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Abstract

We discuss partial regularity results concerning local minimizers u : R3 ⊃ Ω → R3 of
variational integrals of the form∫

Ω

{h(|ε(w)|)− f · w} dx

defined on appropriate classes of solenoidal fields, where h is a N -function of rather general
type. As a byproduct we obtain a theorem on partial C1-regularity for weak solutions of
certain non-uniformly elliptic Stokes-type systems modelling generalized Newtonian fluids.

Mathematics Subject Classification (2000): 76 M 30, 76 D 07, 49 N 60, 35 J 50

Keywords: Stokes problem, generalized Newtonian fluids, regularity, non-uniformly ellip-
tic systems, slow flows

1 Introduction

As stated in the monograph of Ladyzhenskaya (see [La], p. 35) the Stokes problem in
its classical formulation for the stationary case reads as follows: find a velocity field
v : Ω → Rn and a pressure function π : Ω → R such that the following system of partial
differential equations is satisfied

∆v = ∇π − f on Ω,
div v = 0 on Ω,
v = v0 on ∂Ω.

(1.1)

Here Ω denotes a domain in Rn (n ∈ {2, 3}), f : Ω → Rn is a system of volume forces
and v0 : ∂Ω → Rn represents the given boundary data. For results concerning existence
and regularity of solutions of (1.1) we again refer to [La] or to the more recent expositions
[Ga1,2] of Galdi. If we let H(ε) = 1

2
|ε|2, then the solutions of (1.1) are clearly in one-to-one

correspondence to the minimizers of

J [w] :=

∫
Ω

{H(ε(w))− f · w} dx (1.2)

defined on an appropriate class of solenoidal fields w : Ω → Rn, ε(w) denoting the
symmetric gradient, i.e. ε(w) = 1

2

(
∇w +∇wT

)
A natural extension of this problem also proposed by Ladyzhenskaya (compare [La], p.
193) is to consider minimizers of (1.2) with potential H being of power growth in the
sense that

λ(1 + |ε|2)
p−2
2 |σ|2 ≤ D2H(ε)(σ, σ) ≤ Λ(1 + |ε|2)

p−2
2 |σ|2
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holds for all ε, σ ∈ S with positive constants λ,Λ and for an exponent p > 1, where S is
the space of symmetric n× n-matrices. In this case the first equation in (1.1) is replaced
by the nonlinear system

div {∇H(ε(v))} = ∇π − f on Ω,

where on the l.h.s. the operator “div” has to be applied linewise. For these power law
models full interior C1,α-regularity in the 2D case has been proved by Kaplický, Málek
and Stará [KMS] and Wolf [Wo], whereas the higher dimensional situation is studied for
example in Naumann and Wolf [NW]. For partial regularity results in dimensions n ≥ 3
we also refer to [FGR] and [Fu4]. The reader should note that the related but much more
difficult case of power law models with x-dependent exponents describing the behavior of
electrorheological fluids has been investigated by Acerbi and Mingione [AM]. In the paper
[BF1] Bildhauer and the second author consider the minimization problem now under
so-called anisotropic growth conditions, i.e. they assume the validity of

λ(1 + |ε|2)
p−2
2 |σ|2 ≤ D2H(ε)(σ, σ) ≤ Λ(1 + |ε|2)

q−2
2 |σ|2

with exponents 1 < p ≤ q <∞ and constants λ,Λ > 0. It should be remarked that such
a behavior of the potential H is suggested for example in Section 5.1 of the monograph
[MNRR] of Málek, Necǎs, Rokyta and Růžička. The main result of the paper [BF1] is a
partial C1,α-regularity theorem in general dimensions n using the hypothesis

q < p
n+ 2

n

limiting the range of anisotropy. This corresponds to the result being valid in the frame-
work of classical variational calculus (see [BF2]), and in general there is no hope for
regularity if p and q differ too much (compare the counterexamples of Giaquinta [Gi] and
Hong [Ho] in this context). For completeness we like to mention that in the case n = 2
the hypothesis q < min(2p, p+ 2) is a sufficient condition for full regularity of stationary
and also slow anisotropic flows, see [BFZ].
In this note we will follow the ideas of [Fu1] and [Fu2], where the author proves full reg-
ularity in two dimensions including the case of fluids and partial regularity for n ≥ 3
in the setting of variational calculus for integrands depending on the modulus, i.e. the
dissipative potential H is of the special form

H(ε) = h(|ε|), ε ∈ S,

which seems to be a natural assumption for the study of fluids. Here h : [0,∞) → [0,∞)
is a C2-function satisfying:

h is strictly increasing and convex together with

h′′(0) > 0 and lim
t↓0

h(t)

t
= 0;

(A1)
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there exists a constant k > 0 such that h(2t) ≤ kh(t) for all t ≥ 0; (A2)

h′(t)

t
≤ h′′(t) ≤ a(1 + t2)

ω
2
h′(t)

t
for all t ≥ 0

with an exponent ω ≥ 0 and a constant a ≥ 0;
(A3)

Let us give some comments on (A1-3):

i) We have h(0) = h′(0) = 0, and by convexity h′ is an increasing function with
h′(t) > 0 for all t > 0: otherwise it would follow that h′ = 0 on some interval [0, t0],
t0 > 0, contradicting the first part of (A1).

ii) The inequality h′(t)
t
≤ h′′(t) implies that the function t 7→ h′(t)

t
is increasing, moreover

we deduce the lower bound

h(t) ≥ 1

2
h′′(0)t2, t ≥ 0 , (1.3)

and (A1) combined with (1.3) shows that h is a N -function in the sense of Adams
[Ad, Section 8.2].

iii) (A2) states that h satisfies a global (∆2)-condition, and it is easy to see that

h(t) ≤ c(tq + 1) (1.4)

for a suitable exponent q ≥ 2 and a constant c. The convexity of h then implies
that h′(t) can be bounded in terms of tq−1.

iv) From (A2) and from the convexity of h we deduce the inequality

k
−1
h′(t)t ≤ h(t) ≤ th′(t), t ≥ 0 . (1.5)

v) From (A3) we conclude the ellipticity condition

h′(|Z|)
|Z|

|Y |2 ≤ D2H(Z)(Y, Y ) ≤ a(1 + |Z|2)
ω
2
h′(|Z|)
|Z|

|Y |2 . (1.6)

Recalling iii) and using ( see ii)) h′(|Z|)
|Z| ≥ h′′(0), we get from (1.6) with exponent

q := q + ω

h′′(0)|Y |2 ≤ D2H(Z)(Y, Y ) ≤ C(1 + |Z|2)
q−2
2 |Y |2 , (1.7)

and (1.7) means that H is of anisotropic (2, q)–growth.

vi) In physical terms our conditions on h imply that the fluid described by the potential
H is of shear thickening type.
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vii) Let Θ : [0,∞) → [0,∞) denote a continuous and increasing function such that
Θ(0) > 0. If in addition Θ has the (∆2)-property, then it is shown in [BF3], that

h(t) :=

∫ t

0

∫ s

0

Θ(u) du ds

satisfies (A1)-(A3) with exponent ω = 0.

Suppose now that we are given a function u0 from the Orlicz-Sobolev class W 1,h(Ω,Rn)
generated by h (see [Ad] for a definition) satisfying div u0 = 0. We define the class

C :=
{
w ∈ u0 +W 1,h

0 (Ω,Rn) : divw = 0
}
,

W 1,h
0 (Ω,Rn) denoting the subspace of W 1,h(Ω,Rn) of fields with zero trace, and deduce

from Lemma 4.2 the unique solvability of the variational problem

J[w,Ω] :=

∫
Ω

h(|ε(w)|) dx −→ min (1.8)

in C. Of course we could also add a volume force term like
∫

Ω
f ·w dx to (1.8) which under

appropriate assumptions on f is of no effect on the argumentation below. Since we will
not touch the question of boundary regularity, we restrict ourselves to local minimizers of
(1.8).

Definition 1.1. We call a function u from the local Orlicz-Sobolev space W 1,h
loc (Ω,Rn)

satisfying div u = 0 a local minimizer of (1.8), if for any subdomain Ω′ b Ω it holds

• J[u,Ω′] <∞ and

• J[u,Ω′] ≤ J[v,Ω′]

for all v ∈ W 1,h
loc (Ω,Rn) such that div v = 0 and spt(u− v) ⊂ Ω′.

Abbreviating

V 0
h,loc(Ω,Rn) :=

{
w ∈ W 1,h

loc (Ω,Rn) : divw = 0
}

we can now state our main results in case n = 3 (full regularity in 2D is proved in [Fu2]
even under weaker hypotheses concerning h):

THEOREM 1.1. Let u ∈ V 0
h,loc(Ω)(Ω,R3) be a local minimizer of (1.8) under the as-

sumptions (A1)-(A3) with ω < 4/3. Then we have

a)

∫ |ε(u)|

0

√
h′(t)

t
dt ∈ W 1,2

loc (Ω);

b) h(|ε(u)|) ∈ L3
loc(Ω).
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THEOREM 1.2. Let u ∈ V 0
h,loc(Ω,R3) be a local minimizer of (1.8) under the assump-

tions (A1)-(A3) with ω < 4/3. Then there is an open subset Ω0 of Ω with full Lebesgue
measure such that u ∈ C1,α(Ω0,R3) for any 0 < α < 1.

An explicit description of the set Ω0 is given after Lemma 3.1. Unfortunately we could
not rule out the occurrence of singular points (for ∇u), but even if they exist, the solution
itself is at least continuous. In fact, from Theorem 1.1 b) combined with (1.3) it follows
that |ε(u)| ∈ L6

loc(Ω) holds, and we deduce from Korn’s inequality (see e.g. [FS] or [AM])
and Sobolev’s embedding theorem

Corollary 1.1. Under the assumptions of Theorem 1.1 and 1.2 any local minimizer of
problem (1.8) is locally Hölder continuous with exponent 1/2.

Remark 1.1. It is easy to see that the statement of Theorem 1.1 remains valid in higher

dimensions, which means that we get h(|ε(u)|) ∈ L
n

n−2

loc (Ω) provided ω < 4/n. This corre-
sponds to the result obtained in [Fu2], where it is shown that ω < 2 is a sufficient condition
for full regularity in the 2D case.

Remark 1.2. In the setting of classical variational problems studied in [Fu1] the appro-
priate variant of Theorem 1.2 requires the bound ω ≤ 4, if the case n = 3 is considered
(compare [Fu1], Remark 1.1). Actually, as it was recently shown in [Fu5], local minimiz-
ers satisfy a local Lipschitz condition independent of the value of ω and for any dimension
n ≥ 2.

Remark 1.3. It is an open problem if the bound on ω imposed in Theorem 1.1 and
Theorem 1.2 can be improved. Clearly, if we drop the side condition div = 0, then we
obtain the result of Theorem 1.2 now for ω ≤ 4 by completely adopting the arguments
from [Fu1], but this statement seems to be of no physical interest. A very challenging task
however is to discuss if in the setting of Theorem 1.2 actually singular points occur and if
the value of ω is of any importance for the regular or irregular behaviour of minimizers.

Our paper is organized as follows:
In section 2 we introduce a suitable sequence of regularized problems whose solutions are
smooth enough to carry out the calculations which lead to the proof of Theorem 1.1 after
passing to the limit. Section 3 contains the proof of the partial regularity result stated
in Theorem 1.2. This step makes essential use of a blow-up argument. In section 4 we
present some background material on Korn’s inequality in Orlicz spaces.

2 Proof of Theorem 1.1

Let u denote a local minimizer of problem (1.8) under the assumptions of Theorem 1.1. A
first step is to approximate (1.8) locally by variational problems with sufficiently regular
minimizers. Let

δ := δ(ρ) :=
1

1 + ρ−1 + ‖(ε((u)ρ)‖2q
Lq(B)

,
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Hδ(ε) := δ
(
1 + |ε|2

) q
2 +H(ε)

for ε ∈ S and for a small parameter ρ > 0. Here the exponent q is defined in (1.7) and
(u)ρ denotes the mollification of u with radius ρ. With B := BR0(x0) b Ω we define uδ as
the unique minimizer of

Jδ [w,B] :=

∫
B

Hδ(ε(w))dx (2.1)

in (u)ρ + W 1,q
0 (B,R3) subject to the constraint divw = 0. Some elementary properties

of uδ are summarized in the following Lemma (see [BF1], Lemma 3.1, Lemma 4.1 and
estimate (4.10), as well as the inequalities (12) and (13) from [Fu2] for part c)):

Lemma 2.1. Let the hypothesis of Theorem 1.1 hold. Then we have

a) uδ ∈ W 2,2
loc (B,R3),

b) σδ := DHδ(ε(uδ)) ∈ W 1,q/(q−1)
loc (B, S);

c) (1 + |ε(uδ)|2)
q
4 ∈ W 1,2

loc (B),
and for all η ∈ C∞

0 (B), Q ∈ R3×3 and γ ∈ {1, ..., n} we obtain∫
B

η2D2Hδ(ε(uδ))(∂γε(uδ), ∂γε(uδ)) dx

≤− 2

∫
B

η∂γτδ : (∇η � ∂γ[uδ −Qx]) dx.

Here we have abbreviated τδ := σδ − pδI for a suitable pressure function pδ, i.e.
∇pδ = div σδ, which implies τδ ∈ W 1,q/(q−1)

loc (B, S) together with

|∇τδ| ≤ c|∇σδ|.

d) As ρ→ 0 we have uδ ⇁ u in W 1,2(B,R3) and

δ

∫
B

(
1 + |ε(uδ)|2

) q
2 dx→ 0.

e) The integrals
∫

B
h(|ε(uδ)|) dx are bounded independent of δ.

Furthermore we need the following statements:
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Lemma 2.2. Under the assumptions of Theorem 1.1 it holds:

a) uδ is uniformly bounded in W 1,h(B,R3).

b) The sequence h(|uδ|) is uniformly bounded in any space Lχ(B), χ < 3, so that

h(|uδ|)|uδ|µ ∈ L1(B)

uniformly, provided µ < 4.

Proof of Lemma 2.2: From Lemma 2.1 e) combined with Korn’s inequality formulated
in Lemma 4.1 a) we deduce that the Lh-norms of the tensors∇(uδ−(u)ρ) can be estimated
in terms of the corresponding norms of ∇(u)ρ, which in turn stay bounded due to Jensen’s
inequality. The claim of part a) then is a consequence of the Poincaré inequality (applied to
uδ−(u)ρ) for functions from the space W 1,h

0 (B,R3) (see [FO]). For the higher integrability

result stated in part b) we first observe that according to a) the functions h(|uδ|)
1
β stay

bounded (uniformly w.r.t. the approximation parameter) in any space Lβ(B), where
β ∈ (1, 2). By (1.5) we have∫

B

|∇h(|uδ|)
1
β |β dx ≤ c

∫
B

h′(|uδ|)|uδ|1−β|∇uδ|β dx

and in order to discuss the integral on the r.h.s. we define the N -function

N (t) := h(t
1
β ).

Note that N actually is a N -function on account of (A3) and the choice of β. From (1.5)
we deduce for the conjugate function

N ∗(t) = sup
s≥0

[
t− h(s

1
β )

s

]
s ≤ sup

s≥0

[
t− k

−1
h′(s

1
β )s

1
β
−1

]
s

≤ h
−1 (

kt
)
t, h(t) := h′(t

1
β )t

1
β
−1.

We remark that the strict monotonicity of h also follows from (A3) and our choice β < 2.
We now apply Young’s inequality for N -functions and obtain∫

B

h′(|uδ|)|uδ|1−β|∇uδ|β dx ≤
∫

B

N ∗
(
k
−1
h′(|uδ|)|uδ|1−β

)
dx+ c(k)

∫
B

h(|∇uδ|).

Clearly the last integral is uniformly bounded by part a). For the first one we have the
upper bound

c

∫
B

h
−1 (

h′(|uδ|)|uδ|1−β
)
h′(|uδ|)|uδ|1−β dx

and the definition of of h gives (remember (1.5))

h
−1 (

h′(t)t1−β
)
h′(t)t1−β = h′(t)t ≤ kh(t),
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hence we can also control the remaining term independent of δ by part a). Altogether it is

shown that for each β ∈ (1, 2) the sequence h(|uδ|)
1
β stays bounded in the Sobolev-space

W 1,β(B), and our claim follows from Sobolev’s embedding theorem recalling also (1.3).�

After these preparations we come to the proof of Theorem 1.1: in a first step we work with
a cut-off function η1 ∈ C∞

0 (B
er(z)) with η1 ≡ 1 on Br(z), 0 ≤ η1 ≤ 1 and |∇η1| ≤ c/(r̃−r),

where 0 < r < R are such that BR(z) b B and r̃ := R+r
2

. We get by Sobolev’s inequality∫
Br(z)

h(|ε(uδ)|)3 dx ≤
∫

B
er(z)

η6
1h(|ε(uδ)|)3 dx

≤ c

{∫
B
er(z)

|∇η1|2h(|ε(uδ)|) dx+

∫
B
er(z)

η2
1

[h′(|ε(uδ)|)]2

h(|ε(uδ)|)
|∇ε(uδ)|2 dx

}3

.

Using (1.5), Lemma 2.1 e) and (1.6) we obtain for a suitable positive number β (summation
w.r.t. γ ∈ {1, 2, 3})∫

Br(z)

h(|ε(uδ)|)3 dx ≤ c(R− r)−β + c

{∫
B
er(z)

η2
1

h′(|ε(uδ)|)
|ε(uδ)|

|∇ε(uδ)|2 dx
}3

≤ c(R− r)−β + c

{∫
B
er(z)

η2
1D

2Hδ(ε(uδ))(∂γε(uδ), ∂γε(uδ)) dx

}3

. (2.2)

In order to discuss the integral on the r.h.s. of (2.2) we apply the Caccioppoli-type
inequality from Lemma 2.1 c): we have for all κ > 0∫

B
er(z)

η2
1D

2Hδ(ε(uδ))(∂γε(uδ), ∂γε(uδ)) dx

≤− 2

∫
B
er(z)

η1∂γτδ : (∇η1 � ∂γuδ) dx.

≤κ
∫

B
er(z)

η2
1D

2Hδ(ε(uδ))(∂γε(uδ), ∂γε(uδ)) dx dx

+ c(κ)

∫
B
er(z)

|∇η1|2
h′(|ε(uδ)|)
|ε(uδ)|

Γ
ω
2
δ |∇uδ|2 dx

+ c(κ)δ

∫
B
er(z)

|∇η1|2Γ
q−2
2

δ |∇uδ|2 (2.3)

which follows from

|∂γτδ|2 ≤ c|∂γσδ|2 ≤ cD2Hδ(ε(uδ))(∂γε(uδ), ∂γε(uδ))
1
2D2Hδ(ε(uδ))(∂γσδ, ∂γσδ)

1
2

in combination with (A3) and Young’s inequality. For κ small enough we deduce from
(2.3) ∫

Br(z)

h(|ε(uδ)|)3 dx

≤ c(R− r)−β +

{
‖∇η1‖2

∞

∫
B
er(z)

h′(|ε(uδ)|)
|ε(uδ)|

|ε(uδ)|ω|∇uδ|2 dx
}3

.

(2.4)
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Here the δ-term from the r.h.s. of (2.3) has been handled as follows: obviously it is
enough to control the quantity δ

∫
B
er(z)

|∇uδ|q dx, and according to Korn’s inequality an
upper bound is given by

cδ

[∫
B
er(z)

|uδ|q dx+

∫
B
er(z)

|ε(uδ)|q dx
]
.

By the interpolation inequality [FS], Lemma 3.0.2, it holds

‖uδ‖Lq(B
er(z)) ≤ c

[
‖uδ|L2(B

er(z)) + ‖ε(uδ)‖Lq(B
er(z))

]
and on account of (1.3) and part a) of Lemma 2.2 the L2-norms of uδ are uniformly
bounded. Now we quote Lemma 2.1 d) to see that

δ

∫
B
er(z)

|∇η1|2Γ
q−2
2

δ |∇uδ|2 dx ≤ c(R− r)−2

is true.
Let us have a look at the integral on the r.h.s. of (2.4): recalling the monotonicity of

t 7→ h′(t)
t

and condition (A3) we find∫
B
er(z)

h′(|ε(uδ)|)
|ε(uδ)|

|ε(uδ)|ω|∇uδ|2 dx ≤ c

∫
B
er(z)

h̃(|∇uδ|) dx, (2.5)

where h̃(t) := h(t)tω. Consider next a cut-off function η2 ∈ C∞
0 (BR(z)) with η2 ≡ 1 on

B
er(z), 0 ≤ η2 ≤ 1 and |∇η2| ≤ c/(R− r̃). Lemma 4.1 in the version for h̃ implies∫

B
er(z)

h̃(|∇uδ|) dx ≤
∫

BR(z)

h̃(|∇(η2uδ)|) dx

≤ c(R− r)−α

[∫
BR(z)

h̃(|ε(uδ)|) dx+

∫
BR(z)

h̃(|uδ|) dx
]

≤ c(R− r)−α

{∫
BR(z)

h̃(|ε(uδ)|) dx+ 1

}
(2.6)

for an exponent α > 0. Note that we have used the (∆2)-condition valid also for h̃ (see
[BF3], Lemma A.3) and Lemma 2.2 b) for the derivation of the estimate (2.6). If we
combine (2.4)-(2.6) we see (by enlarging β if necessary)∫

Br(z)

h(|ε(uδ)|)3 dx ≤ c(R− r)−β

[
1 +

{∫
BR(z)

h(|ε(uδ)|)|ε(uδ)|ω dx
}3

]
. (2.7)

For t ∈ (0, 1) arbitrary we get{∫
BR(z)

h(|ε(uδ)|)|ε(uδ)|ω dx
}3

=

{∫
BR(z)

h(|ε(uδ)|)th(|ε(uδ)|)1−t|ε(uδ)|ω dx
}3
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≤
{∫

BR(z)

h(|ε(uδ)|)3t dx

} {∫
BR(z)

h(|ε(uδ)|)
3(1−t)

2 |ε(uδ)|
3ω
2 dx

}2

.

If we split∫
BR(z)

h(|ε(uδ)|)
3(1−t)

2 |ε(uδ)|
3ω
2 dx =

∫
Br(z)∩[|ε(uδ)|≤1]

...+

∫
Br(z)∩[|ε(uδ)|>1]

... ,

then clearly the first integral is uniformly bounded. For the second one we choose t > 0
sufficiently close to 1 in order to reach

h(s)
3(1−t)

2 s
3ω
2 ≤ cs2 ≤ ch(s) for s ≥ 1

which is possible by (1.3), (1.4) and our assumption ω < 4/3. Hence we can bound the
whole integral independent of δ (remember Lemma 2.1 e)), and we have shown∫

Br(z)

h(|ε(uδ)|)3 dx ≤ c(R− r)−β

[
1 +

∫
BR(z)

h(|ε(uδ)|)3t dx

]
. (2.8)

In a final step we use Young’s inequality and get for some number ν > 0∫
Br(z)

h(|ε(uδ)|)3 dx ≤ c(R− r)−ν +
1

2

∫
BR(z)

h(|ε(uδ)|)3 dx. (2.9)

To inequality (2.9) we may apply Lemma 3.1, p 161, of [Gi3] in order to see that h(|ε(uδ)|)3

is in the space L1
loc(B) uniformly w.r.t. δ. This proves Theorem 1.1 b).

During our calculations we have shown that

D2H(ε(uδ))(∂γε(uδ), ∂γε(uδ)) dx ∈ L1
loc(B) (2.10)

holds uniformly w.r.t. the approximation parameter. In fact, if we return to (2.3) and
absorb the κ-term in the l.h.s., then (2.10) is an immediate consequence of our integrability
result stated after (2.9). From (1.3) and (1.7) in combination with (2.10) we deduce
uniform W 2,2

loc -bounds on uδ, hence u ∈ W 2,2
loc (Ω,R3) and for suitable subsequences it holds

uδ ⇁ u in W 2,2
loc (B,R3), ∇uδ → ∇u a.e. on B

as ρ ↓ 0. Moreover we see that the functions

ψδ :=

∫ |ε(uδ)|

0

√
h′(t)

t
dt

are uniformly bounded in the space W 1,2
loc (B), thus we have weak W 1,2

loc (B)-convergence of
ψδ with limit

ψ :=

∫ |ε(u)|

0

√
h′(t)

t
dt.,

and Theorem 1.1 a) is proved. �
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Remark 2.1. Returning to the Caccioppoli inequality stated in Lemma 2.1 - now with
arbitrary matrix Q ∈ R3×3 - it is easy to see that the appropriate variant of (2.3) after
absorbing the κ-term and passage to the limit ρ→ 0 gives the inequality∫

B

η2|∇ψ|2 dx ≤ c

∫
B

|∇η|2|D2H(ε(u))||∇u−Q|2 dx (2.11)

valid for any η ∈ C∞
0 (B) and all Q ∈ R3×3. Alternatively we may replace |∇ψ|2 by

D2H(ε(u))(∂γε(u), ∂γε(u)) (or just |∇2u|2) in this inequality. The reader should note
that the l.h.s. of the δ-version of (2.11) is treated via lower semicontinuity, whereas on
the r.h.s. we use equi-integrability in order to pass to the limit ρ→ 0.

3 Proof of Theorem 1.2

Let u denote a local J-minimizer and suppose w.l.o.g. that ω ∈ [1, 4/3) in (A3). We
further let

h̃(t) := tωh(t), t ≥ 0 ,

and recall that h̃ is a N -function. From Lemma 2.2 b) and Theorem 1.1 b) combined

with Lemma 4.1 (choosing ϕ = h̃ there) it follows that u is an element of the space
∈ W 1

eh,loc
(Ω,R3), hence the excess-function

E(x, r) :=

∫
−

Br(x)

|ε(u)− (ε(u))x,r|2 dy +

∫
−

Br(x)

h̃(|ε(u)− (ε(u))x,r|) dy

for balls Br(x) b Ω is well-defined. Here and in what follows
∫
−f, (f) denote the mean

value of a function f .

Lemma 3.1. Fix L > 0 and a subdomain Ω′ b Ω. Then there is a constant C∗(L) such
that for every τ ∈ (0, 1) one can find a number κ = κ(L, τ) with the following property:
if Br(x) ⊂ Ω′ and if

|(ε(u))x,r| ≤ L, E(x, r) ≤ κ , (3.1)

then it holds
E(x, τr) ≤ C∗(L)τ 2E(x, r) . (3.2)

Once having established Lemma 3.1, it is standard (see, e.g. Giaquinta’s textbook [Gi3])
to prove the desired partial regularity result. It turns out that the regular set Ω0 is given
by

Ω0 =

{
x ∈ Ω : sup

r>0
|(ε(u))x,r| <∞ and lim inf

r↓0
E(x, r) = 0

}
,

i.e. Lemma 3.1 shows that the set on the r.h.s. is open and ∇u ∈ C0,α there for any
0 < α < 1. Obviously Ω0 is a set of full Lebesgue measure.
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Proof of Lemma 3.1: We argue by contradiction (compare [Fu1]). Let L > 0 and
choose C∗ = C∗(L) as outlined below. Then, for some τ ∈ (0, 1), there is a sequence of
balls Brm(xm) b Ω′ such that

|(ε(u))xm,rm| ≤ L, E(xm, rm) =: λ2
m → 0, as m→∞ , (3.3)

E(xm, τrm) > C∗τ
2λ2

m . (3.4)

Letting Am := (ε(u))xm,rm we define for z ∈ B1 := B1(0)

ũm(z) :=
1

λmrm

[
u(xm + rmz)− rmAmz

]
, (3.5)

um(z) := ũm(z)−Rm(z), (3.6)

where Rm is the orthogonal projection of ũm into the space of rigid motions with respect
to the L2(B1,R3) inner product. We get from (3.3) using

ε(um)(z) =
1

λm

[
ε(u)(xm + rmz)− Am

]
the relations

|Am| ≤ L,

∫
B1

− |ε(um)|2 dz + λ−2
m

∫
B1

− h̃(λm|ε(um)|) dz = 1 . (3.7)

On the other hand, (3.4) reads after scaling∫
Bτ

− |ε(um)− (ε(um))0,τ |2 dz + λ−2
m

∫
Bτ

− h̃(λm|ε(um)− (ε(um))0,τ |) dz > C∗τ
2 . (3.8)

After passing to suitable subsequences we obtain from (3.7)

Am →: A, um ⇁: u in W 1
2 (B1; R3) ,

λmε(um) → 0 in L2(B1; S) and a.e. , (3.9)

where obviously (ε(u))0,1 = 0. To prove the second convergence we apply Korn’s inequality
in L2 (see for example [FS], Lemma 3.0.1 and 3.0.3, and in particular [AM], Proposition
2.6 (g) and Proposition 2.7 (c)) which gives by the choice of Rm

‖um‖W 1,2(B) ≤ ‖ε(um)‖L2(B) .

If we argue as in [Fu1], (3.8)- (3.15), replacing ∇ by ε and letting Zm := Zm(s, z) :=
Am + sλmε(um)(z), we obtain the limit equation∫

B1

D2H(A)(ε(u), ε(ϕ)) dz = 0

valid for any ϕ ∈ C∞
0 (B1,R3) such that divϕ = 0. Quoting standard results on weak

solutions of elliptic systems with constant coefficients involving the symmetric gradient as

12



well as the imcompressibility condition (see, e.g., [GM] or [FS], Lemma 3.5) we find that
u is of class C∞(B1,R3) satisfying the Campanato-type estimate∫

Bτ

− |ε(u)− (ε(u))τ |2 dz ≤ C∗τ 2

∫
B1

− |ε(u)− (ε(u))1|2 dz

for a constant C∗ = C∗(L). Observing
∫

B1
− |ε(u)|2 dz ≤ 1 and (ε(u))1 = 0, we get∫

Bτ

− |ε(u)− (ε(u))τ |2 dz ≤ C∗τ 2.

Letting C∗ = 2C∗ this inequality will give a contradiction to (3.8) as soon as we can show

ε(um) → ε(u) in L2
loc (B1,S) , (3.10)

λ−2
m

∫
Br

− h̃ (λm|ε(um)|) dz → 0, r < 1. (3.11)

For a detailed exposition of how to obtain the desired contradiction we refer to the com-
ments given after (3.18) in [Fu1]. In order to prove (3.10) and (3.11) we return to (2.11)
(with |∇u|2 in place of |∇ψ|2 on the l.h.s.) and get after scaling and with appropriate
choice of the testfunction η∫

Bt

|∇2um|2 dz ≤ C(s− t)−2

∫
Bs

|D2H (λmε(um) + Am) ||∇um|2 dz (3.12)

valid for 0 < t < s < 1. On [λm|ε(um)| ≤ K] we have∣∣D2H (Am + λmε(um))
∣∣ |∇um|2 ≤ c(K)|∇um|2 ,

whereas on [λm|ε(um)| ≥ K] it holds (K large enough)∣∣D2H (λmε(um) + Am)
∣∣ |∇um|2

≤ c(K)

[
1 + (λm|ε(um)|)ω h

′(λm|ε(um)|)
λm|ε(um)|

]
|∇um|2

≤ c(K)
[
|∇um|2 + λ−2

m h̃ (λm|∇um|)
]
.

(3.12) therefore implies (compare (3.20) in [Fu1])∫
Bt

|∇2um|2 dz ≤ c(s− t)−2

[∫
Bs

|∇um|2 dz + λ−2
m

∫
Bs

h̃ (λm|∇um|) dz
]
. (3.13)

Clearly the first integral on the r.h.s. is uniformly bounded by (3.9). For the second one

we deduce from Lemma 4.4 by letting h̃λm(t) := λ−2
m h̃(λmt)

‖∇um‖L
ehλm

(Bs)
≤ c ‖ε(um)‖L

ehλm
(B1) + c(s) ‖um‖L

ehλm
(B1) .
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By (3.7) the first term on the r.h.s. is uniformly bounded. In order to get the same result
for the second one, we have to estimate the quantity

λ−2
m

∫
B1

h̃(λm|um|) dz.

To this purpose we observe that the superquadratic growth of h stated in (1.3) in combi-
nation with (3.7) implies the bound∫

B1

|λ1− 2
2+ω

m ε(um)|2+ω dz ≤ cλ−2
m

∫
B1

h̃(λm|ε(um)|) dz ≤ c. (3.14)

We therefore get by Korn’s inequality in spaces Lp (see again [FS] or [AM]) and the choice
of Rm

||λ1− 2
2+ω

m um||W 1,2+ω(B1) ≤ c||λ1− 2
2+ω

m ε(um)||L2+ω(B1),

hence we find

λ
1− 2

2+ω
m um ∈ Lt(B1,R3) uniformly in m for all t <∞ (3.15)

by quoting Sobolev’s theorem for n = 3 (recall ω ≥ 1). From the inequalities (see (A1)
and (1.3))

h(t) ≤ ct2 for t ≤ 1 and h(t) ≤ ctq for t ≥ 1

in combination with (3.15) we deduce

λ−2
m

∫
B1

h̃(λm|um|) dz ≤ c

∫
B1

|λ1− 2
2+ω

m um|2+ω dz + c

∫
B1

|λ
1− 2

q+ω
m um|q+ω dz ≤ c

independent of m. Note that we have used the estimate

λ
1− 2

q+ω
m ≤ cλ

1− 2
2+ω

m ,

which follows from q ≥ 2. Hence we can bound the r.h.s. of (3.13) uniformly in m and
therefore we obtain uniform L2

loc-bounds on ∇2um, which shows (3.10).
For proving our claim (3.11) we return to (2.11) (in the version with
D2H(ε(u))(∂γε(u), ∂γε(u)) in place of |∇ψ|2 on the l.h.s.) and observe that after
scaling the r.h.s. of (3.12) provides an upper bound for the quantity∫

Bt

h′(|λmε(um) + Am|)
|λmε(um) + Am|

|∇2um|2 dz := am(t) .

On the other hand, our previous calculations guarantee uniform bounds for the r.h.s. of
(3.12) so that we arrive at

am(t) ≤ c(t) (3.16)
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for finite constants c(t), 0 < t < 1. We introduce the auxiliary functions

Ψm :=
1

λm

{∫ |λmε(um)+Am|

0

√
h′(t)

t
dt−

∫ |Am|

0

√
h′(t)

t
dt

}

and deduce from (3.16) ∫
Bt

|∇Ψm|2 dz ≤ c(t) . (3.17)

Following the lines of [Fu1] (after (3.22)) (replacing∇ by ε) we easily obtain
∫

B1
|Ψm|2 dz ≤

c and therefore together with (3.17) it is shown that

‖Ψm‖W 1
2 (Bt) ≤ c(t) <∞ , 0 < t < 1. (3.18)

With (3.18) we can exactly repeat the arguments presented after (3.23) in the paper [Fu1]
ending up with (3.11). Note that the condition

tω ≤ c
[
h(t)2 + 1

]
(t ≥ 0)

required in [Fu1] is clearly satisfied in our context as a consequence of the superquadratic
growth of h and the hypothesis ω < 4/3. This completes the proof of Lemma 3.1. �

4 Appendix

In this section we collect some auxiliary material concerning Korn type inequalities, which
are a crucial tool for solving the global problem (1.8) and also for proving the strong
convergences (3.10) and (3.11).We start with

Lemma 4.1. a) Let Ω denote a bounded Lipschitz domain in Rn and let ϕ denote a
N-function of class (∆2) ∩ (∇2) (see, e.g., [RR] for a definition). Then there is a
constant C = C(n, ϕ,Ω) such that∫

Ω

ϕ(|∇w|) dz ≤ c

∫
Ω

ϕ(|ε(w)|) dz

holds for any w ∈ W 1,ϕ
0 (Ω,Rn).

b) In the case that Ω is a ball BR(x0) the constant C has the form

C = c(n, ϕ)R−β

for a positive exponent β.

The proof of Lemma 4.1 a) is presented in [Fu3], part b) can easily be derived from this
first inequality by scaling and using the (∆2)-property of ϕ. �
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Suppose now that h satisfy (A1)-(A3). Then we have

th′(t) =

∫ t

0

d

ds
[sh′(s)] ds = h(t) +

∫ t

0

sh′′(s) ds ≥ 2h(t),

and in conclusion

a(h) := inf
t>0

h′(t)t

h(t)
≥ 2.

Therefore h is a N -function of (global) type (∇2), which follows from Corollary 4 on p.
26 in [RR], and we have

Corollary 4.1. The Korn type inequalities stated in Lemma 4.1 hold for the N-function
h.

Remark 4.1. If we consider the N-function h̃(t) = tωh(t), then we have a(h̃) ≥ 2 + ω,

hence Lemma 4.1 applies to h̃ as well.

Remark 4.2. Using the interpolation argument outlined in the work of Acerbi and Min-
gione [AM] we obtain the Korn inequality in terms of the Luxemburg norm

‖∇w‖Lh(Ω) ≤ c(n, h,Ω) ‖∇ε(w)‖Lh(Ω)

valid for fields w ∈ W 1,h
0 (Ω,Rn). We refer to Lemma 4.3 and Lemma 4.4, where this

interpolation argument is applied to the sequence h̃λm defined in Section 3.

Lemma 4.2. Let h satisfy (A1)-(A3), consider u0 ∈ W 1,h(Ω,Rn) such that div u0 = 0
and define the class C as done in section 1. Then the variational problem (1.8) admits a
unique solution u in C.

Proof: If uk ∈ C denotes a minimizing sequence, then Lemma 4.1 a) (applied to uk − u0)
in combination with the Poincaré inequality from [FO] gives the boundedness of uk in
the space W 1,h(Ω,Rn). Since h is of type (∆2) ∩ (∇2), we see that W 1,h is reflexive
(compare [RR], Corollary 4 on p. 26, and [Ad], Theorem 8.28), and our claim follows
from standard arguments. �

Next we are going to prove that we have uniform Korn type inequalities for the scaled
N -functions

h̃λ(t) := λ−2h̃(λt),

where λ > 0 denotes a parameter and where h̃(s) := sωh(s), h satisfying (A1)-(A3). This
will be done along the lines of [AM], proof of Theorem 3.1, using the following auxiliary
result:
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Lemma 4.3. We can find some exponents p1, p2 > 1 such that the function h̃λ(t)/t
p1

increases and the function h̃λ(t)/t
p2 decreases. Furthermore there are positive constants

k1 and k2 independent of λ such that the estimates∫ t

0

h̃λ(s)

sp1

ds

s
≤ k1

h̃λ(t)

tp1
, (4.1)∫ ∞

t

h̃λ(s)

sp2

ds

s
≤ k2

h̃λ(t)

tp2
, (4.2)

hold for all t > 0.

Proof: We set p1 := 1 + ω and choose p2 > ω + k with ω and k from (A2) and (A3). It
follows

h̃λ(t)

tp1
= λω−2h(λt)

t

which is increasing on account of th′(t) − h(t) ≥ 0. Moreover we have by (A3) and
h′(0) = 0 ∫ t

0

h̃λ(s)

sp1

ds

s
= λω−2

∫ t

0

h(λs)

s

ds

s
≤ λω−1

∫ t

0

h′(λs)

s
ds

≤ λω

∫ t

0

h′′(λs) ds = λω−1h′(λt).

If we use (1.5), we get from this estimate∫ t

0

h̃λ(s)

sp1

ds

s
≤ kλω−1h(λt)

λt
= k

h̃λ(t)

tp1
,

hence (4.1) holds with k1 = k. From (1.5) we obtain

d

dt

[
h̃λ(t)/t

p2

]
≤ λω−2tω−p2−1

[
h′(λt)λt− kh(λt)

]
≤ 0,

hence h̃λ(t)/t
p2 is decreasing. Finally we prove (4.2): since the function s 7→ h(s)/sk is

also decreasing, we have∫ ∞

t

h̃λ(s)

sp2

ds

s
= λω+k−2

∫ ∞

t

h(λs)

(λs)k

1

sp2−k−ω

ds

s

≤ λω+k−2h(λt)

(λt)k

∫ ∞

t

s−1−p2+k+ω ds

=
1

p2 − k − ω
λω+k−2h(λt)

(λt)k
tk+ω−p2

=
1

p2 − k − ω

h̃λ(t)

tp2
,

which completes the proof of Lemma 4.3. �
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Lemma 4.4. With the notation introduced before Lemma 4.3 we have for all w : Ω → Rn

with |w|, |ε(w)| ∈ L
ehλ

(Ω) and all Ω∗ b Ω

‖∇w‖L
ehλ

(Ω∗) ≤ c1(h) ‖ε(w)‖L
ehλ

(Ω) + c2(h,Ω
∗) ‖w‖L

ehλ
(Ω) ,

where the constants ci are independent of the parameter λ. Moreover, c2 growth like
dist(∂Ω,Ω∗)−1.

Proof: From Lemma 4.3 and [AM], Theorem 3.3, we get for all v ∈ C∞
0 (Rn,Rn)

‖∇v‖L
ehλ

(Rn) ≤ c(h) ‖ε(v)‖L
ehλ

(Rn) (4.3)

with a positive constant c(h) being independent of λ. For w with |w|, |ε(w)| ∈ L
ehλ

(Ω)
and Ω∗ b Ω we choose η ∈ C∞

0 (Ω) such that η ≡ 1 on Ω∗, 0 ≤ η ≤ 1 and
|∇η| ≤ c/ dist(Ω∗, ∂Ω). From (4.3) applied to v := ηw we conclude (using a standard
approximation argument)

‖∇w‖L
ehλ

(Ω∗) ≤ c(h) ‖ε(w)‖L
ehλ

(Ω) + c(h) ‖∇η � w‖L
ehλ

(Ω) ,

and the claim of Lemma 4.4 is a consequence of the choice of η. �
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