
Universität des Saarlandes

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 250

A Domain-Decomposition-Free Parallelisation
of the Fast Marching Method

Michael Breuß, Emiliano Cristiani,
Pascal Gwosdek and Oliver Vogel

Saarbrücken 2009

Fachrichtung 6.1 – Mathematik Preprint No. 250

Universität des Saarlandes submitted: October 8, 2009

A Domain-Decomposition-Free Parallelisation
of the Fast Marching Method

Michael Breuß

Saarland University
Department of Mathematics

P.O. Box 15 11 50
66041 Saarbrücken

Germany
breuss@mia.uni-saarland.de

Emiliano Cristiani

CEMSAC
Università di Salerno
Fisciano (SA), Italy

and IAC-CNR, Rome, Italy
emiliano.cristiani@gmail.com

Pascal Gwosdek

Saarland University
Department of Mathematics

P.O. Box 15 11 50
66041 Saarbrücken

Germany
gwosdek@mia.uni-saarland.de

Oliver Vogel

Saarland University
Department of Mathematics

P.O. Box 15 11 50
66041 Saarbrücken

Germany
vogel@mia.uni-saarland.de

Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

The Fast Marching Method (FMM) is an efficient technique to nu-
merically solve the eikonal equation. The parallelisation of the FMM
is not easy because of its intrinsic sequential nature. In this paper we
propose a novel approach to parallelise the FMM which is not based
on a classic domain-decomposition procedure. Compared to other
techniques in the field, our method is much simpler to implement and
initialise. By numerical experiments we show that it gives in addition
a slightly better computational speed-up. Making use of an exam-
ple from the field of computer vision, we verify that the favourable
properties of our approach are useful for real-world applications.

1 Introduction

The Fast Marching Method (FMM) is an efficient technique to solve numer-
ically the eikonal equation

{

f(x)|∇u(x)| = 1 , x ∈ R
d\Γ0

u(x) = u0(x) , x ∈ Γ0 ,
(1)

where f(x) > 0 is a given Lipschitz continuous function, and Γ0 is a (d−1)-
dimensional manifold in R

d. Equation (1) is well-posed in the framework of
viscosity solutions [2]. The unique viscosity solution u of (1) is in general not
differentiable, even if f ∈ C1(Rd) and Γ0 is smooth.
Eikonal and eikonal-type equations appear in a number of different applica-
tion fields [23], such as computer vision, image processing, optics, geoscience,
and medical image analysis. In some cases, the approximation of the solution
must be carried out on very large grids, requiring a significant computational
time. For instance, this is the case in applications in computer vision such
as shape from shading [18], or in image processing tasks as e.g. inpainting
[26] on real-size digital images. Although the FMM is already in its basic
version rather fast – much faster than a classic iterative algorithm where all
the nodes are visited iteratively in a predefined update order – solving equa-
tion (1) on large grids in real-time is still out of reach. In order to obtain
a significant potential speed-up of the algorithm, an interesting option is to
parallelise it. In this context, let us mention that dual- and quad-core proces-
sors are by now quite common, so that there is a demand for an easy-to-use,
non-massive parallelisation procedure. In this paper, we address this need.
We propose a novel parallel algorithm for FMM, both numerically fast and
easy to implement.

1

The FMM. The FMM was introduced in [22] (see also [27]), and it is based
on the classic Dijkstra’s shortest path algorithm for graphs [12]. A complete
proof of convergence can be found in [6, 8], together with the right assump-
tions on the set-up that lets the method work in practice. We now briefly
recall for the reader’s convenience the principle of the FMM, cf. [22] for
details.
We restrict the discussion to the case d = 2 to avoid cumbersome notations.
We first introduce a bounded computational domain Ω ⊃ Γ0, discretised by
a regular grid G = {(xi, yj); i = 1, . . . , Nx; j = 1, . . . , Ny}. Every cell is a
square of side length ∆x. We denote by uij the approximation of the solution
u at (xi, yj). Equation (1) is discretised by means of the usual upwind first-
order finite difference approximation [21]

(

max{max{D−x
ij u, 0},−min{D+x

ij u, 0}}
)2

(2)

+
(

max{max{D−y
ij u, 0},−min{D+y

ij u, 0}}
)2

= f−2
i,j ,

with D−x
ij u :=

ui,j−ui−1,j

∆x
, D+x

ij u :=
ui+1,j−ui,j

∆x
, and an analogous definition of

D−y
ij u and D+y

ij u.
It can be shown that an iterative fixed point algorithm based on this dis-
cretisation converges for any initial guess – in a large number of iterations –
to the viscosity solution [21]. The idea behind the FMM is to introduce an
ordering in the selection of the grid nodes in such a way that convergence is
reached in just one iteration over the grid.
The basic FMM realises this as follows. During the computation, the grid G
is always partitioned in the three sets accepted, trial and far. The accepted
nodes are those where the solution has been already computed; an accepted
value does not change anymore. The trial nodes are the nodes where the
computation actually takes place. Their value can still change as long as
they are labelled as trial. Finally, the far nodes are the remaining nodes
where an approximate solution has not been computed yet.
For initialisation, the nodes adjacent to Γ0 are labelled as accepted and their
value is set to 0. All the values at non-accepted nodes adjacent to an accepted
node are computed solving (2), and these nodes are labelled as trial. All the
remaining nodes are labelled as far and their value is set to infinity, or just
to a very large value. At every step of the algorithm, the trial node with the
minimal value is labelled as accepted, and all its far neighbours are labelled as
trial. Only the non-accepted neighbours of the last accepted node need to be
(re-)computed using (2). The accept-the-minimum-rule is crucial, and it is
based on the fact that a value can not be affected by other values larger than
itself. The principle behind the latter property is called causality principle.
The algorithm ends when all the nodes are accepted.

2

An important detail is that equation (2) can have two solutions for uij. In
this case the largest computed value must be chosen, see [8, 22].
Since its introduction, the FMM has been the subject of many papers, leading
to a number of improvements. Let us mention for example the works [7, 17,
34] where the authors proposed modifications to speed up the method and
drop the computational complexity from O(N log N) to the optimal O(N).
The papers [4, 8, 11, 13] deal with modifications leading to a higher accuracy
of the approximate solution. It was also proved that the FMM is not limited
to equation (1), but can be used to solve other eikonal-type equations. This
fact was first stated in general terms in [24], and then investigated in more
detail in the recent paper [1]. Finally, several extensions of the FMM to more
general Hamilton-Jacobi equations were proposed, see for example [5, 9, 10,
20, 24, 32].

Related work. Regarding parallelisation techniques for the FMM the liter-
ature is quite scarce. This is due to the fact that the FMM works in a highly
sequential way. Indeed, only one node per iteration becomes accepted, and
nodes must be computed in an increasing order so that the causality principle
is respected. Up to now, there are only three notable works concerned with
the parallelisation of the FMM. The paper [14] proposes a parallel algorithm
based on a domain-decomposition method, and in the PhD thesis [28] that
method is modified in some technical details without leading to a substantial
improvement. The work [33] is instead focused on a parallel implementa-
tion using graphics processing units (GPUs). However, while the algorithm
presented in that paper is somewhat similar to the FMM, it is specifically
taylored to geodesic distance computation. With respect to our work, the
method from [14] is important, since the FMM as the algorithmical basis in
addition to the assumed underlying computer architecture are identical to
our setting.
Let us remark that there exist also other parallelisation strategies for solving
the eikonal equation (1). One of these approaches is based on the Fast Sweep-
ing Method [35] for which a parallelisation was proposed in [36]. Another
one is the Fast Iterative Method [15, 16] which was parallelised on GPUs as
described in the same papers.

Our contribution. In this paper we propose a new parallelisation approach
for the FMM which is not based on a domain decomposition technique. It is
much easier to implement than the method proposed in [14]. The main idea
employed by us is to split the set Γ0 between the processors since the very
beginning of the computation. Then the subsets of Γ0 resulting from this
splitting are used by separate processors as starting points for computing
independent evolutions. Thereby, the process interaction is realised by a

3

relatively simple procedure constructed to satisfy the causality principle. By
numerical tests, we validate the usefulness of the new approach. It turns out
to be computationally competitive to the domain decomposition technique
employed in [14], in some tests it is even more efficient.

The contents. The paper is organised as follows. In Section 2 we recall the
domain-decomposition method proposed in [14]. In Section 3 our method
is proposed, recalling the theoretical properties of equation (1) which let
the algorithm converge to the viscosity solution. We present in Section 4
numerical tests comparing our method with that in [14]. In Section 5 we
elaborate on a real-world application from the field of computer vision. The
paper is finished by a summary and conclusion.

2 Domain-decomposition methods

In this section we recall the method introduced in [14]. For convenience, in
the following we will refer to this method by the acronym DDM.

The set-up. At the beginning of the computation, the domain Ω is divided
in P sub-domains, P being the number of processes we can run in parallel.
Let us focus on two neighbouring sub-domains Dm and Dm+1. Each domain
Dm is extended by ghost nodes in the normal direction to the boundary,
see Fig.1. Ghost nodes are shared by neighbouring sub-domains and allow
communication between corresponding processes.

Process assignment. After the usual initialisation of the sequential FMM,
each sub-domain is assigned to one process. Every process associated to a
sub-domain creates his own trial region, and starts working independently
of the others.
Of course, depending on the domain decomposition and the shape/position
of Γ0, it is possible that only one sub-domain contains Γ0, or that just a few
sub-domains contain a significant part of Γ0. Thus, it may happen that only
one process is assigned to a major part of the computation.

Communication at overlapping sub-domains. Every time a process
updates a ghost node, the information is communicated to the sub-domain
the node is shared with. In this way the information flowing along charac-
teristics moves from a sub-domain to another, until the domain Ω is fully
covered.
The delicate and crucial point of the DDM is to define a correct modification
of a process running in a sub-domain in the case that information enters it
via a ghost node. Because of the relevance of this issue, we now give more
details on it.

4

Figure 1: Classic domain decomposition with overlapping regions to allow
communication between processes. The ghost nodes are indicated by dashed
lines.

Let us assume that a ghost node of the sub-domain p is updated by another
process by the value ū. We also denote by up

min the smallest value in the
local trial zone. If ū ≥ up

min, the ghost node is simply labelled as trial so
that information can start propagating from that node. On the contrary, if
ū ≤ up

min, all the values greater than ū might be wrong, since they could
depend on ū. Hence, to allow for a consistent algorithm it is necessary to
rollback to the status trial all the nodes whose value are greater than ū, in
such a way that they can be computed again. Of course, it may be necessary
to perform the rollback operation for many times, even for the same nodes,
depending of Γ0 and f .
Let us remark that also the Fast Iterative Method [15, 16] includes the roll-
back procedure, where it allows to ”reactivate” nodes already accepted.

Discussion of the rollback. The rollback procedure affects a lot the effi-
ciency of the algorithm and must be restricted as much as possible. Besides
the fact that it enables the re-computation of an accepted node, it is required
to visit all the nodes of a sub-domain to find the nodes to rollback.
We define the rollback factor RF as in [14], i.e.

RF :=
total number of rollback operations

total number of nodes
. (3)

The number RF greatly depends on the choice of the domain decomposition.
In order to shed some light on the effect of the latter, let us consider the

5

following toy example:

Ω = [−2, 2]2 , f(x) ≡ 1 , Γ0 = [−2, 2]× {−2} , u0(x, y) =
x + 3

2
. (4)

The solution u of the equation and its level sets are depicted in Fig. 2. In

−2
−1

0
1

2

−2

−1

0

1

2
0

1

2

3

4

5

6

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 2: Solution of (1)-(4). Function u (left) and its level sets (right).

the eikonal equation characteristic lines are orthogonal to the level sets of
the solution. Since information propagates along characteristics, it is easy
to investigate the effect of different domain decompositions. If all the sub-

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 3: Different domain decompositions for (4), P = 4. Optimal (left),
worst (right).

domain boundaries are parallel to the characteristics, the decomposition is
optimal in the sense that no information does cross these boundaries. As
a consequence, RF is very small or zero, this situation is depicted in Fig.3
(left).

6

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

rollback

double
rollback

Figure 4: A generic domain decomposition for the problem (4), P = 4. Here
the rollback appears.

On the contrary, if all the sub-domain boundaries are orthogonal to the
characteristics as in Fig.3 (right), the computation becomes serial in practice,
no matter how P is chosen.
For decompositions like displayed in Fig.4, the number RF appears and it
could be large. In such a case, the number RF grows as P increases.
We will see in the next section that our method overcomes the difficulties
in the choice of the decomposition, and it greatly simplifies the rollback
procedure although it does not eliminate it completely.

3 A domain-decomposition-free method

In this section we detail our method. We start with the theoretical founda-
tions it is based on.

3.1 Theoretical bases

It is well known that the solution u of the eikonal equation has two important
physical interpretations [23]:

1. The t-level set of u

Γt = {x ∈ R
d : u(x) = t}

represents a front (interface) at time t propagating in its normal direc-
tion with velocity f(x), starting from the initial configuration Γ0.

7

2. u(x) is the minimal time to reach a target Γ0 ∈ R
d when moving

from the point x with velocity f , where any direction is allowed. The
optimal trajectories that are the paths of such movements correspond
to the characteristic curves of the equation. These coincide with the
gradient lines, i.e. the curves orthogonal to the level sets of u.

In order to realise the new parallelisation idea, we start by partitioning the
set Γ0 in P > 1 subsets. We define a corresponding family of sets {Γp

0}p=1,...,P ,
such that

Γp
0 ⊂ Γ0 ∀p = 1, . . . , P ,

P
⋃

p=1

Γp
0 = Γ0 , and

P
⋂

p=1

Γp
0 = ∅. (5)

For any specific p = 1, . . . , P , this set-up leads to the sub-problem

{

f(x)|∇up(x)| = 1 , x ∈ Ω\Γp
0

up(x) = up
0(x) , x ∈ Γp

0 ,
(6)

where up
0 := u0|Γp

0
. Following the minimal arrival time interpretation, it is

easy to see that the solution u of equation (1) can be obtained by combining
the solutions of the sub-problems (6),

u(x) := min
p=1...,P

up(x) for any x ∈ Ω. (7)

3.2 The algorithm

The algorithm stems on the theoretical considerations described above. First,
every subset Γp

0, p ∈ {1, . . . , P}, is assigned to the p-th thread. Then every
thread solves independently of the others the corresponding sub-problem (6)
computing an approximation of the solution up via the classic FMM. The
solution of the main problem is then given by (7).

Thread interaction. To make the method efficient, we have to avoid to
multiply by P (i) the equations to be solved, and (ii) the memory that needs
to be allocated. To do so, we let all threads have access to a shared memory
area where the matrix containing the values {uij} is allocated. Whenever a
thread is ready to write the value up

ij in the common matrix, two rules are
followed:

R1. If some thread q 6= p already wrote a value uq
ij ≤ up

ij in a previous
iteration, the thread p refrains from writing its value, and does not
enlarge the trial zone from the node (i, j).

8

R2. If some thread q 6= p already wrote a value uq
ij > up

ij in a previous
iteration, or if the initial guess still holds at the node (i, j), the thread
p substitutes the current value with the new one. It enlarges the trial
zone, thereby ignoring the fact the thread q labelled that node as ac-
cepted.

Rule R1 is crucial to avoid unnecessary computations: In a completely auto-
matic way, every thread stops the others at the boundary of its own domain
of competence.
Since multiple threads work concurrently on a common array of results in
shared memory, two or more of them might access one resource at the same
time. This can not only invalidate the result in this specific point, but it can
even have an immediate effect on a larger region: If reading, comparing, and
updating one cell is not one atomic operation, a thread might continue its
evolution to a region which is already optimal. Then, it may deteriorate the
existing results.
Thus, such critical sections need to be mutual exclusive, which is solved by
one mutex flag for any data element in the solution. This flag can be locked
by one thread before it reads the current value at a point, and is unlocked
after the new value has been written. In the mean time, no other thread
is allowed to modify this cell, though we still allow pure read access. By
use of this construction, all threads can thus work on a well-defined data set
just like they would do in the single-threaded case. Since no direct thread
interaction takes place, it is even algorithmically irrelevant if there are other
threads running, and how many of them.
For any thread, the computation ends when all narrow bands are empty.
The algorithm ends when all threads came to an end. The shared array then
contains the desired solution.

Details on the management of accepted, trial and far labels. Differ-
ent to the sequential algorithm described in the introduction, our algorithm
needs a different understanding of which nodes are far, which are in the trial
band, and which are accepted : The threads may disagree about the status
of certain nodes, since the labeling always only applies to one particular
wave front computed by one individual thread. Consequently, the labeling
information is kept thread-local.
As it turns out, the far state hereby takes on a more restrictive role than
in the original setting: A node is far – in the sense of a specific thread of
interest – with respect to the new meaning,

1. if it is far by the old definition, and

2. if the particular thread can reach it.

9

The second point relates to the situation that a thread may stop the prop-
agation of its wave front because another thread already provided a better
result. In such cases, the particular thread adapts to the global notion of
acceptance. Unreachable nodes at which another thread is better can still be
implemented to be flagged as far, while in practice they are implicitly treated
as accepted. This slight simplification saves complex algorithmic operations.
If the second condition does not hold but the first one does, the state of the
particular node is comparable to an accepted state in the standard FMM.
By this proceeding, the local wave propagation is steered by the preliminary
solution, which acts in favour of a globally optimal result. In this respect,
concrete runs of our algorithm might differ in their extent and run-time if
threads do not run perfectly synchronously on the observed hardware ma-
chine.

Initialisation. In order to ensure a fair load balancing among the threads,
and thus a fast convergence of the global algorithm, we need to choose the
sets Γp

0 in such a way that the emerging wave fronts ideally cover nearly
the same portions of the computational domain. Obviously, this problem is
intimately linked to the unknown solution and cannot be decided beforehand.
We deal with this situation by taking clusters of neighbouring points within
Γ0 assigning them to the same subset Γp

0.
This is achieved by applying a hierarchical domain decomposition scheme as
it is known from the construction of kd-trees [3]. For the description of the
procedure, we consider a 2-D setting with x = (x1, x2)

⊤:

1. Let o := 0, n := P . Furthermore, let Γ0
0 := Γ0.

2. First, we compute the medians mx1
and mx2

of coordinates of all points
γ ∈ Γo

0 in x1 and in x2 direction, respectively.

3. Let (cx1
, cx2

)⊤ be the center of the current domain. The new direction
to split in is then given by

i := argmin
i∈{x1,x2}

|ci −mi| . (8)

4. We now split at mi in direction i, meaning all points γ ∈ Γo
0 are moved

into Γ
o+n/2

0 , if γi > mi, and stay in Γo
0 otherwise.

5. If n > 2, we proceed recursively with

• o← o, n← n/2, Γo
0 ← Γo

0, and with

• o← o + n/2, n← n/2, Γo
0 ← Γ

o+n/2

0 ,

10

by going back to Step 2 in both cases.

When this recursive algorithm comes to an end, we have Γp
0 defined for all

p ∈ {1, . . . , P}, which concludes the initialisation phase.

Discussion of load balancing. As already indicated, a crucial task to
obtain efficient parallel computations is to assure that every thread has the
same computational load. This is one of the main issues in the domain-
decomposition-based methods as the one discussed in the previous section,
since it is expected that some threads are completely idle during the com-
putation. Especially, this is the case when the front did not yet enter their
region of competence during the computation.
In our method the load is perfectly balanced at the beginning of the compu-
tation, since the set Γ0 is split in P equal parts. It is possible that after a
while some thread ends its job. This can be the case when the part of the
front of its competence region reaches the boundary of the computational
domain Ω, or when it hits an existing wave front of another set by which it
is overruled. In this case, it is a possible option to re-divide all the narrow
band nodes in P equal parts, re-balancing the jobs. It should be noted that
this procedure is very costly, and it leads to a gain in CPU time only if the
runtime benefit gained exceeds the cost of the reordering step noticeably. In
practice, this should be done only rarely, for very large problems and when
many threads are idle. In the experiments presented in this paper we omit
this option completely.

Differences with DDM. Our method differs from DDM in many respects.
In the proposed method, the rollback procedure is substituted by rule R2,
which allow to recompute a node already accepted. The procedure here is
completely automatic and does not require to find in advance the nodes to
be recomputed, nor store their labels at each iteration.
Let us consider again the test problem (1)-(4). In the case of four proces-
sors, the natural decomposition is the one depicted in Fig. 5. As it can
be easily argued, re-computation of nodes is limited to a neighbourhood on
the dashed lines, since every thread stops the others by means of the values
wrote by itself, so that the processes run side by side approximately along
the dashed lines, preventing double computations. In addition, every node
is recomputed at most two times.
Load balance can still be a problem. As mentioned before, the load bal-
ance is optimal at the beginning of the computation (for any choice of the
decomposition of Γ0), but afterwords the unbalance becomes larger.

11

−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5: Region of competence for equation (1)-(4), P = 4

4 Numerical tests with comparisons

In this section we present some academic numerical tests. We show the effi-
ciency of the proposed method by comparing it with the domain-decomposition
method from [14] in terms of CPU time, speed-up and rollback operations.
Unless stated otherwise in the specific experiment, we choose f ≡ 1, u0 ≡
0, and Ω = [−10, 10] × [−5, 5]. The computational domain is given by
2048× 1024 nodes for these experiments.

Real Architecture. Our experiments were run on an octo-socket dual-core
AMD Opteron setup clocked at 2.8 GHz. These 16 cores possess 1 MB of L2
cache, each, and share a total amount of 32 GB of RAM.
As it turns out, our algorithm scales very well on this machine using up to
eight threads, but shows only little or no improvement when increasing the
number to 16 threads. The reason for this behaviour can in our opinion be
found in the way these threads are scheduled onto the hardware. As long as
only one core per processor is occupied, the memory bandwidth suffices to
provide fast updates. For two threads per processor, however, data cannot
be loaded and stored quickly enough to keep the caches valid. In turn, much
higher memory latencies occur, which slow down our approach significantly.
With this respect, our results presented in this section are not directly com-
parable to the results by Herrmann [14], since the latter do not seem to
be conducted on a real architecture: The author does not name a specific
processor type and does not specify the available memory bandwidth and
hierarchy, either. Since his results do not show any hardware-specific over-

12

heads which can hardly be achieved for real machines, we believe he used
a simulated parallel architecture in which he only considered parallelisation
overheads, but no secondary run-time effects resulting therein.

Comments on the experiments. We begin by considering the experiment
which has the most relevant implications for practical computations, where
the seed points are chosen randomly. Here, the benefit of our approach is also
most evident. After that, we also consider a variety of specific and partly
rather extreme set-ups that highlight properties of the considered parallel
approaches, and also some differences between them.

4.1 Random Points

In this case, we randomly chose 32 seed points in the domain, i.e. Γ0 is given
by 32 random points. This is very likely the most relevant test case when it
comes to real applications of the parallelisation schemes, since in reality one
hardly experiences nicely distributed seeds. Table 1 and Figure 6 show the
speedups of this experiment. The CPU time on a single thread was around
15 seconds. Like described in [14], the splitting is alternatingly performed in
both directions, beginning with the x1-direction.

Table 1: Speedups for the random points test
Method Splitting Threads Speedup factor

Herrmann Alternating 2 1.99
Herrmann Alternating 4 3.84
Herrmann Alternating 8 5.71
Herrmann Alternating 16 7.10
Proposed - 2 2.06
Proposed - 4 3.14
Proposed - 8 5.87
Proposed - 16 8.65

As we can observe, we obtain nice speedups for both parallelisation tech-
niques, with the proposed method having a clear advantage with a growing
number of threads. Even for 16 threads we still obtain a remarkable speedup
here, since threads can run independent for a relatively long time.
The rollback factors are also very reasonable in this case as we show in Table
2. Anyway, even though the rollback for our algorithm is still higher than
for Herrmann’s method, the proposed method is competitive and even faster
in many cases.

13

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 fa
ct

or

CPU Cores

Proposed
Herrmann

Figure 6: Speedups for the random points experiment.

This can easily be explained as follows. Because of the regular splitting,
most threads are idle for a considerable amount of time in Herrmann’s case,
while in our case all threads are busy all the time. Finding ways to reduce
the rollback in the proposed parallelisation technique would allow for even
better speedups.
We finish the discussion of this experiment with the conclusion that for this
test case which gives the most important clue concerning practical applica-
tions, our scheme performs competitive, and in three of four test runs shown
in Table 1 even better than Herrmann’s method.

14

Table 2: Rollback factors for the random points test
Method Splitting Threads Rollback factor

Herrmann Alternating 2 0.016
Herrmann Alternating 4 0.012
Herrmann Alternating 8 0.033
Herrmann Alternating 16 0.044
Proposed - 2 0.226
Proposed - 4 0.339
Proposed - 8 0.497
Proposed - 16 0.568

4.2 Wall test

In this test, we solve the Eikonal equation with Γ0 = [−10,−9.99]× [−5×5].
(we initialised the leftmost node in every row with the value zero). Table 3
shows the speedup factors for each of the methods. Computation time on
one thread was 9 seconds for this experiment.

Table 3: Speedups for the wall test
Method Splitting Threads Speedup factor

Herrmann Vertical 2 1.00
Herrmann Vertical 4 1.00
Herrmann Vertical 8 0.99
Herrmann Vertical 16 0.91
Herrmann Horizontal 2 1.93
Herrmann Horizontal 4 3.07
Herrmann Horizontal 8 5.02
Herrmann Horizontal 16 5.143
Proposed - 2 1.88
Proposed - 4 3.63
Proposed - 8 4.40
Proposed - 16 3.24

Because we know in advance about the characteristics of the solution, we
did the splitting for Herrmann’s method only in horizontal or vertical direc-
tion, in contrast to the original proposal. By this, we show that the splitting
direction has a significant impact on the performance in practical compu-
tations. Splitting in the wrong direction results in no speedup at all, since

15

the method runs practically sequentially. The horizontal splitting is opti-
mal for Herrmann’s method. Figure 7 shows the speedup factors represented
graphically.

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 fa
ct

or

CPU Cores

Proposed
Herrmann v
Herrmann h

Figure 7: Speedups for the wall experiment.

As we can see, we obtain in the total slightly better speedups than Her-
rmann’s method. Only for 16 threads, the computation time declines due to
heavy caching overhead, which is caused by the architecture on which we ran
the experiments and cannot be avoided on real hardware like this.
Table 4 shows the rollback factor caused by the parallelisation techniques.
The rollback factor is the amount of pixels updated by more than one thread.
As an example, if we use two threads on 100 pixels, and 30 of the pixels are
updated by both threads, then we have a rollback factor of 0.3.
Note that since we chose an extreme example with expected wave propa-
gations that follow thin but long line-shaped areas, a high parallelisation
overhead is necessary along the boundaries between threads. This is even
more severe when threads run asynchronously. This can particularly been

16

observed for 16 threads, when high memory latencies caused by much higher
transfer rates require threads to wait for each other: Both our method as
well as the reference method show a clear degradation in the speedup factor.
In the proposed method, it can happen that one thread takes over the area of
another thread, which in turn terminates its computation; cf. the paragraph
on load balancing in Section 3.2. Then our method performs even worse
using 16 threads than it does for eight. This is also reflected in the rollback
numbers, see Table 4. We will see later, however, that such extreme situations
as artificially constructed here are rare for real applications and much higher
speedups are possible.

Table 4: Rollback factors for the wall test
Method Splitting Threads Rollback factor

Herrmann Vertical 2 0.00013
Herrmann Vertical 4 0.00036
Herrmann Vertical 8 0.00072
Herrmann Vertical 16 0.00450
Herrmann Horizontal 2 0
Herrmann Horizontal 4 0
Herrmann Horizontal 8 0.00025
Herrmann Horizontal 16 0.00030
Proposed - 2 0.00025
Proposed - 4 0.00191
Proposed - 8 0.06077
Proposed - 16 0.24381

As we can observe, for the non-optimal splitting, Herrmann’s method has
virtually no overhead. This is not surprising, since the computation is run-
ning more or less sequential. For the optimal splitting some overhead occurs,
but it is still very small. For the proposed method, we get higher rollback
factors, but still very small taking into account the image size. In addition,
the threads in our method tend to run a little more synchronously on this
architecture, so that this slightly higher overhead is not an issue.
Because of the very small overheads here, we can conclude that in this test
case, both domain splitting approaches are practically perfect, with overhead
in computation time only caused by architecture-specific issues. Also, our
dynamic splitting of the domains proves to give competitive speedups.

17

4.3 Slope Wall Test

In this case, we use a quadratic input image of size 2000 × 2000 where the
pixel width was assumed to be 0.001 and 0 being in the centre of the image,
i.e. Ω = [−2, 2] × [−2, 2]. We initialised the leftmost quarter of the image
with the x2-coordinate in the image domain. On the remainder of the image,
we solved the Eikonal equation as before. The speedups for this experiment
can be found in Table 5 and in Figure 8. We only considered a generic
horizontal splitting direction for Herrmann’s method here. This is the best
of the simple, axis-aligned splitting settings by Herrmann in this test case.

Table 5: Speedups for the slope wall test
Method Splitting Threads Speedup factor

Herrmann Horizontal 2 1.84
Herrmann Horizontal 4 3.14
Herrmann Horizontal 8 3.11
Herrmann Horizontal 16 2.99
Proposed - 2 1.94
Proposed - 4 2.35
Proposed - 8 4.37
Proposed - 16 6.84

For Herrmann’s method, we obtain slightly worse speedups here than in
the non-slope version of this test, see Section 4.2, while we obtain similar
speedups for the proposed method. This can be explained by looking at
the rollback factors, which are shown in Table 6. Compared to the test in
Section 4.2, we observe larger rollback factors for Herrmann’s method here,
and similar ones for the proposed method. With around 15 seconds for a
single thread, the run times are significantly larger than for the non-slope
version of this test.

4.4 Circle in the centre

In this test, Γ0 is a circle at the centre of the image domain. This is identical
to the test scenario described by Herrmann in [14]. As we will see, our
experiment indicates that the tests in [14] have presumably been done on
simulated hardware, or under exclusion of hardware-specific characteristics.
Computation time on one CPU was around 10 seconds for this experiment.
We show the speedups of both methods in Table 7 as well as graphically in
Figure 9. Up to 4 threads, Herrmann’s method is again practically optimal.

18

 1

 2

 3

 4

 5

 6

 7

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 fa
ct

or

CPU Cores

Proposed
Herrmann v

Figure 8: Speedups for the slope wall experiment.

Note that the speedup is not exactly 4, but quite a bit lower, which is caused
by architecture-based as well as by synchronisation-related overheads. For
only two threads, this overhead is so small that we indeed obtain a perfect
speedup here. For our method, the speedups at two and four threads are
worse. Since on real hardware, threads cannot be perfectly balanced, our
method does not guarantee for each thread computing exactly half (or a
quarter for four threads) of the domain. Instead, some regions might be a
bit larger, causing a worse speedup. However, the parallelisation potential
of Herrmann’s method mostly stops at four cores here, since the additional
split will create additional threads which are idle most of the time. Our
method, however, allows for splitting in more than four sections right from
the beginning, which allows to beat Herrmann’s method at eight threads.

19

Table 6: Rollback factors for the slope wall test
Method Splitting Threads Rollback factor

Herrmann Horizontal 2 0.001
Herrmann Horizontal 4 0.002
Herrmann Horizontal 8 0.004
Herrmann Horizontal 16 0.009
Proposed - 2 0.0285
Proposed - 4 0.065
Proposed - 8 0.087
Proposed - 16 0.138

The results at 16 threads are, as before, suffering from architecture-specific
problems.

Table 7: Speedups for the circle in the centre test
Method Splitting Threads Speedup factor

Herrmann Alternating 2 2.01
Herrmann Alternating 4 3.11
Herrmann Alternating 8 3.43
Herrmann Alternating 16 4.72
Proposed - 2 1.39
Proposed - 4 2.22
Proposed - 8 3.64
Proposed - 16 3.89

4.5 Circle in the Corner

This experiment is similar to the test before, but this time we put a quarter of
a circle in a corner of the image. Table 8 and Figure 10 show the speedups of
the different methods. As we can see, the speedups of the proposed method
are generally better than the ones of Herrmann’s method here. This is caused
by Herrmann’s algorithm running sequentially in the beginning, and only
splitting into several threads when reaching the computational domain of
another thread. In contrast, our method splits the work to different threads
right from the beginning, which makes it clearly superior in this case. CPU
time on just one thread was around 9 seconds.

20

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 fa
ct

or

CPU Cores

Proposed
Herrmann

Figure 9: Speedups for the circle in the centre experiment.

5 Application to Shape from Shading

For a real-world application of our method, we consider the Shape-from-
Shading-problem. This is a classic task in the field of computer vision. It
amounts to recover at hand of one given grey-value image and assumptions
on the illumination as well as on the reflectance properties of depicted objects
their 3-D shape. While about ten years ago this task seemed to be unsolvable
[37], in recent years much progress has been made beginning with the works
[19, 25], so that it is now possible to deal with real-world images [31]. As
these are usually taken with a digital camera with resolutions of several
mega-pixels, the corresponding computational domain is quite large.
A mathematical model for Shape from Shading (SfS) that gives adequate

21

Table 8: Speedups for the circle in the corner test
Method Splitting Threads Speedup factor

Herrmann Alternating 2 1.04
Herrmann Alternating 4 1.67
Herrmann Alternating 8 1.83
Herrmann Alternating 16 2.50
Proposed - 2 1.27
Proposed - 4 2.32
Proposed - 8 2.93
Proposed - 16 2.80

solutions for real-world images is the model of Vogel et al. [29]. The arising
task is to solve the space-variant, highly non-linear Hamilton-Jacobi equation

J(x)W (x)−kdId exp (−2v(x))−
W (x)ksIs

Q(x)
exp (−2v(x))

(

2Q(x)2

W (x)2
− 1

)α

= 0

(9)
where ka, kd, ks, α and f are model parameters, I(x) = Ia + Id(x) + Is(x) is
identical to the given grey value image, and with the abbreviations

Q(x) :=
√

f2/(|x|2 + f2) , (10)

J(x) := (I(x)− kaIa)f
2/Q(x) , (11)

W (x) :=
√

f2|∇v|2 + (∇v · x)2 + Q(x)2 . (12)

The sought unknown depth u(x) is determined via the relation v(x) :=
ln(u(x)). The partial differential equation (9) is complemented by state con-
straints boundary conditions.

We apply the method to a real-world image of three chess figures, shown
in Figure 11. This is quite a large image of around 8 million pixels. The
computation time using a standard SfS method for such an image is several
hours, and still more than a minute for fast-marching methods [30].
Figure 12 shows the reconstructions using this model. The accuracy of this
reconstruction has been discussed in [30]. In this paper, however, we are
mainly interested in the performance of the method under parallelisation.
Table 9 shows the speedup factors of the proposed parallelisation method for
1, 2, and 4 threads on a single Intel Core 2 Quad Q8200, 2.33 GHz, with
2×2 MB L2 Cache and 4 GB RAM. The computation times on just a single
thread was about 86.5 seconds for the SfS model. Since the four cores on
this machine share caches and a common memory interface, the computation

22

 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

 fa
ct

or

CPU Cores

Proposed
Herrmann

Figure 10: Speedups for the circle in the corner experiment.

times are less meaningful than the ones obtained in the previous section.
However, an architecture like this has become very popular in the recent
years on home PCs, therefore this experiment has practical relevance.
As we can observe, it is possible to speed the computation up by almost a
factor 2.5 on four threads, even on a shared cache architecture. This reduces
the computation time to about 35 seconds, which is very impressive for such
a large input image.

23

Figure 11: Real-world chess input image: Rook, knight, and pawn.

Table 9: Speedups for the wall test
Threads Computation Time Speedup factor

1 86.532s 1
2 64.133s 1.35
4 35.764s 2.42

6 Summary and Conclusion

In this work we have described a new approach to parallelise the FMM that
is especially useful for machines with about 4 cores that are in common use
today. The method is much easier to implement than existing approaches,
and it even gives better speedups in relevant experimental settings.
Our experiments reveal even better speedups if the arithmetic density of a
computational problem, i.e. the ratio of arithmetic operations vs. mem-
ory interactions, is higher. In this moment, as observable by the speedup
obtained with the already quite complex SfS model, more instructions are
performed on a per-thread-basis, i.e. on data that is already cached. Mem-
ory bottlenecks are hence less severe since threads are better occupied with
available data which in turn grants a better parallelity.

Acknowledgements

Pascal Gwosdek thanks the Cluster of Excellence Multimodal Computing and
Interaction for funding his work.

24

Figure 12: Reconstruction of the chess figures using the parallel fast marching
SfS method.

References

[1] K. Alton, I. M. Mitchell, Fast Marching methods for stationary
Hamilton–Jacobi equations with axis-aligned anisotropy, SIAM J. Nu-
mer. Anal., 47 (2008), 363–385.

[2] M. Bardi, I. Capuzzo Dolcetta, Optimal control and viscosity solutions
of Hamilton-Jacobi-Bellman equations, Birkhäuser, 1997.

[3] J.L. Bentley, Multidimensional Search Trees Used for Associative
Searching, Communications of the ACM, Vol. 18, No. 9, September 1975

[4] D. L. Chopp, Some improvements of the fast marching method, SIAM
J. Sci. Comput., 23 (2001), 230–244.

[5] E. Cristiani, A fast marching method for Hamilton–Jacobi equations
modeling monotone front propagations, J. Sci. Comput., 32 (2009), 189–
205.

[6] E. Cristiani, Fast Marching and semi–Lagrangian methods for
Hamilton–Jacobi equations with applications, Ph.D. Thesis,
SAPIENZA – Università di Roma, Rome, Italy. February, 2007.
www.emiliano.cristiani.name/research.htm

[7] E. Cristiani, M. Falcone, A characteristics driven Fast Marching method
for the eikonal equation, in K. Kunisch, G. Of, O. Steinbach (eds.), Nu-
merical Mathematics and Advanced Applications (Proceedings of ENU-

25

MATH 2007, Graz, Austria, September 10-14, 2007), 695–702, Springer
Berlin Heidelberg, 2008.

[8] E. Cristiani, M. Falcone, Fast semi-Lagrangian schemes for the Eikonal
equation and applications, SIAM J. Numer. Anal., 45 (2007), 1979–2011.

[9] E. Carlini, E. Cristiani, N. Forcadel, A non-monotone Fast Marching
scheme for a Hamilton-Jacobi equation modelling dislocation dynamics,
in A. Bermdez de Castro, D. Gmez, P. Quintela, P. Salgado (eds.),
Numerical Mathematics and Advanced Applications, Proceedings of
ENUMATH 2005 (Santiago de Compostela, Spain, July 2005), 723–731,
Springer, Berlin, 2006.

[10] E. Carlini, M. Falcone, N. Forcadel, R. Monneau, Convergence of a Gen-
eralized Fast Marching Method for an eikonal equation with a velocity
changing sign, SIAM J. Numer. Anal., 46 (2008), 2920–2952.

[11] P.-E. Danielsson, Q. Lin, A modified Fast Marching Method, in J. Bigun,
T. Gustavsson (eds.), Proc. 13th Scandinavian Conf. Image Analysis,
1154–1161, LNCS 2749, Springer, 2003.

[12] E. W. Dijkstra, A note on two problems in connection with graphs, Nu-
merische Mathematik, 1 (1959) 269–271.

[13] M. S. Hassouna, A. A. Farag, Multistencils Fast Marching Methods: A
highly accurate solution to the eikonal equation on Cartesian domains,
IEEE Trans. Pattern Anal. Mach. Intell., 29 (2007), 1563–1574.

[14] M. Herrmann, A domain decomposition parallelization of the Fast
Marching Method, in: Annual Research Briefs-2003, Center for Tur-
bulence Research, Stanford, CA.

[15] W.-K. Jeong, R. T. Whitaker, A fast iterative method for Eikonal equa-
tions, SIAM J. Sci. Comput., 30 (2008), 2512–2534.

[16] W.-K. Jeong, R. T. Whitaker, A fast iterative method for a class
of Hamilton-Jacobi equations on parallel systems, University of Utah,
School of Computing, Technical Report UUCS-07-010, 2007.

[17] S. Kim, An O(N) level set method for eikonal equations, SIAM J. Sci.
Comput., 22 (2001), 2178–2193.

[18] R. Kimmel, J. A. Sethian, Optimal algorithm for shape from shading and
path planning, Journal of Mathematical Imaging and Vision, 14 (2001),
237–244.

26

[19] Prados, E., Faugeras, O.: Perspective shape from shading and viscosity
solutions. In: Proc Ninth International Conference on Computer Vision.
Volume 2., Nice, France, IEEE Computer Society Press (2003) 826–831

[20] E. Prados, S. Soatto, Fast marching method for generic shape from shad-
ing, in N. Paragios, O. Faugeras, T. Chan, C. Schnörr (eds.), Variational,
geometric, and level set methods in computer vision, LNCS 3752, 320–
331, Springer, 2005.

[21] E. Rouy, A. Tourin, A viscosity solutions approach to shape-from-
shading, SIAM Journal of Numerical Analysis, 29(3):867–884, 1992.

[22] J. A. Sethian, A fast marching level set method for monotonically ad-
vancing fronts, Proc. Natl. Acad. Sci. USA, 93 (1996), 1591–1595.

[23] J. A. Sethian, Level set methods and Fast Marching methods. Evolving
interfaces in computational geometry, fluid mechanics, computer vision,
and materials science, Cambridge University Press, 1999.

[24] J. A. Sethian, A. Vladimirsky, Ordered upwind methods for static
Hamilton-Jacobi equations: theory and algorithms, SIAM J. Numer.
Anal., 41 (2003), 325–363.

[25] A. Tankus, N. Sochen, Y. Yeshurun, A new perspective [on] shape-from-
shading. In: Proc. Ninth International Conference on Computer Vision.
Volume 2, Nice, France, IEEE Computer Society Press (2003), 862–869.

[26] A. Telea, An image inpainting technique based on the Fast Marching
Method, Journal of graphics, gpu, and game tools, 9 (2004), 23–34.

[27] J. N. Tsitsiklis, Efficient algorithms for globally optimal trajectories,
IEEE Tran. Automatic. Control, 40 (1995), 1528–1538.

[28] M. C. Tugurlan, Fast Marching Methods – Parallel implementation and
analysis, Ph.D. Thesis, Louisiana State University, December 2008.

[29] O. Vogel, M. Breuß, J. Weickert, Perspective shape from shading with
non-Lambertian reflectance, In G. Rigoll (Ed.): Pattern Recognition.
Lecture Notes in Computer Science, Vol. 5096, 517-526, Springer, Berlin,
2008.

[30] O. Vogel, M. Breuß, T. Leichtweis, J. Weickert, Fast Shape from Shading
for Phong-type surfaces, In X.-C. Tai et al. (Eds.): Scale Space and
Variational Methods in Computer Vision. Lecture Notes in Computer
Science, Vol. 5567, 733 - 744, Springer, Berlin, 2009.

27

[31] O. Vogel, L. Valgaerts, M. Breuß, J. Weickert, Making Shape from Shad-
ing work for real-wrold images, In J. Denzler et al. (Eds.): DAGM 2009.
Lecture Notes in Computer Science, Vol. 5748, 191–200, Springer, Berlin
Heidelberg, 2009.

[32] A. Vladimirsky, Static PDEs for time-dependent control problems, In-
terfaces and Free Boundaries, 8 (2006), 281–300.

[33] O. Weber, Y. S. Devir, A. M. Bronstein, M. M. Bronstein, R. Kimmel,
Parallel algorithms for approximation of distance maps on parametric
surfaces, ACM Trans. Graph., 27 (2008), 1–16.

[34] L. Yatziv, A. Bartesaghi, G. Sapiro, O(N) implementation of the Fast
Marching algorithm, Journal of Computational Physics, 212 (2006),
393–399.

[35] H. Zhao, A fast sweeping method for eikonal equations, Math. Comp.,
74 (2005), 603–627.

[36] H. Zhao, Parallel implementations of the Fast Sweeping method, Journal
of Computational Mathematics, 25 (2007), 421-429.

[37] R. Zhang, P. S. Tsai, J. E. Cryer, M. Shah, Shape from shading: A sur-
vey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21 (1999), 690–706.

28

