
2dx+ c

∫
spt η

Γ
q
2dx.

We define (−
∫
... and (...)x,r denote mean values)

E(x, r) := −
∫

Br(x)

|ε(u)− (ε(u))x,r|q dy + −
∫

Br(x)

|ε(u)− (ε(u))x,r|2 dy

and obtain

13



LEMMA 4.2 Fix L > 0. Then there exists a constant C∗(L) such that for
every τ ∈ (0, 1/4) there is an ε = ε(τ, L) > 0 satisfying: if Br b BR and we
have

|(ε(u))x,r| ≤ L, E(x, r) + rγ∗ ≤ ε

then

E(x, τr) ≤ C∗τ 2[E(x, r) + rγ∗ ].

Here γ∗ ∈ (0, 2) is an arbitrary number.

We follow the lines of [BF1] and so the only part which need a comment is
the uniform bound of

∫
Bρ
|∇ψm|2 dx for ρ < 1 (the function ψm is defined in

[BF1]). For Θ(ε) := (1 + |ε|2) p
4 (ε ∈ S) we see∫

Bρ

|∇ψm(z)|2 dz =

∫
Bρ

|DΘ(Am + λmε(um)(z)) : ∇ε(um)(z)|2 dz

= r−n
m

r2
m

λ2
m

∫
Bρrm (xm)

|∇H|2 dz

≤ c(ρ) r2
mλ

−2
m −
∫

Brm (xm)

Γ
q
2 dz, (4.1)

where λ2
m := E(xm, rm)+r2

m. Furthermore we receive (note |(ε(u))xm,rm| ≤ L)

−
∫

Brm (xm)

Γ
q
2 dz ≤ c

1 + −
∫

Brm (xm)

|ε(u)|q dz



≤ c

1 + −
∫

Brm (xm)

|ε(u)− (ε(u))xm,rm|q dz + −
∫

Brm (xm)

|(ε(u))xm,rm|q dz


≤ cE(xm, rm) + c(L).

we obtain ∫
Bρ

|∇ψm(z)|2 dz ≤ c(ρ)
[
r2
m + r2

mλ
−2
m c(L)

]
.
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Recalling the choice of γ∗ we have r2
mλ

−2
m → 0 for m→ and the boundedness

of
∫

Bρ
|∇ψm|2 dx follows. Now the proof can be completed as in [BF1]. �

Proof of Theorem 1.1 b): In [BFZ], (2.6), the authors establish a inequal-
ity of the form (remember (3.3))

−
∫

Br(x0)

H2
M dx ≤ c

 −
∫

B2r(x0)

hs
MH

s
M dx


2
s

(4.2)

for s = 4/3 valid for any B2r(x0) b B2R with a constant c independent of M
and r (therefore they have to know q < p + 2). Thereby we have (sum over
γ, µ := max {q − 2, 2− p})

H2
M := D2

ε (·, ε(uM))(∂γuM , ∂γuM) and hM := Γ
µ
2
M .

Note that we have arbitrarily high integrability of ε(uM) uniform in M on
account of 3.7. In our situation we have to add on the r.h.s. of (4.2) the term

−c −
∫

B2r(x0)

η2∂γDεFM(·, ε(uM)) : ∂γε(uM) dx.

Using Lemma 3.1 (iv) and Young’s inequality we can estimate this integral
by

τ −
∫

Br(x0)

η2H2
M dx+ c(τ) −

∫
B2r(x0)

Γ
2q−p

2
M dx.

After absorption of the τ -integral in the l.h.s. of (4.2) we finally receive

−
∫

Br(x0)

H2
M dx ≤ c

 −
∫

B2r(x0)

hs
MH

s
M dx


2
s

+ c −
∫

B2r(x0)

Γ
2q−p

2
M dx. (4.3)

Having a look at Lemma 1.2 from [BFZ], one can see that the additional
term in (4.3) is no problem since we have arbitrarily high integrability of ΓM

uniform in M . Now it is possible to end up the proof as in [BFZ]. �
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