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Abstract

We discuss partial regularity results concerning local minimizers u : R* D Q — R? of
variational integrals of the form

/ﬂ {h(je(w)]) — f - w} da

defined on appropriate classes of solenoidal fields, where h is a N-function of rather general
type. As a byproduct we obtain a theorem on partial C'-regularity for weak solutions of
certain non-uniformly elliptic Stokes-type systems modelling generalized Newtonian fluids.

Mathematics Subject Classification (2000): 76 M 30, 76 D 07, 49 N 60, 35 J 50

Keywords: Stokes problem, generalized Newtonian fluids, regularity, non-uniformly ellip-
tic systems, slow flows

1 Introduction

As stated in the monograph of Ladyzhenskaya (see [La], p. 35) the Stokes problem in
its classical formulation for the stationary case reads as follows: find a velocity field
v : ) — R"™ and a pressure function 7 : 2 — R such that the following system of partial
differential equations is satisfied

Av=Vrm—f on(,
dive =0 on {2, (1.1)
v =g on 0f).

Here Q denotes a domain in R" (n € {2,3}), f : @ — R" is a system of volume forces
and vy : 02 — R" represents the given boundary data. For results concerning existence
and regularity of solutions of (1.1) we again refer to [La] or to the more recent expositions
[Gal,2] of Galdi. If we let H(e) = 1|e|?, then the solutions of (1.1) are clearly in one-to-one
correspondence to the minimizers of

Jlw] = /Q (H(c(w)) — f-w} da (12)

defined on an appropriate class of solenoidal fields w : 2 — R", ¢(w) denoting the
symmetric gradient, i.e. e(w) = 1 (Vw + VwT)

A natural extension of this problem also proposed by Ladyzhenskaya (compare [Lal, p.
193) is to consider minimizers of (1.2) with potential H being of power growth in the
sense that

A1+ [e[))7 |of* < D*H(e)(0,0) < A(L+ e}’ |o]?



holds for all €, € S with positive constants A, A and for an exponent p > 1, where S is
the space of symmetric n x n-matrices. In this case the first equation in (1.1) is replaced
by the nonlinear system

div{VH(e(v))} =Vr—f on(,

where on the l.h.s. the operator “div” has to be applied linewise. For these power law
models full interior C'Y®-regularity in the 2D case has been proved by Kaplicky, Malek
and Stard [KMS] and Wolf [Wo|, whereas the higher dimensional situation is studied for
example in Naumann and Wolf [NW]. For partial regularity results in dimensions n > 3
we also refer to [FGR] and [Fu4]. The reader should note that the related but much more
difficult case of power law models with z-dependent exponents describing the behavior of
electrorheological fluids has been investigated by Acerbi and Mingione [AM]. In the paper
[BF1] Bildhauer and the second author consider the minimization problem now under
so-called anisotropic growth conditions, i.e. they assume the validity of

M1+ €)' |0 < D*H(e)(0,0) < A1+ )7 |o]?

with exponents 1 < p < g < oo and constants A\, A > 0. It should be remarked that such
a behavior of the potential H is suggested for example in Section 5.1 of the monograph

[MNRR] of Mélek, Necas, Rokyta and Ruzicka. The main result of the paper [BF1] is a
partial C't®-regularity theorem in general dimensions n using the hypothesis

n -+ 2

q<p

limiting the range of anisotropy. This corresponds to the result being valid in the frame-
work of classical variational calculus (see [BF2]), and in general there is no hope for
regularity if p and ¢ differ too much (compare the counterexamples of Giaquinta [Gi] and
Hong [Ho| in this context). For completeness we like to mention that in the case n = 2
the hypothesis ¢ < min(2p, p + 2) is a sufficient condition for full regularity of stationary
and also slow anisotropic flows, see [BFZ)].

In this note we will follow the ideas of [Ful] and [Fu2], where the author proves full reg-
ularity in two dimensions including the case of fluids and partial regularity for n > 3
in the setting of variational calculus for integrands depending on the modulus, i.e. the
dissipative potential H is of the special form

H(e) = h(le]), e €S,

which seems to be a natural assumption for the study of fluids. Here h : [0,00) — [0, 00)
is a C%-function satisfying:

h is strictly increasing and convex together with

Al
R"(0) >0 and lim@ =0; (A1)
tlo t



there exists a constant k > 0 such that h(2t) < kh(t) for all t > 0; (A2)

W(t)
t
with an exponent w > 0 and a constant a > 0;

< K'(t) < a(l+ t2)§hT(t) forallt >0 (A3)

Let us give some comments on (A1-3):

i) We have h(0) = K'(0) = 0, and by convexity A’ is an increasing function with
R'(t) > 0 for all ¢ > 0: otherwise it would follow that A’ = 0 on some interval [0, ¢¢],
to > 0, contradicting the first part of (Al).

ii) The 1nequahty ) < p(t (t) implies that the function ¢ — W (t) is increasing, moreover
we deduce the lower bound

1
h(t) = SR"(O), £ 20, (1.3)

and (A1) combined with (1.3) shows that h is a N-function in the sense of Adams
[Ad, Section 8.2].

iii) (A2) states that h satisfies a global (A2)-condition, and it is easy to see that
h(t) < c(t?+1) (1.4)

for a suitable exponent § > 2 and a constant c¢. The convexity of h then implies
that 1/(t) can be bounded in terms of 771,

iv) From (A2) and from the convexity of h we deduce the inequality

——1

ko h(t)t <h(t) <th'(t), t >0. (1.5)

v) From (A3) we conclude the ellipticity condition

nz1)

S < DY) <0+ 12RF SRR

2]

Recalling iii) and using ( see ii)) h|(‘ZZ|D > h"(0), we get from (1.6) with exponent
g =q+w
R(0)|Y]? < D*H(Z)(Y,Y) < C(1+|Z)'T [V, (1.7)

and (1.7) means that H is of anisotropic (2, ¢)-growth.

vi) In physical terms our conditions on h imply that the fluid described by the potential
H is of shear thickening type.



vii) Let © : [0,00) — [0,00) denote a continuous and increasing function such that
©(0) > 0. If in addition © has the (Ay)-property, then it is shown in [BF3], that

// u) duds

satisfies (A1)-(A3) with exponent w = 0.

Suppose now that we are given a function 1y from the Orlicz-Sobolev class W1 (Q, R™)
generated by h (see [Ad] for a definition) satisfying div ug = 0. We define the class

C:= {w € up + Wy M(Q,RY) : divw = O},

Wy "(Q, R") denoting the subspace of W"(Q,R") of fields with zero trace, and deduce
from Lemma 4.2 the unique solvability of the variational problem

Jw, Q] = /Qh(|e(w)|) dx — min (1.8)

in C. Of course we could also add a volume force term like [, f-w dz to (1.8) which under
appropriate assumptions on f is of no effect on the argumentation below. Since we will
not touch the question of boundary regularity, we restrict ourselves to local minimizers of

(1.8).

Definition 1.1. We call a function u from the local Orlicz-Sobolev space W' (Q,R™)
satisfying divu = 0 a local minimizer of (1.8), if for any subdomain Q' € Q it holds

o Ju, Q] < oo and
o Ju, Q] < Jv, ]
for all v € WE"(Q,R") such that divv = 0 and spt(u — v) C .

Abbreviating
ViR = {w € Wi (@R« dive = 0}

we can now state our main results in case n = 3 (full regularity in 2D is proved in [Fu2]
even under weaker hypotheses concerning h):

THEOREM 1.1. Let u € V;,,.()(Q,R?) be a local minimizer of (1.8) under the as-
sumptions (A1)-(A3) with w < 4/3. Then we have

[
/ \/ Lt e w0
loc

).




THEOREM 1.2. Let u € V),,.(Q,R?) be a local minimizer of (1.8) under the assump-
tions (A1)-(A8) with w < 4/3. Then there is an open subset Qo of Q with full Lebesgue
measure such that u € C*(Q, R?) for any 0 < a < 1.

An explicit description of the set €2y is given after Lemma 3.1. Unfortunately we could
not rule out the occurrence of singular points (for Vu), but even if they exist, the solution
itself is at least continuous. In fact, from Theorem 1.1 b) combined with (1.3) it follows
that |e(u)| € LY (Q) holds, and we deduce from Korn’s inequality (see e.g. [FS] or [AM])
and Sobolev’s embedding theorem

Corollary 1.1. Under the assumptions of Theorem 1.1 and 1.2 any local minimizer of
problem (1.8) is locally Hélder continuous with exponent 1/2.

Remark 1.1. [t is easy to see that the statement of Theorem 1.1 remains valid in higher

dimensions, which means that we get h(|e(u)|) € L. () provided w < 4/n. This corre-
sponds to the resull obtained in [Fu2], where it is shown that w < 2 is a sufficient condition

for full regularity in the 2D case.

Remark 1.2. In the setting of classical variational problems studied in [Ful] the appro-
priate variant of Theorem 1.2 requires the bound w < 4, if the case n = 3 is considered
(compare [Ful], Remark 1.1). Actually, as it was recently shown in [Fu5], local minimiz-
ers satisfy a local Lipschitz condition independent of the value of w and for any dimension
n > 2.

Remark 1.3. It is an open problem if the bound on w imposed in Theorem 1.1 and
Theorem 1.2 can be improved. Clearly, if we drop the side condition div = 0, then we
obtain the result of Theorem 1.2 now for w < 4 by completely adopting the arguments
from [Ful], but this statement seems to be of no physical interest. A very challenging task
however is to discuss if in the setting of Theorem 1.2 actually singular points occur and if
the value of w is of any importance for the reqular or irreqular behaviour of minimizers.

Our paper is organized as follows:

In section 2 we introduce a suitable sequence of regularized problems whose solutions are
smooth enough to carry out the calculations which lead to the proof of Theorem 1.1 after
passing to the limit. Section 3 contains the proof of the partial regularity result stated
in Theorem 1.2. This step makes essential use of a blow-up argument. In section 4 we
present some background material on Korn’s inequality in Orlicz spaces.

2 Proof of Theorem 1.1

Let u denote a local minimizer of problem (1.8) under the assumptions of Theorem 1.1. A
first step is to approximate (1.8) locally by variational problems with sufficiently regular
minimizers. Let

d:=0d(p) : !

e a [C{OP] [

)

5



Hs(e) = 6 (1+ ) + H(e)

for € € S and for a small parameter p > 0. Here the exponent ¢ is defined in (1.7) and
(u), denotes the mollification of u with radius p. With B := Bg,(z9) € Q we define u; as
the unique minimizer of

Ty [w, B] = /B Hy(e(w))dz 2.1)

in (u), + Wy (B, R?) subject to the constraint divw = 0. Some elementary properties
of us are summarized in the following Lemma (see [BF1], Lemma 3.1, Lemma 4.1 and
estimate (4.10), as well as the inequalities (12) and (13) from [Fu2] for part c)):

Lemma 2.1. Let the hypothesis of Theorem 1.1 hold. Then we have
a) us € W22(B,R%),

loc

b) o5 := DHy(e(us)) € W, 4/la=1) (B S);

loc

¢) (1+|e(us) ")t € W,,2(B),

loc

and for alln € C°(B), Q € R¥*3 and v € {1,...,n} we obtain
[ D Hs(e(ws) @y elus). 0,e(us)) d
B
< - 2/ n0y7s = (Vn © 0y[us — Qx]) dz
B

Here we have abbreviated 15 := o5 — psl for a suitable pressure function ps, i.e.
Vps = div os, which implies 15 € VVl1 q/ =1 (B S) together with

|V7’5| S C‘VO’gl.
d) As p — 0 we have us — u in WH?(B,R3) and

6/ 1+ |e(us)| 2 dr — 0.

e) The integrals [, h(|e(us)|) dz are bounded independent of 6.

Furthermore we need the following statements:



Lemma 2.2. Under the assumptions of Theorem 1.1 it holds:
a) us is uniformly bounded in WHh( B, R3).
b) The sequence h(|us|) is uniformly bounded in any space LX(B), x < 3, so that
h(lus|)lus|" € L'(B)
uniformly, provided p < 4.

Proof of Lemma 2.2: From Lemma 2.1 e) combined with Korn’s inequality formulated
in Lemma 4.1 a) we deduce that the Lj-norms of the tensors V(u;—(u),) can be estimated
in terms of the corresponding norms of V(u),, which in turn stay bounded due to Jensen’s
inequality. The claim of part a) then is a consequence of the Poincaré inequality (applied to
us — (u),) for functions from the space W,"(B,R?) (see [FO]). For the higher integrability

result stated in part b) we first observe that according to a) the functions h(|U5|)% stay
bounded (uniformly w.r.t. the approximation parameter) in any space L’(B), where

G € (1,2). By (1.5) we have

/ |Vh(|u(g|)%|5 dzr < c/ R (Jus)) |us|* | Vus|® da

B B

and in order to discuss the integral on the r.h.s. we define the N-function
N(t) := h(t5).

Note that A actually is a N-function on account of (A3) and the choice of 5. From (1.5)
we deduce for the conjugate function

1

h(s? —_

N*(t) = sup [t—ﬁl s < sup [t—k '
5>0 S 5>0

<h ' (kt)t, h(t):=H ()

We remark that the strict monotonicity of A also follows from (A3) and our choice 3 < 2.
We now apply Young’s inequality for N-functions and obtain

/h'(|u5|)\u5|1—ﬂ\vu5\ﬁdx§/N* (E*lh'(w)m(syl—ﬂ) dx+c(E)/ h(|Vus)).
B B B

Clearly the last integral is uniformly bounded by part a). For the first one we have the
upper bound

e [ B (0 uaDlusl™ ) 1 sl sl o
B
and the definition of of h gives (remember (1.5))
B (R (087) B ()7 = B (6)t < kh(t),

7



hence we can also control the remaining term independent of § by part a). Altogether it is

shown that for each § € (1,2) the sequence h(|u(5|)% stays bounded in the Sobolev-space
WHB(B), and our claim follows from Sobolev’s embedding theorem recalling also (1.3).0J

After these preparations we come to the proof of Theorem 1.1: in a first step we work with
a cut-off function 7y € C§°(Bx(2)) with gy = 1 on B,.(2), 0 < < 1and |Vn| < ¢/(F—r),
where 0 < r < R are such that Bg(z) € B and 7 := %. We get by Sobolev’s inequality

/BT@ h(le(us)l) d$§/;(z) 1°h(|2(us)|)? da

et ) N(ECOIN

T

Using (1.5), Lemma 2.1 ¢) and (1.6) we obtain for a suitable positive number  (summation
w.rt. v €{1,2,3})

PN & QR (0 TR
[, et < cr=ryPred [ o par

. e(us)|
<c(R—7r)"P+ c{/BN( )nlDQH(;( e(u ))(ays(u(g),ave(u(;))dx} : (2.2)

In order to discuss the integral on the r.h.s. of (2.2) we apply the Caccioppoli-type
inequality from Lemma 2.1 ¢): we have for all x> 0

/B~( )771D2H5( €(us))(0y€(us), Oy€(us)) de

< - 2/ moTs - (Vi © Oyus) dx
Bx(2)

< /i/ m; D* Hs(€(us))(0,€(us), y€(us)) da dz
Br(2)

—|—c(/£)/~()]V 1|2 f'i( ) % o

)l
5 / |V771
which follows from

|Vu5|2 (2.3)
10,75]% < ¢],05]2 < eD?Hs(e(us))(Dye(us), Dye(us))2 D Hs(e(us)) (05, 8505)2

in combination with (A3) and Young’s inequality. For s small enough we deduce from

(2.3)
/ W (us)))? da
Br(z) (2.4)



Here the -term from the r.h.s. of (2.3) has been handled as follows: obviously it is
enough to control the quantity § [ Ba(2) |Vus|?dx, and according to Korn’s inequality an
upper bound is given by

05{/ |U5|qu+/ |€(u(5)|qu]
Br(z) Br(z)

T T

By the interpolation inequality [F'S], Lemma 3.0.2, it holds

tslazneny < € [Islpaqaaio + 1€ agaen

and on account of (1.3) and part a) of Lemma 2.2 the L?*norms of us are uniformly
bounded. Now we quote Lemma 2.1 d) to see that

5/ IV |?T,” |Vus|?dz < (R — 1)~

7 (
1s true.
Let us have a look at the integral on the r.h.s. of (2.4): recalling the monotonicity of
t— @ and condition (A3) we find

/ W), o) s 2 ds < c/ h(|Vus|) da, (25)
Bi(2)

le(us)] Bx(2)

where E(t) := h(t)t*. Consider next a cut-off function 7y € C{°(Bg(z)) with 7o = 1 on

Br(z), 0 <my <1and V| <c¢/(R—T7). Lemma 4.1 in the version for h implies

h Vus|) dz < WMV ous)|) dx
[ Hvuhdes [ Bem)

Br(#)

T

<cr-n-|[ Bl o+ / R(z)%qumdx]
< o(R—7r)"® {/BR(Z)E(|5(U5)|)CZ:C+ 1} (2.6)

for an exponent o > 0. Note that we have used the (A,)-condition valid also for i (see
[BF3], Lemma A.3) and Lemma 2.2 b) for the derivation of the estimate (2.6). If we
combine (2.4)-(2.6) we see (by enlarging (3 if necessary)

e(us) )P de < e(R—1r)"? e(u eu‘”x3. .
/BT(Z)huu)\)dsm ) 1+{/BR(Z)h<r<a>r>r<a>rd}] 2.7)

For t € (0,1) arbitrary we get

U h<'€<“5>'>’6<“6>|°”dx}3 ={ [ hetwl et et

9
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<{/ Gl wlff e e d}

If we split

3(1—t) 3w
/ B(Je(ug) )22 |e(us)| 4 d:z::/ +/ L
Br(z) r(2)N[le(us)|<1] r(2)N[le(us)>1]

then clearly the first integral is uniformly bounded. For the second one we choose ¢ > 0
sufficiently close to 1 in order to reach

3(1—t) 3w

h(s)" 2z s <ecs® <ch(s) fors>1

which is possible by (1.3), (1.4) and our assumption w < 4/3. Hence we can bound the
whole integral independent of ¢ (remember Lemma 2.1 €)), and we have shown

/ h(le(us))? dz < (R —r)° [1 +/ h(|e(us))* de | - (2.8)
B, (z) Br(z)

In a final step we use Young’s inequality and get for some number v > 0

3 o, 1 \
/BT(Z) h(le(us)|)* de < c(R—7)"" + §/BR(Z)h(|s(u(;)|) dr. (2.9)

To inequality (2.9) we may apply Lemma 3.1, p 161, of [Gi3] in order to see that h(|e(us)|)?
is in the space L} (B) uniformly w.r.t. . This proves Theorem 1.1 b).
During our calculations we have shown that

D?*H (e(us))(0y¢e(us), 0-e(us)) dz € Ly,.(B) (2.10)

loc

holds uniformly w.r.t. the approximation parameter. In fact, if we return to (2.3) and

absorb the k-term in the Lh.s., then (2.10) is an immediate consequence of our integrability

result stated after (2.9). From (1.3) and (1.7) in combination with (2.10) we deduce

uniform I/Vlif—bounds on ug, hence u € VVif(Q, R3) and for suitable subsequences it holds
us — u in W2*(B,R?), Vus — Vu ae. on B

loc

as p | 0. Moreover we see that the functions

B le(us)| h’(t)
wim [T

are uniformly bounded in the space W?(B), thus we have weak W,>?(B)-convergence of

loc
s with limit
el ey
Y= / ®) dt.,
0 t

and Theorem 1.1 a) is proved. 0

10



Remark 2.1. Returning to the Caccioppoli inequality stated in Lemma 2.1 - now with
arbitrary matriz Q € R33 - it is easy to see that the appropriate variant of (2.3) after
absorbing the k-term and passage to the limit p — 0 gives the inequality

/ PIVYPdr < c / HID2H (e ()| Vu — Q[ de (2.11)
B B

valid for any n € C°(B) and all Q € R33.  Alternatively we may replace |Vi|? by
D?H (e(u))(04e(u), 0ve(u)) (or just |V2ul?) in this inequality. The reader should note
that the l.h.s. of the d-version of (2.11) is treated via lower semicontinuity, whereas on
the r.h.s. we use equi-integrability in order to pass to the limit p — 0.

3 Proof of Theorem 1.2

Let u denote a local J-minimizer and suppose w.l.o.g. that w € [1,4/3) in (A3). We
further let B
h(t) :=t“h(t), t >0,

and recall that  is a N-function. From Lemma 2.2 b) and Theorem 1.1 b) combined
with Lemma 4.1 (choosing ¢ = h there) it follows that u is an element of the space
€ Wi (Q,R?), hence the excess-function

Bar) = f letw) = (elw)arPdy+  Bllelw) = (cw))udy

Br(z) By (x)

for balls B,(xz) € Q is well-defined. Here and in what follows -ff, (f) denote the mean
value of a function f.

Lemma 3.1. Fiz L > 0 and a subdomain Q' € Q. Then there is a constant C.(L) such
that for every T € (0,1) one can find a number k = k(L,T) with the following property:
if Br(z) C Q and if

|(e(u))zr| < L, E(z,7) < K, (3.1)
then it holds

E(z,7r) < C.(L)T*E(x,7). (3.2)

Once having established Lemma 3.1, it is standard (see, e.g. Giaquinta’s textbook [Gi3])
to prove the desired partial regularity result. It turns out that the regular set ) is given
by

Qo = {x € Q:sup |(e(u))yr| < oo and liminf E(x,r) = 0} ,

r>0 rl0

i.e. Lemma 3.1 shows that the set on the r.h.s. is open and Vu € C%* there for any
0 < a < 1. Obviously €2 is a set of full Lebesgue measure.

11



Proof of Lemma 3.1: We argue by contradiction (compare [Ful]). Let L > 0 and
choose C, = C,(L) as outlined below. Then, for some 7 € (0,1), there is a sequence of
balls B, (x.,) € ¥ such that

(e(t))apirn] < Ly E(2m, rm) =2 A2y — 0, as m — o0, (3.3)
E(Tpm, Trm) > C.m2)\2.

Letting A, := (e(u)) we define for z € By := B;(0)

Tm,T'm

Um(z) = )\ml’f’m [u(xm +rmz) — rmAmz], (3.5)
Umn(2) = Up(2) — Rpn(2), (3.6)

where R, is the orthogonal projection of w,, into the space of rigid motions with respect
to the L?(B;,R?) inner product. We get from (3.3) using

(i) () = i () 4 702) — A

the relations

|Ap| < L, 4 |e(um) > dz + )\;12][ R Amle(um)|) dz =1 (3.7)

Bl Bl
On the other hand, (3.4) reads after scaling
le(tm) — (€(tm))or)* dz + )\m2][ R(Am€(tm) — (e(tm))or]) dz > C,72 . (3.8)
B: B,
After passing to suitable subsequences we obtain from (3.7)

Ap =1 A, Uy — 1 in Wo(B;RY),
Am€(tp) — 0 in L*(By;S) and a.e., (3.9)

where obviously (¢(@))o,1 = 0. To prove the second convergence we apply Korn’s inequality
in L? (see for example [FS], Lemma 3.0.1 and 3.0.3, and in particular [AM], Proposition
2.6 (g) and Proposition 2.7 (c¢)) which gives by the choice of R,,

[wmllwizgm) < lleCwm)l s -

If we argue as in [Ful], (3.8)- (3.15), replacing V by e and letting Z,, := Z,.(s,z2) :=
Ay 4 $Ame(um)(2), we obtain the limit equation

/B D?*H(A)(e(w),e(p)) dz = 0

valid for any ¢ € C5°(By,R?) such that divep = 0. Quoting standard results on weak
solutions of elliptic systems with constant coefficients involving the symmetric gradient as

12



well as the imcompressibility condition (see, e.g., [GM] or [FS], Lemma 3.5) we find that
u is of class C*°(By, R?) satisfying the Campanato-type estimate

(@) — (e(@)- [ dz < C*r*  |e(@) — (e(@))]* d=

B Bi

for a constant C* = C*(L). Observing {3, |¢(@)|*dz < 1 and (e(u)); = 0, we get

e(@) — (e(@)),[2dz < C*r2.

B,

Letting C, = 2C* this inequality will give a contradiction to (3.8) as soon as we can show

() — (@) in LY, (By,S) (3.10)

m

)\‘2][ I Omle(um)|) dz — 0, r < 1. (3.11)

For a detailed exposition of how to obtain the desired contradiction we refer to the com-
ments given after (3.18) in [Ful]. In order to prove (3.10) and (3.11) we return to (2.11)
(with |Vul? in place of [Vi|* on the Lh.s.) and get after scaling and with appropriate
choice of the testfunction n

V2P dz < C(s — 1) / ID2H (i) + Apn) ||Vt | d= (3.12)
Bs

By

valid for 0 <t < s < 1. On [Ap|e(un)| < K] we have
|D*H (A + An€(tn)) | [V |* < o(K)|[Vun|?,
whereas on [A,|€(u,,)| > K] it holds (K large enough)

|D*H (Ame(um) + An)| [V

w P (Aml€(um)|)
Amle(um)]

< o(K) [\Vumﬁ + A2 (Amyvum\)} .

< oK) [1 + (Amle(um)) } [Vt ?

(3.12) therefore implies (compare (3.20) in [Ful])

VU, [*dz < c(s —t)72 [ |V dz + /\;LQ/ I (| V) dz} . (3.13)

By Bs s

Clearly the first integral on the r.h.s. is uniformly bounded by (3.9). For the second one
we deduce from Lemma 4.4 by letting hy,, () := A\ 2h(Ant)

IVumll, m) < clle@@mlls, @) +es) lumlle, o)
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By (3.7) the first term on the r.h.s. is uniformly bounded. In order to get the same result
for the second one, we have to estimate the quantity

/\;f/ (| um]) dz.
B1

To this purpose we observe that the superquadratic growth of h stated in (1.3) in combi-
nation with (3.7) implies the bound

__2 ~
D T ()21 dz < A2 / R(Ale(um)]) dz < c. (3.14)

B1 Bl

We therefore get by Korn’s inequality in spaces LP (see again [FS] or [AM]) and the choice
of R,,

1—-2 1—-2_
[Am = wmllwr24o () < €l Am = e(um)|| 240 (8y),

hence we find
2
Ay 2 Uy, € L'(By,R?) uniformly in m for all ¢ < oo (3.15)

by quoting Sobolev’s theorem for n = 3 (recall w > 1). From the inequalities (see (A1)
and (1.3))

h(t) < ct? for t <1 and h(t) < ct? for t > 1

in combination with (3.15) we deduce

~ __2 1——2_
/\;12/ h(Am|um|)dz < ¢ |)xi,,, ounPTdz + e | | Adm T U T dz < c
B1 B1 B

independent of m. Note that we have used the estimate

)\rln_(ﬁ_% < C)\in_ﬂ%a
which follows from ¢ > 2. Hence we can bound the r.h.s. of (3.13) uniformly in m and
therefore we obtain uniform L? -bounds on V?u,,, which shows (3.10).
For proving our claim (3.11) we return to (2.11) (in the version with
D?H(e(u))(94e(u), 0,e(u)) in place of |Vi|[* on the Lh.s.) and observe that after
scaling the r.h.s. of (3.12) provides an upper bound for the quantity

/ B (| Ame(tm) + Anl)
B |Ame€(um) + Apl

(V2 2 dz i= an(t) .

On the other hand, our previous calculations guarantee uniform bounds for the r.h.s. of
(3.12) so that we arrive at
am(t) < c(t) (3.16)

14



for finite constants ¢(t), 0 < t < 1. We introduce the auxiliary functions

[Am€(um)+Am| ! |Am | /
\pm:i{/ ,/h<f>dt_/ ,/h<t>dt}
)\m 0 t 0 t

and deduce from (3.16)

|V, | dz < ct). (3.17)

By

Following the lines of [Ful] (after (3.22)) (replacing V by ¢) we easily obtain [, |¥,,[*dz <
c and therefore together with (3.17) it is shown that

1w sy < €(t) < 00,0 < £ < 1. (3.18)

With (3.18) we can exactly repeat the arguments presented after (3.23) in the paper [Ful]
ending up with (3.11). Note that the condition

t <cl[h@)?®+1] (t>0)

required in [Ful] is clearly satisfied in our context as a consequence of the superquadratic
growth of h and the hypothesis w < 4/3. This completes the proof of Lemma 3.1. 0

4 Appendix

In this section we collect some auxiliary material concerning Korn type inequalities, which
are a crucial tool for solving the global problem (1.8) and also for proving the strong
convergences (3.10) and (3.11).We start with

Lemma 4.1. a) Let Q denote a bounded Lipschitz domain in R™ and let ¢ denote a
N-function of class (Ag) N (Va) (see, e.g., [RR] for a definition). Then there is a
constant C' = C(n, ¢, ) such that

/Q (V) dz < o / |z (w)]) d

holds for any w € Wy ¥ (Q,R™).
b) In the case that Q) is a ball Br(xg) the constant C' has the form
C =c(n, )R
for a positive exponent [3.

The proof of Lemma 4.1 a) is presented in [Fu3], part b) can easily be derived from this
first inequality by scaling and using the (As)-property of ¢. ([l

15



Suppose now that h satisfy (A1)-(A3). Then we have

th'(t) = /0 dis [sh'(s)] ds = h(t) +/0 sh"(s)ds > 2h(t),

and in conclusion

a(h) := inf AL > 2.

>0 h(t)

Therefore h is a N-function of (global) type (Vs3), which follows from Corollary 4 on p.
26 in [RR], and we have

Corollary 4.1. The Korn type inequalities stated in Lemma 4.1 hold for the N -function
h.

Remark 4.1. If we consider the N-function h(t) = t“h(t), then we have a(h) > 2 + w,
hence Lemma 4.1 applies to h as well.

Remark 4.2. Using the interpolation argument outlined in the work of Acerbi and Min-
gione [AM] we obtain the Korn inequality in terms of the Luzemburg norm

IVl @) < e(nh, Q) [Ve(w)]l, @)

valid for fields w € Wol’h(Q,R"). We refer to Lemma 4.3 and Lemma 4.4, where this
interpolation argument is applied to the sequence hy, defined in Section 3.

Lemma 4.2. Let h satisfy (A1)-(A3), consider ug € WHR(Q R™) such that divuy = 0
and define the class C as done in section 1. Then the variational problem (1.8) admits a
unique solution u in C.

Proof: If u; € C denotes a minimizing sequence, then Lemma 4.1 a) (applied to ug — ug)
in combination with the Poincaré inequality from [FO] gives the boundedness of wy in
the space W"(Q,R"). Since h is of type (Ag) N (V3), we see that W is reflexive
(compare [RR], Corollary 4 on p. 26, and [Ad], Theorem 8.28), and our claim follows
from standard arguments. 0

Next we are going to prove that we have uniform Korn type inequalities for the scaled

N-functions _ _
ha(t) :== A2h(\t),

where A > 0 denotes a parameter and where h(s) := s“h(s), h satisfying (A1)-(A3). This
will be done along the lines of [AM], proof of Theorem 3.1, using the following auxiliary
result:

16



Lemma 4.3. We can find some exponents py,ps > 1 such that the function E\(t)/ﬂ’1

increases and the function TLA(t) [tP? decreases. Furthermore there are positive constants
k1 and ko independent of A such that the estimates

/ ma(s)ds _ (0 (4.1)

sP1 s = tp1
/ h)\( )dS < th)\(t), (42>
: sp2 g tP2

hold for all t > 0.

Proof: We set p; := 1+ w and choose py > w + k with w and k from (A2) and (A3). It
follows

A
tPr t

which is increasing on account of th'(t) — h(t) > 0. Moreover we have by (A3) and

W(0) =0
¢ Lo
/w $)ds _ o / h<As>@§Aw1/ W)
o SPU s 0 s s 0 S

t
<\ / h'(As)ds = A" h/(At).
0

If we use (1.5), we get from this estimate

/ ha(s) Jds _ . Lh(AY) :E%(t)

sP1 5 N3 tpr 7

hence (4.1) holds with k; = k. From (1.5) we obtain
d

= [Ek(t) /tm] < Xe 2L [ ()M — Fh(M)] <0

hence hy(t)/t? is decreasing. Finally we prove (4.2): since the function s — h(s)/s* is
also decreasing, we have

/°° ha(s)ds _ it /°° h(ds) 1 ds
" sP2 s ' ()\3) sp2—k-w g

< )\erEfQ h()\t)/ Sflfp2+E+w dS

B (A)F i
_ 1_ )\w—&-E 2h()‘t) k+w—p2
Py —k —w (At)F
1 ha(t)
Cpp—k—w tr
which completes the proof of Lemma 4.3. 0]



Lemma 4.4. With the notation introduced before Lemma 4.3 we have for all w : 2 — R"
with |w|, |e(w)| € Ly () and all 2" € Q

||Vw||L}~u(Q*) < ci(h) ||5(7~U)||sz(ﬂ) + c2(h, Q%) ||w||L71A(Q) ’

where the constants c¢; are independent of the parameter \. Moreover, co growth like
dist (99, Q%)L

Proof: From Lemma 4.3 and [AM], Theorem 3.3, we get for all v € Cj°(R",R")
0z, oy < ) Ie@l; e (4.3

with a positive constant c(h) being independent of A. For w with |wl, [s(w)| € Lg (£2)
and Q* € Q we choose n € C§°(f2) such that » = 1 on Q*, 0 < 5 < 1 and
V| < ¢/ dist(Q*,092). From (4.3) applied to v := nw we conclude (using a standard
approximation argument)

HVwHLZA(Q*) < c(h) ||€<w)”L7L)\(Q) +c(h)[[Vn© wHLzA(Q) ’

and the claim of Lemma 4.4 is a consequence of the choice of 7. O
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