Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 252

The nonlinear Stokes problem with general potentials having superquadratic growth

Dominic Breit and Martin Fuchs

Saarbrücken 2009

The nonlinear Stokes problem with general potentials having superquadratic growth

Dominic Breit

Saarland University Department of Mathematics P.O. Box 15 11 50 66041 Saarbrücken Germany Dominic.Breit@math.uni-sb.de

Martin Fuchs

Saarland University Department of Mathematics P.O. Box 15 11 50 66041 Saarbrücken Germany Fuchs@math.uni-sb.de

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/

Abstract

We discuss partial regularity results concerning local minimizers $u : \mathbb{R}^3 \supset \Omega \rightarrow \mathbb{R}^3$ of variational integrals of the form

$$\int_{\Omega} \left\{ h(|\epsilon(w)|) - f \cdot w \right\} \, dx$$

defined on appropriate classes of solenoidal fields, where h is a N-function of rather general type. As a byproduct we obtain a theorem on partial C^1 -regularity for weak solutions of certain non-uniformly elliptic Stokes-type systems modelling generalized Newtonian fluids.

Mathematics Subject Classification (2000): 76 M 30, 76 D 07, 49 N 60, 35 J 50

Keywords: Stokes problem, generalized Newtonian fluids, regularity, non-uniformly elliptic systems, slow flows

1 Introduction

As stated in the monograph of Ladyzhenskaya (see [La], p. 35) the Stokes problem in its classical formulation for the stationary case reads as follows: find a velocity field $v: \Omega \to \mathbb{R}^n$ and a pressure function $\pi: \Omega \to \mathbb{R}$ such that the following system of partial differential equations is satisfied

$$\begin{cases} \Delta v = \nabla \pi - f & \text{on } \Omega, \\ \operatorname{div} v = 0 & \text{on } \Omega, \\ v = v_0 & \text{on } \partial \Omega. \end{cases}$$
(1.1)

Here Ω denotes a domain in \mathbb{R}^n $(n \in \{2,3\})$, $f : \Omega \to \mathbb{R}^n$ is a system of volume forces and $v_0 : \partial \Omega \to \mathbb{R}^n$ represents the given boundary data. For results concerning existence and regularity of solutions of (1.1) we again refer to [La] or to the more recent expositions [Ga1,2] of Galdi. If we let $H(\epsilon) = \frac{1}{2} |\epsilon|^2$, then the solutions of (1.1) are clearly in one-to-one correspondence to the minimizers of

$$J[w] := \int_{\Omega} \left\{ H(\epsilon(w)) - f \cdot w \right\} \, dx \tag{1.2}$$

defined on an appropriate class of solenoidal fields $w : \Omega \to \mathbb{R}^n$, $\varepsilon(w)$ denoting the symmetric gradient, i.e. $\varepsilon(w) = \frac{1}{2} \left(\nabla w + \nabla w^T \right)$

A natural extension of this problem also proposed by Ladyzhenskaya (compare [La], p. 193) is to consider minimizers of (1.2) with potential H being of power growth in the sense that

$$\lambda (1+|\epsilon|^2)^{\frac{p-2}{2}} |\sigma|^2 \le D^2 H(\epsilon)(\sigma,\sigma) \le \Lambda (1+|\epsilon|^2)^{\frac{p-2}{2}} |\sigma|^2$$

holds for all $\epsilon, \sigma \in \mathbb{S}$ with positive constants λ, Λ and for an exponent p > 1, where \mathbb{S} is the space of symmetric $n \times n$ -matrices. In this case the first equation in (1.1) is replaced by the nonlinear system

$$\operatorname{div}\left\{\nabla H(\epsilon(v))\right\} = \nabla \pi - f \quad \text{on } \Omega,$$

where on the l.h.s. the operator "div" has to be applied linewise. For these power law models full interior $C^{1,\alpha}$ -regularity in the 2D case has been proved by Kaplický, Málek and Stará [KMS] and Wolf [Wo], whereas the higher dimensional situation is studied for example in Naumann and Wolf [NW]. For partial regularity results in dimensions $n \geq 3$ we also refer to [FGR] and [Fu4]. The reader should note that the related but much more difficult case of power law models with x-dependent exponents describing the behavior of electrorheological fluids has been investigated by Acerbi and Mingione [AM]. In the paper [BF1] Bildhauer and the second author consider the minimization problem now under so-called anisotropic growth conditions, i.e. they assume the validity of

$$\lambda (1+\left|\epsilon\right|^2)^{\frac{p-2}{2}} \left|\sigma\right|^2 \le D^2 H(\epsilon)(\sigma,\sigma) \le \Lambda (1+\left|\epsilon\right|^2)^{\frac{q-2}{2}} \left|\sigma\right|^2$$

with exponents $1 and constants <math>\lambda, \Lambda > 0$. It should be remarked that such a behavior of the potential H is suggested for example in Section 5.1 of the monograph [MNRR] of Málek, Necăs, Rokyta and Růžička. The main result of the paper [BF1] is a partial $C^{1,\alpha}$ -regularity theorem in general dimensions n using the hypothesis

$$q$$

limiting the range of anisotropy. This corresponds to the result being valid in the framework of classical variational calculus (see [BF2]), and in general there is no hope for regularity if p and q differ too much (compare the counterexamples of Giaquinta [Gi] and Hong [Ho] in this context). For completeness we like to mention that in the case n = 2the hypothesis $q < \min(2p, p + 2)$ is a sufficient condition for full regularity of stationary and also slow anisotropic flows, see [BFZ].

In this note we will follow the ideas of [Fu1] and [Fu2], where the author proves full regularity in two dimensions including the case of fluids and partial regularity for $n \geq 3$ in the setting of variational calculus for integrands depending on the modulus, i.e. the dissipative potential H is of the special form

$$H(\epsilon) = h(|\epsilon|), \ \epsilon \in \mathbb{S},$$

which seems to be a natural assumption for the study of fluids. Here $h: [0, \infty) \to [0, \infty)$ is a C^2 -function satisfying:

h is strictly increasing and convex together with

$$h''(0) > 0 \quad \text{and} \quad \lim_{t \downarrow 0} \frac{h(t)}{t} = 0;$$
 (A1)

there exists a constant $\overline{k} > 0$ such that $h(2t) \leq \overline{k}h(t)$ for all $t \geq 0$; (A2)

$$\frac{h'(t)}{t} \le h''(t) \le a(1+t^2)^{\frac{\omega}{2}} \frac{h'(t)}{t} \quad \text{for all } t \ge 0$$
with an exponent $\omega > 0$ and a constant $a > 0$;
(A3)

Let us give some comments on (A1-3):

- i) We have h(0) = h'(0) = 0, and by convexity h' is an increasing function with h'(t) > 0 for all t > 0: otherwise it would follow that h' = 0 on some interval $[0, t_0]$, $t_0 > 0$, contradicting the first part of (A1).
- ii) The inequality $\frac{h'(t)}{t} \leq h''(t)$ implies that the function $t \mapsto \frac{h'(t)}{t}$ is increasing, moreover we deduce the lower bound

$$h(t) \ge \frac{1}{2}h''(0)t^2, \ t \ge 0,$$
 (1.3)

and (A1) combined with (1.3) shows that h is a N-function in the sense of Adams [Ad, Section 8.2].

iii) (A2) states that h satisfies a global ($\Delta 2$)-condition, and it is easy to see that

$$h(t) \le c(t^{\overline{q}} + 1) \tag{1.4}$$

for a suitable exponent $\overline{q} \geq 2$ and a constant c. The convexity of h then implies that h'(t) can be bounded in terms of $t^{\overline{q}-1}$.

iv) From (A2) and from the convexity of h we deduce the inequality

$$\overline{k}^{-1} h'(t)t \le h(t) \le th'(t), \ t \ge 0.$$
(1.5)

v) From (A3) we conclude the ellipticity condition

$$\frac{h'(|Z|)}{|Z|}|Y|^2 \le D^2 H(Z)(Y,Y) \le a(1+|Z|^2)^{\frac{\omega}{2}} \frac{h'(|Z|)}{|Z|}|Y|^2.$$
(1.6)

Recalling iii) and using (see ii)) $\frac{h'(|Z|)}{|Z|} \ge h''(0)$, we get from (1.6) with exponent $q := \overline{q} + \omega$

$$h''(0)|Y|^2 \le D^2 H(Z)(Y,Y) \le C(1+|Z|^2)^{\frac{q-2}{2}}|Y|^2, \qquad (1.7)$$

and (1.7) means that H is of anisotropic (2, q)-growth.

vi) In physical terms our conditions on h imply that the fluid described by the potential H is of shear thickening type.

vii) Let $\Theta : [0, \infty) \to [0, \infty)$ denote a continuous and increasing function such that $\Theta(0) > 0$. If in addition Θ has the (Δ_2) -property, then it is shown in [BF3], that

$$h(t) := \int_0^t \int_0^s \Theta(u) \, du \, ds$$

satisfies (A1)-(A3) with exponent $\omega = 0$.

Suppose now that we are given a function u_0 from the Orlicz-Sobolev class $W^{1,h}(\Omega, \mathbb{R}^n)$ generated by h (see [Ad] for a definition) satisfying div $u_0 = 0$. We define the class

$$\mathcal{C} := \left\{ w \in u_0 + W_0^{1,h}(\Omega, \mathbb{R}^n) : \operatorname{div} w = 0 \right\},\$$

 $W_0^{1,h}(\Omega,\mathbb{R}^n)$ denoting the subspace of $W^{1,h}(\Omega,\mathbb{R}^n)$ of fields with zero trace, and deduce from Lemma 4.2 the unique solvability of the variational problem

$$\mathbb{J}[w,\Omega] := \int_{\Omega} h(|\epsilon(w)|) \, dx \longrightarrow \min$$
(1.8)

in \mathcal{C} . Of course we could also add a volume force term like $\int_{\Omega} f \cdot w \, dx$ to (1.8) which under appropriate assumptions on f is of no effect on the argumentation below. Since we will not touch the question of boundary regularity, we restrict ourselves to local minimizers of (1.8).

Definition 1.1. We call a function u from the local Orlicz-Sobolev space $W_{loc}^{1,h}(\Omega, \mathbb{R}^n)$ satisfying div u = 0 a local minimizer of (1.8), if for any subdomain $\Omega' \subseteq \Omega$ it holds

- $\mathbb{J}[u, \Omega'] < \infty$ and
- $\mathbb{J}[u, \Omega'] \leq \mathbb{J}[v, \Omega']$

for all $v \in W^{1,h}_{loc}(\Omega, \mathbb{R}^n)$ such that $\operatorname{div} v = 0$ and $\operatorname{spt}(u - v) \subset \Omega'$.

Abbreviating

$$V^0_{h,loc}(\Omega,\mathbb{R}^n) := \left\{ w \in W^{1,h}_{loc}(\Omega,\mathbb{R}^n) : \operatorname{div} w = 0 \right\}$$

we can now state our main results in case n = 3 (full regularity in 2D is proved in [Fu2] even under weaker hypotheses concerning h):

THEOREM 1.1. Let $u \in V^0_{h,loc}(\Omega)(\Omega, \mathbb{R}^3)$ be a local minimizer of (1.8) under the assumptions (A1)-(A3) with $\omega < 4/3$. Then we have

$$\begin{array}{ll} a) & \int_{0}^{|\epsilon(u)|} \sqrt{\frac{h'(t)}{t}} \, dt \in W^{1,2}_{loc}(\Omega); \\ b) & h(|\varepsilon(u)|) \in L^{3}_{loc}(\Omega). \end{array}$$

THEOREM 1.2. Let $u \in V_{h,loc}^0(\Omega, \mathbb{R}^3)$ be a local minimizer of (1.8) under the assumptions (A1)-(A3) with $\omega < 4/3$. Then there is an open subset Ω_0 of Ω with full Lebesgue measure such that $u \in C^{1,\alpha}(\Omega_0, \mathbb{R}^3)$ for any $0 < \alpha < 1$.

An explicit description of the set Ω_0 is given after Lemma 3.1. Unfortunately we could not rule out the occurrence of singular points (for ∇u), but even if they exist, the solution itself is at least continuous. In fact, from Theorem 1.1 b) combined with (1.3) it follows that $|\varepsilon(u)| \in L^6_{loc}(\Omega)$ holds, and we deduce from Korn's inequality (see e.g. [FS] or [AM]) and Sobolev's embedding theorem

Corollary 1.1. Under the assumptions of Theorem 1.1 and 1.2 any local minimizer of problem (1.8) is locally Hölder continuous with exponent 1/2.

Remark 1.1. It is easy to see that the statement of Theorem 1.1 remains valid in higher dimensions, which means that we get $h(|\varepsilon(u)|) \in L_{loc}^{\frac{n}{n-2}}(\Omega)$ provided $\omega < 4/n$. This corresponds to the result obtained in [Fu2], where it is shown that $\omega < 2$ is a sufficient condition for full regularity in the 2D case.

Remark 1.2. In the setting of classical variational problems studied in [Fu1] the appropriate variant of Theorem 1.2 requires the bound $\omega \leq 4$, if the case n = 3 is considered (compare [Fu1], Remark 1.1). Actually, as it was recently shown in [Fu5], local minimizers satisfy a local Lipschitz condition independent of the value of ω and for any dimension $n \geq 2$.

Remark 1.3. It is an open problem if the bound on ω imposed in Theorem 1.1 and Theorem 1.2 can be improved. Clearly, if we drop the side condition div = 0, then we obtain the result of Theorem 1.2 now for $\omega \leq 4$ by completely adopting the arguments from [Fu1], but this statement seems to be of no physical interest. A very challenging task however is to discuss if in the setting of Theorem 1.2 actually singular points occur and if the value of ω is of any importance for the regular or irregular behaviour of minimizers.

Our paper is organized as follows:

In section 2 we introduce a suitable sequence of regularized problems whose solutions are smooth enough to carry out the calculations which lead to the proof of Theorem 1.1 after passing to the limit. Section 3 contains the proof of the partial regularity result stated in Theorem 1.2. This step makes essential use of a blow-up argument. In section 4 we present some background material on Korn's inequality in Orlicz spaces.

2 Proof of Theorem 1.1

Let u denote a local minimizer of problem (1.8) under the assumptions of Theorem 1.1. A first step is to approximate (1.8) locally by variational problems with sufficiently regular minimizers. Let

$$\delta := \delta(\rho) := \frac{1}{1 + \rho^{-1} + \|(\varepsilon((u)_{\rho})\|_{L^q(B)}^{2q})},$$

$$H_{\delta}(\epsilon) := \delta \left(1 + |\epsilon|^2 \right)^{\frac{q}{2}} + H(\epsilon)$$

for $\epsilon \in \mathbb{S}$ and for a small parameter $\rho > 0$. Here the exponent q is defined in (1.7) and $(u)_{\rho}$ denotes the mollification of u with radius ρ . With $B := B_{R_0}(x_0) \Subset \Omega$ we define u_{δ} as the unique minimizer of

$$\mathbb{J}_{\delta}\left[w,B\right] := \int_{B} H_{\delta}(\epsilon(w)) dx \tag{2.1}$$

in $(u)_{\rho} + W_0^{1,q}(B, \mathbb{R}^3)$ subject to the constraint div w = 0. Some elementary properties of u_{δ} are summarized in the following Lemma (see [BF1], Lemma 3.1, Lemma 4.1 and estimate (4.10), as well as the inequalities (12) and (13) from [Fu2] for part c)):

Lemma 2.1. Let the hypothesis of Theorem 1.1 hold. Then we have

- a) $u_{\delta} \in W^{2,2}_{loc}(B, \mathbb{R}^3),$
- b) $\sigma_{\delta} := DH_{\delta}(\epsilon(u_{\delta})) \in W^{1,q/(q-1)}_{loc}(B,\mathbb{S});$
- c) $(1 + |\epsilon(u_{\delta})|^2)^{\frac{q}{4}} \in W^{1,2}_{loc}(B),$ and for all $\eta \in C_0^{\infty}(B), Q \in \mathbb{R}^{3 \times 3}$ and $\gamma \in \{1, ..., n\}$ we obtain

$$\int_{B} \eta^{2} D^{2} H_{\delta}(\epsilon(u_{\delta}))(\partial_{\gamma} \epsilon(u_{\delta}), \partial_{\gamma} \epsilon(u_{\delta})) dx$$
$$\leq -2 \int_{B} \eta \partial_{\gamma} \tau_{\delta} : (\nabla \eta \odot \partial_{\gamma} [u_{\delta} - Qx]) dx$$

Here we have abbreviated $\tau_{\delta} := \sigma_{\delta} - p_{\delta}I$ for a suitable pressure function p_{δ} , i.e. $\nabla p_{\delta} = \operatorname{div} \sigma_{\delta}$, which implies $\tau_{\delta} \in W^{1,q/(q-1)}_{loc}(B,\mathbb{S})$ together with

$$|\nabla \tau_{\delta}| \le c |\nabla \sigma_{\delta}|.$$

d) As $\rho \to 0$ we have $u_{\delta} \to u$ in $W^{1,2}(B, \mathbb{R}^3)$ and

$$\delta \int_B \left(1 + |\epsilon(u_\delta)|^2 \right)^{\frac{q}{2}} dx \to 0.$$

e) The integrals $\int_B h(|\epsilon(u_{\delta})|) dx$ are bounded independent of δ .

Furthermore we need the following statements:

Lemma 2.2. Under the assumptions of Theorem 1.1 it holds:

- a) u_{δ} is uniformly bounded in $W^{1,h}(B,\mathbb{R}^3)$.
- b) The sequence $h(|u_{\delta}|)$ is uniformly bounded in any space $L^{\chi}(B)$, $\chi < 3$, so that

$$h(|u_{\delta}|)|u_{\delta}|^{\mu} \in L^{1}(B)$$

uniformly, provided $\mu < 4$.

Proof of Lemma 2.2: From Lemma 2.1 e) combined with Korn's inequality formulated in Lemma 4.1 a) we deduce that the L_h -norms of the tensors $\nabla(u_{\delta}-(u)_{\rho})$ can be estimated in terms of the corresponding norms of $\nabla(u)_{\rho}$, which in turn stay bounded due to Jensen's inequality. The claim of part a) then is a consequence of the Poincaré inequality (applied to $u_{\delta}-(u)_{\rho}$) for functions from the space $W_0^{1,h}(B, \mathbb{R}^3)$ (see [FO]). For the higher integrability result stated in part b) we first observe that according to a) the functions $h(|u_{\delta}|)^{\frac{1}{\beta}}$ stay bounded (uniformly w.r.t. the approximation parameter) in any space $L^{\beta}(B)$, where $\beta \in (1, 2)$. By (1.5) we have

$$\int_{B} |\nabla h(|u_{\delta}|)^{\frac{1}{\beta}}|^{\beta} dx \le c \int_{B} h'(|u_{\delta}|)|u_{\delta}|^{1-\beta} |\nabla u_{\delta}|^{\beta} dx$$

and in order to discuss the integral on the r.h.s. we define the N-function

$$\mathcal{N}(t) := h(t^{\frac{1}{\beta}}).$$

Note that \mathcal{N} actually is a N-function on account of (A3) and the choice of β . From (1.5) we deduce for the conjugate function

$$\mathcal{N}^*(t) = \sup_{s \ge 0} \left[t - \frac{h(s^{\frac{1}{\beta}})}{s} \right] s \le \sup_{s \ge 0} \left[t - \overline{k}^{-1} h'(s^{\frac{1}{\beta}}) s^{\frac{1}{\beta} - 1} \right] s$$
$$\le \overline{h}^{-1} \left(\overline{k}t \right) t, \quad \overline{h}(t) := h'(t^{\frac{1}{\beta}}) t^{\frac{1}{\beta} - 1}.$$

We remark that the strict monotonicity of \overline{h} also follows from (A3) and our choice $\beta < 2$. We now apply Young's inequality for N-functions and obtain

$$\int_{B} h'(|u_{\delta}|)|u_{\delta}|^{1-\beta}|\nabla u_{\delta}|^{\beta} dx \leq \int_{B} \mathcal{N}^{*}\left(\overline{k}^{-1}h'(|u_{\delta}|)|u_{\delta}|^{1-\beta}\right) dx + c(\overline{k}) \int_{B} h(|\nabla u_{\delta}|).$$

Clearly the last integral is uniformly bounded by part a). For the first one we have the upper bound

$$c\int_{B}\overline{h}^{-1}\left(h'(|u_{\delta}|)|u_{\delta}|^{1-\beta}\right)h'(|u_{\delta}|)|u_{\delta}|^{1-\beta}\,dx$$

and the definition of \overline{h} gives (remember (1.5))

$$\overline{h}^{-1}\left(h'(t)t^{1-\beta}\right)h'(t)t^{1-\beta} = h'(t)t \le \overline{k}h(t),$$

hence we can also control the remaining term independent of δ by part a). Altogether it is shown that for each $\beta \in (1,2)$ the sequence $h(|u_{\delta}|)^{\frac{1}{\beta}}$ stays bounded in the Sobolev-space $W^{1,\beta}(B)$, and our claim follows from Sobolev's embedding theorem recalling also (1.3).

After these preparations we come to the proof of Theorem 1.1: in a first step we work with a cut-off function $\eta_1 \in C_0^{\infty}(B_{\tilde{r}}(z))$ with $\eta_1 \equiv 1$ on $B_r(z)$, $0 \leq \eta_1 \leq 1$ and $|\nabla \eta_1| \leq c/(\tilde{r}-r)$, where 0 < r < R are such that $B_R(z) \Subset B$ and $\tilde{r} := \frac{R+r}{2}$. We get by Sobolev's inequality

$$\int_{B_{\tilde{r}}(z)} h(|\varepsilon(u_{\delta})|)^{3} dx \leq \int_{B_{\tilde{r}}(z)} \eta_{1}^{6} h(|\varepsilon(u_{\delta})|)^{3} dx$$
$$\leq c \left\{ \int_{B_{\tilde{r}}(z)} |\nabla \eta_{1}|^{2} h(|\varepsilon(u_{\delta})|) dx + \int_{B_{\tilde{r}}(z)} \eta_{1}^{2} \frac{[h'(|\varepsilon(u_{\delta})|)]^{2}}{h(|\varepsilon(u_{\delta})|)} |\nabla \varepsilon(u_{\delta})|^{2} dx \right\}^{3}.$$

Using (1.5), Lemma 2.1 e) and (1.6) we obtain for a suitable positive number β (summation w.r.t. $\gamma \in \{1, 2, 3\}$)

$$\int_{B_{r}(z)} h(|\varepsilon(u_{\delta})|)^{3} dx \leq c(R-r)^{-\beta} + c \left\{ \int_{B_{\tilde{r}}(z)} \eta_{1}^{2} \frac{h'(|\varepsilon(u_{\delta})|)}{|\varepsilon(u_{\delta})|} |\nabla \varepsilon(u_{\delta})|^{2} dx \right\}^{3} \leq c(R-r)^{-\beta} + c \left\{ \int_{B_{\tilde{r}}(z)} \eta_{1}^{2} D^{2} H_{\delta}(\varepsilon(u_{\delta}))(\partial_{\gamma}\varepsilon(u_{\delta}), \partial_{\gamma}\varepsilon(u_{\delta})) dx \right\}^{3}.$$
(2.2)

In order to discuss the integral on the r.h.s. of (2.2) we apply the Caccioppoli-type inequality from Lemma 2.1 c): we have for all $\kappa > 0$

$$\int_{B_{\tilde{r}}(z)} \eta_1^2 D^2 H_{\delta}(\epsilon(u_{\delta})) (\partial_{\gamma} \epsilon(u_{\delta}), \partial_{\gamma} \epsilon(u_{\delta})) dx
\leq -2 \int_{B_{\tilde{r}}(z)} \eta_1 \partial_{\gamma} \tau_{\delta} : (\nabla \eta_1 \odot \partial_{\gamma} u_{\delta}) dx.
\leq \kappa \int_{B_{\tilde{r}}(z)} \eta_1^2 D^2 H_{\delta}(\epsilon(u_{\delta})) (\partial_{\gamma} \epsilon(u_{\delta}), \partial_{\gamma} \epsilon(u_{\delta})) dx dx
+ c(\kappa) \int_{B_{\tilde{r}}(z)} |\nabla \eta_1|^2 \frac{h'(|\epsilon(u_{\delta})|)}{|\epsilon(u_{\delta})|} \Gamma_{\delta}^{\frac{\omega}{2}} |\nabla u_{\delta}|^2 dx
+ c(\kappa) \delta \int_{B_{\tilde{r}}(z)} |\nabla \eta_1|^2 \Gamma_{\delta}^{\frac{q-2}{2}} |\nabla u_{\delta}|^2 \tag{2.3}$$

which follows from

 $|\partial_{\gamma}\tau_{\delta}|^{2} \leq c|\partial_{\gamma}\sigma_{\delta}|^{2} \leq cD^{2}H_{\delta}(\epsilon(u_{\delta}))(\partial_{\gamma}\epsilon(u_{\delta}),\partial_{\gamma}\epsilon(u_{\delta}))^{\frac{1}{2}}D^{2}H_{\delta}(\epsilon(u_{\delta}))(\partial_{\gamma}\sigma_{\delta},\partial_{\gamma}\sigma_{\delta})^{\frac{1}{2}}$

in combination with (A3) and Young's inequality. For κ small enough we deduce from (2.3)

$$\int_{B_{r}(z)} h(|\varepsilon(u_{\delta})|)^{3} dx$$

$$\leq c(R-r)^{-\beta} + \left\{ \left\| \nabla \eta_{1} \right\|_{\infty}^{2} \int_{B_{\tilde{r}}(z)} \frac{h'(|\epsilon(u_{\delta})|)}{|\epsilon(u_{\delta})|} |\epsilon(u_{\delta})|^{\omega} |\nabla u_{\delta}|^{2} dx \right\}^{3}.$$
(2.4)

Here the δ -term from the r.h.s. of (2.3) has been handled as follows: obviously it is enough to control the quantity $\delta \int_{B_{\tilde{r}}(z)} |\nabla u_{\delta}|^q dx$, and according to Korn's inequality an upper bound is given by

$$c\delta\left[\int_{B_{\widetilde{r}}(z)}|u_{\delta}|^{q}\,dx+\int_{B_{\widetilde{r}}(z)}|\varepsilon(u_{\delta})|^{q}\,dx\right].$$

By the interpolation inequality [FS], Lemma 3.0.2, it holds

$$\|u_{\delta}\|_{L^{q}(B_{\widetilde{r}}(z))} \leq c \left[\|u_{\delta}\|_{L^{2}(B_{\widetilde{r}}(z))} + \|\varepsilon(u_{\delta})\|_{L^{q}(B_{\widetilde{r}}(z))} \right]$$

and on account of (1.3) and part a) of Lemma 2.2 the L^2 -norms of u_{δ} are uniformly bounded. Now we quote Lemma 2.1 d) to see that

$$\delta \int_{B_{\tilde{r}}(z)} |\nabla \eta_1|^2 \Gamma_{\delta}^{\frac{q-2}{2}} |\nabla u_{\delta}|^2 \, dx \le c(R-r)^{-2}$$

is true.

Let us have a look at the integral on the r.h.s. of (2.4): recalling the monotonicity of $t \mapsto \frac{h'(t)}{t}$ and condition (A3) we find

$$\int_{B_{\widetilde{r}}(z)} \frac{h'(|\epsilon(u_{\delta})|)}{|\epsilon(u_{\delta})|} |\epsilon(u_{\delta})|^{\omega} |\nabla u_{\delta}|^{2} dx \leq c \int_{B_{\widetilde{r}}(z)} \widetilde{h}(|\nabla u_{\delta}|) dx,$$
(2.5)

where $\tilde{h}(t) := h(t)t^{\omega}$. Consider next a cut-off function $\eta_2 \in C_0^{\infty}(B_R(z))$ with $\eta_2 \equiv 1$ on $B_{\tilde{r}}(z), 0 \leq \eta_2 \leq 1$ and $|\nabla \eta_2| \leq c/(R - \tilde{r})$. Lemma 4.1 in the version for \tilde{h} implies

$$\int_{B_{\tilde{r}}(z)} \widetilde{h}(|\nabla u_{\delta}|) dx \leq \int_{B_{R}(z)} \widetilde{h}(|\nabla(\eta_{2}u_{\delta})|) dx$$

$$\leq c(R-r)^{-\alpha} \left[\int_{B_{R}(z)} \widetilde{h}(|\varepsilon(u_{\delta})|) dx + \int_{B_{R}(z)} \widetilde{h}(|u_{\delta}|) dx \right]$$

$$\leq c(R-r)^{-\alpha} \left\{ \int_{B_{R}(z)} \widetilde{h}(|\varepsilon(u_{\delta})|) dx + 1 \right\}$$
(2.6)

for an exponent $\alpha > 0$. Note that we have used the (Δ_2) -condition valid also for \tilde{h} (see [BF3], Lemma A.3) and Lemma 2.2 b) for the derivation of the estimate (2.6). If we combine (2.4)-(2.6) we see (by enlarging β if necessary)

$$\int_{B_r(z)} h(|\varepsilon(u_\delta)|)^3 dx \le c(R-r)^{-\beta} \left[1 + \left\{ \int_{B_R(z)} h(|\epsilon(u_\delta)|)|\epsilon(u_\delta)|^\omega dx \right\}^3 \right].$$
(2.7)

For $t \in (0, 1)$ arbitrary we get

$$\left\{\int_{B_R(z)} h(|\epsilon(u_{\delta})|)|\epsilon(u_{\delta})|^{\omega} dx\right\}^3 = \left\{\int_{B_R(z)} h(|\epsilon(u_{\delta})|)^t h(|\epsilon(u_{\delta})|)^{1-t} |\epsilon(u_{\delta})|^{\omega} dx\right\}^3$$

$$\leq \left\{ \int_{B_R(z)} h(|\epsilon(u_{\delta})|)^{3t} dx \right\} \left\{ \int_{B_R(z)} h(|\epsilon(u_{\delta})|)^{\frac{3(1-t)}{2}} |\epsilon(u_{\delta})|^{\frac{3\omega}{2}} dx \right\}^2.$$

If we split

$$\int_{B_R(z)} h(|\epsilon(u_\delta)|)^{\frac{3(1-t)}{2}} |\epsilon(u_\delta)|^{\frac{3\omega}{2}} dx = \int_{B_r(z) \cap [|\varepsilon(u_\delta)| \le 1]} \dots + \int_{B_r(z) \cap [|\varepsilon(u_\delta)| > 1]} \dots \quad ,$$

then clearly the first integral is uniformly bounded. For the second one we choose t > 0 sufficiently close to 1 in order to reach

$$h(s)^{\frac{3(1-t)}{2}}s^{\frac{3\omega}{2}} \le cs^2 \le ch(s) \text{ for } s \ge 1$$

which is possible by (1.3), (1.4) and our assumption $\omega < 4/3$. Hence we can bound the whole integral independent of δ (remember Lemma 2.1 e)), and we have shown

$$\int_{B_r(z)} h(|\varepsilon(u_{\delta})|)^3 \, dx \le c(R-r)^{-\beta} \left[1 + \int_{B_R(z)} h(|\epsilon(u_{\delta})|)^{3t} \, dx \right]. \tag{2.8}$$

In a final step we use Young's inequality and get for some number $\nu > 0$

$$\int_{B_r(z)} h(|\varepsilon(u_{\delta})|)^3 \, dx \le c(R-r)^{-\nu} + \frac{1}{2} \int_{B_R(z)} h(|\varepsilon(u_{\delta})|)^3 \, dx. \tag{2.9}$$

To inequality (2.9) we may apply Lemma 3.1, p 161, of [Gi3] in order to see that $h(|\varepsilon(u_{\delta})|)^3$ is in the space $L^1_{loc}(B)$ uniformly w.r.t. δ . This proves Theorem 1.1 b). During our calculations we have shown that

$$D^{2}H(\epsilon(u_{\delta}))(\partial_{\gamma}\epsilon(u_{\delta}),\partial_{\gamma}\epsilon(u_{\delta})) dx \in L^{1}_{loc}(B)$$
(2.10)

holds uniformly w.r.t. the approximation parameter. In fact, if we return to (2.3) and absorb the κ -term in the l.h.s., then (2.10) is an immediate consequence of our integrability result stated after (2.9). From (1.3) and (1.7) in combination with (2.10) we deduce uniform $W_{loc}^{2,2}$ -bounds on u_{δ} , hence $u \in W_{loc}^{2,2}(\Omega, \mathbb{R}^3)$ and for suitable subsequences it holds

$$u_{\delta} \to u \text{ in } W^{2,2}_{loc}(B, \mathbb{R}^3), \quad \nabla u_{\delta} \to \nabla u \quad \text{a.e. on } B$$

as $\rho \downarrow 0$. Moreover we see that the functions

$$\psi_{\delta} := \int_{0}^{|\varepsilon(u_{\delta})|} \sqrt{\frac{h'(t)}{t}} \, dt$$

are uniformly bounded in the space $W_{loc}^{1,2}(B)$, thus we have weak $W_{loc}^{1,2}(B)$ -convergence of ψ_{δ} with limit

$$\psi := \int_0^{|\varepsilon(u)|} \sqrt{\frac{h'(t)}{t}} \, dt.$$

and Theorem 1.1 a) is proved.

Remark 2.1. Returning to the Caccioppoli inequality stated in Lemma 2.1 - now with arbitrary matrix $Q \in \mathbb{R}^{3\times 3}$ - it is easy to see that the appropriate variant of (2.3) after absorbing the κ -term and passage to the limit $\rho \to 0$ gives the inequality

$$\int_{B} \eta^{2} |\nabla \psi|^{2} dx \leq c \int_{B} |\nabla \eta|^{2} |D^{2} H(\varepsilon(u))| |\nabla u - Q|^{2} dx$$
(2.11)

valid for any $\eta \in C_0^{\infty}(B)$ and all $Q \in \mathbb{R}^{3\times 3}$. Alternatively we may replace $|\nabla \psi|^2$ by $D^2 H(\varepsilon(u))(\partial_{\gamma}\varepsilon(u), \partial_{\gamma}\varepsilon(u))$ (or just $|\nabla^2 u|^2$) in this inequality. The reader should note that the l.h.s. of the δ -version of (2.11) is treated via lower semicontinuity, whereas on the r.h.s. we use equi-integrability in order to pass to the limit $\rho \to 0$.

3 Proof of Theorem 1.2

Let u denote a local J-minimizer and suppose w.l.o.g. that $\omega \in [1, 4/3)$ in (A3). We further let

$$h(t) := t^{\omega} h(t), \ t \ge 0,$$

and recall that \tilde{h} is a N-function. From Lemma 2.2 b) and Theorem 1.1 b) combined with Lemma 4.1 (choosing $\varphi = \tilde{h}$ there) it follows that u is an element of the space $\in W^1_{\tilde{h} \log}(\Omega, \mathbb{R}^3)$, hence the excess-function

$$E(x,r) := \oint_{B_r(x)} |\epsilon(u) - (\epsilon(u))_{x,r}|^2 \, dy + \oint_{B_r(x)} \widetilde{h}(|\epsilon(u) - (\epsilon(u))_{x,r}|) \, dy$$

for balls $B_r(x) \Subset \Omega$ is well-defined. Here and in what follows -ff(f) denote the mean value of a function f.

Lemma 3.1. Fix L > 0 and a subdomain $\Omega' \subseteq \Omega$. Then there is a constant $C_*(L)$ such that for every $\tau \in (0,1)$ one can find a number $\kappa = \kappa(L,\tau)$ with the following property: if $B_r(x) \subset \Omega'$ and if

$$|(\epsilon(u))_{x,r}| \le L, \ E(x,r) \le \kappa, \tag{3.1}$$

then it holds

$$E(x, \tau r) \le C_*(L)\tau^2 E(x, r).$$
 (3.2)

Once having established Lemma 3.1, it is standard (see, e.g. Giaquinta's textbook [Gi3]) to prove the desired partial regularity result. It turns out that the regular set Ω_0 is given by

$$\Omega_0 = \left\{ x \in \Omega : \sup_{r>0} |(\epsilon(u))_{x,r}| < \infty \text{ and } \liminf_{r \downarrow 0} E(x,r) = 0 \right\} ,$$

i.e. Lemma 3.1 shows that the set on the r.h.s. is open and $\nabla u \in C^{0,\alpha}$ there for any $0 < \alpha < 1$. Obviously Ω_0 is a set of full Lebesgue measure.

Proof of Lemma 3.1: We argue by contradiction (compare [Fu1]). Let L > 0 and choose $C_* = C_*(L)$ as outlined below. Then, for some $\tau \in (0, 1)$, there is a sequence of balls $B_{r_m}(x_m) \in \Omega'$ such that

$$|(\epsilon(u))_{x_m,r_m}| \leq L, E(x_m,r_m) =: \lambda_m^2 \to 0, \text{ as } m \to \infty, \qquad (3.3)$$

$$E(x_m, \tau r_m) > C_* \tau^2 \lambda_m^2.$$
(3.4)

Letting $A_m := (\epsilon(u))_{x_m, r_m}$ we define for $z \in B_1 := B_1(0)$

$$\widetilde{u}_m(z) := \frac{1}{\lambda_m r_m} \Big[u(x_m + r_m z) - r_m A_m z \Big], \qquad (3.5)$$

$$u_m(z) := \widetilde{u}_m(z) - R_m(z), \qquad (3.6)$$

where R_m is the orthogonal projection of \tilde{u}_m into the space of rigid motions with respect to the $L^2(B_1, \mathbb{R}^3)$ inner product. We get from (3.3) using

$$\epsilon(u_m)(z) = \frac{1}{\lambda_m} \Big[\epsilon(u)(x_m + r_m z) - A_m \Big]$$

the relations

$$|A_m| \le L, f_{B_1} |\epsilon(u_m)|^2 \, dz + \lambda_m^{-2} \, f_{B_1} \tilde{h}(\lambda_m |\epsilon(u_m)|) \, dz = 1 \,. \tag{3.7}$$

On the other hand, (3.4) reads after scaling

$$\int_{B_{\tau}} |\epsilon(u_m) - (\epsilon(u_m))_{0,\tau}|^2 \, dz + \lambda_m^{-2} \int_{B_{\tau}} \widetilde{h}(\lambda_m |\epsilon(u_m) - (\epsilon(u_m))_{0,\tau}|) \, dz > C_* \tau^2 \,. \tag{3.8}$$

After passing to suitable subsequences we obtain from (3.7)

$$A_m \to: A, \ u_m \to: \overline{u} \quad \text{in} \quad W_2^1(B_1; \mathbb{R}^3) ,$$

$$\lambda_m \epsilon(u_m) \to 0 \quad \text{in} \quad L^2(B_1; \mathbb{S}) \text{ and a.e.} , \qquad (3.9)$$

where obviously $(\varepsilon(\overline{u}))_{0,1} = 0$. To prove the second convergence we apply Korn's inequality in L^2 (see for example [FS], Lemma 3.0.1 and 3.0.3, and in particular [AM], Proposition 2.6 (g) and Proposition 2.7 (c)) which gives by the choice of R_m

$$||u_m||_{W^{1,2}(B)} \le ||\epsilon(u_m)||_{L^2(B)}.$$

If we argue as in [Fu1], (3.8)- (3.15), replacing ∇ by ε and letting $Z_m := Z_m(s, z) := A_m + s\lambda_m \varepsilon(u_m)(z)$, we obtain the limit equation

$$\int_{B_1} D^2 H(A)(\epsilon(\overline{u}), \epsilon(\varphi)) \, dz = 0$$

valid for any $\varphi \in C_0^{\infty}(B_1, \mathbb{R}^3)$ such that div $\varphi = 0$. Quoting standard results on weak solutions of elliptic systems with constant coefficients involving the symmetric gradient as

well as the imcompressibility condition (see, e.g., [GM] or [FS], Lemma 3.5) we find that \overline{u} is of class $C^{\infty}(B_1, \mathbb{R}^3)$ satisfying the Campanato-type estimate

$$\int_{B_{\tau}} |\varepsilon(\overline{u}) - (\varepsilon(\overline{u}))_{\tau}|^2 \, dz \le C^* \tau^2 \int_{B_1} |\varepsilon(\overline{u}) - (\varepsilon(\overline{u}))_1|^2 \, dz$$

for a constant $C^* = C^*(L)$. Observing $f_{B_1}|\varepsilon(\overline{u})|^2 dz \leq 1$ and $(\varepsilon(u))_1 = 0$, we get

$$\int_{B_{\tau}} |\varepsilon(\overline{u}) - (\varepsilon(\overline{u}))_{\tau}|^2 \, dz \le C^* \tau^2.$$

Letting $C_* = 2C^*$ this inequality will give a contradiction to (3.8) as soon as we can show

$$\epsilon(u_m) \to \varepsilon(\overline{u}) \text{ in } L^2_{\text{loc}}(B_1, \mathbb{S}) ,$$
(3.10)

$$\lambda_m^{-2} \oint_{B_r} \widetilde{h} \left(\lambda_m |\varepsilon(u_m)| \right) \, dz \to 0, \ r < 1.$$
(3.11)

For a detailed exposition of how to obtain the desired contradiction we refer to the comments given after (3.18) in [Fu1]. In order to prove (3.10) and (3.11) we return to (2.11) (with $|\nabla u|^2$ in place of $|\nabla \psi|^2$ on the l.h.s.) and get after scaling and with appropriate choice of the testfunction η

$$\int_{B_t} |\nabla^2 u_m|^2 \, dz \le C(s-t)^{-2} \int_{B_s} |D^2 H\left(\lambda_m \epsilon(u_m) + A_m\right)| |\nabla u_m|^2 \, dz \tag{3.12}$$

valid for 0 < t < s < 1. On $[\lambda_m | \epsilon(u_m) | \leq K]$ we have

$$\left| D^2 H \left(A_m + \lambda_m \epsilon(u_m) \right) \right| |\nabla u_m|^2 \le c(K) |\nabla u_m|^2 \,,$$

whereas on $[\lambda_m | \epsilon(u_m) | \ge K]$ it holds (K large enough)

$$\begin{aligned} \left| D^{2}H\left(\lambda_{m}\epsilon(u_{m})+A_{m}\right)\right| |\nabla u_{m}|^{2} \\ &\leq c(K) \left[1+\left(\lambda_{m}|\epsilon(u_{m})|\right)^{\omega} \frac{h'(\lambda_{m}|\epsilon(u_{m})|)}{\lambda_{m}|\epsilon(u_{m})|} \right] |\nabla u_{m}|^{2} \\ &\leq c(K) \left[|\nabla u_{m}|^{2}+\lambda_{m}^{-2}\widetilde{h}\left(\lambda_{m}|\nabla u_{m}|\right) \right]. \end{aligned}$$

(3.12) therefore implies (compare (3.20) in [Fu1])

$$\int_{B_t} |\nabla^2 u_m|^2 \, dz \le c(s-t)^{-2} \left[\int_{B_s} |\nabla u_m|^2 \, dz + \lambda_m^{-2} \int_{B_s} \widetilde{h} \left(\lambda_m |\nabla u_m|\right) \, dz \right] \,. \tag{3.13}$$

Clearly the first integral on the r.h.s. is uniformly bounded by (3.9). For the second one we deduce from Lemma 4.4 by letting $\tilde{h}_{\lambda_m}(t) := \lambda_m^{-2} \tilde{h}(\lambda_m t)$

$$\left\|\nabla u_m\right\|_{L_{\widetilde{h}_{\lambda_m}}(B_s)} \le c \left\|\varepsilon(u_m)\right\|_{L_{\widetilde{h}_{\lambda_m}}(B_1)} + c(s) \left\|u_m\right\|_{L_{\widetilde{h}_{\lambda_m}}(B_1)}.$$

By (3.7) the first term on the r.h.s. is uniformly bounded. In order to get the same result for the second one, we have to estimate the quantity

$$\lambda_m^{-2} \int_{B_1} \widetilde{h}(\lambda_m |u_m|) \, dz.$$

To this purpose we observe that the superquadratic growth of h stated in (1.3) in combination with (3.7) implies the bound

$$\int_{B_1} |\lambda_m^{1-\frac{2}{2+\omega}} \epsilon(u_m)|^{2+\omega} dz \le c\lambda_m^{-2} \int_{B_1} \widetilde{h}(\lambda_m |\epsilon(u_m)|) dz \le c.$$
(3.14)

We therefore get by Korn's inequality in spaces L^p (see again [FS] or [AM]) and the choice of R_m

$$||\lambda_m^{1-\frac{2}{2+\omega}}u_m||_{W^{1,2+\omega}(B_1)} \le c||\lambda_m^{1-\frac{2}{2+\omega}}\epsilon(u_m)||_{L^{2+\omega}(B_1)},$$

hence we find

 $\lambda_m^{1-\frac{2}{2+\omega}} u_m \in L^t(B_1, \mathbb{R}^3) \text{ uniformly in } m \text{ for all } t < \infty$ (3.15)

by quoting Sobolev's theorem for n = 3 (recall $\omega \ge 1$). From the inequalities (see (A1) and (1.3))

$$h(t) \le ct^2$$
 for $t \le 1$ and $h(t) \le ct^q$ for $t \ge 1$

in combination with (3.15) we deduce

$$\lambda_m^{-2} \int_{B_1} \tilde{h}(\lambda_m |u_m|) \, dz \le c \int_{B_1} |\lambda_m^{1 - \frac{2}{2+\omega}} u_m|^{2+\omega} \, dz + c \int_{B_1} |\lambda_m^{1 - \frac{2}{q+\omega}} u_m|^{q+\omega} \, dz \le c$$

independent of m. Note that we have used the estimate

$$\lambda_m^{1-\frac{2}{q+\omega}} \le c \lambda_m^{1-\frac{2}{2+\omega}},$$

which follows from $q \ge 2$. Hence we can bound the r.h.s. of (3.13) uniformly in m and therefore we obtain uniform L^2_{loc} -bounds on $\nabla^2 u_m$, which shows (3.10). For proving our claim (3.11) we return to (2.11) (in the version with

For proving our claim (3.11) we return to (2.11) (in the version with $D^2H(\varepsilon(u))(\partial_{\gamma}\varepsilon(u),\partial_{\gamma}\varepsilon(u))$ in place of $|\nabla\psi|^2$ on the l.h.s.) and observe that after scaling the r.h.s. of (3.12) provides an upper bound for the quantity

$$\int_{B_t} \frac{h'(|\lambda_m \epsilon(u_m) + A_m|)}{|\lambda_m \epsilon(u_m) + A_m|} |\nabla^2 u_m|^2 dz := a_m(t) \,.$$

On the other hand, our previous calculations guarantee uniform bounds for the r.h.s. of (3.12) so that we arrive at

$$a_m(t) \le c(t) \tag{3.16}$$

for finite constants c(t), 0 < t < 1. We introduce the auxiliary functions

$$\Psi_m := \frac{1}{\lambda_m} \left\{ \int_0^{|\lambda_m \epsilon(u_m) + A_m|} \sqrt{\frac{h'(t)}{t}} \, dt - \int_0^{|A_m|} \sqrt{\frac{h'(t)}{t}} \, dt \right\}$$

and deduce from (3.16)

$$\int_{B_t} |\nabla \Psi_m|^2 \, dz \le c(t) \,. \tag{3.17}$$

Following the lines of [Fu1] (after (3.22)) (replacing ∇ by ε) we easily obtain $\int_{B_1} |\Psi_m|^2 dz \leq c$ and therefore together with (3.17) it is shown that

$$\|\Psi_m\|_{W_2^1(B_t)} \le c(t) < \infty, 0 < t < 1.$$
(3.18)

With (3.18) we can exactly repeat the arguments presented after (3.23) in the paper [Fu1] ending up with (3.11). Note that the condition

$$t^{\omega} \le c \left[h(t)^2 + 1 \right] \quad (t \ge 0)$$

required in [Fu1] is clearly satisfied in our context as a consequence of the superquadratic growth of h and the hypothesis $\omega < 4/3$. This completes the proof of Lemma 3.1.

4 Appendix

In this section we collect some auxiliary material concerning Korn type inequalities, which are a crucial tool for solving the global problem (1.8) and also for proving the strong convergences (3.10) and (3.11). We start with

Lemma 4.1. a) Let Ω denote a bounded Lipschitz domain in \mathbb{R}^n and let φ denote a *N*-function of class $(\Delta_2) \cap (\nabla_2)$ (see, e.g., [*RR*] for a definition). Then there is a constant $C = C(n, \varphi, \Omega)$ such that

$$\int_{\Omega} \varphi(|\nabla w|) \, dz \le c \int_{\Omega} \varphi(|\varepsilon(w)|) \, dz$$

holds for any $w \in W_0^{1,\varphi}(\Omega, \mathbb{R}^n)$.

b) In the case that Ω is a ball $B_R(x_0)$ the constant C has the form

$$C = c(n,\varphi)R^{-\beta}$$

for a positive exponent β .

The proof of Lemma 4.1 a) is presented in [Fu3], part b) can easily be derived from this first inequality by scaling and using the (Δ_2) -property of φ .

Suppose now that h satisfy (A1)-(A3). Then we have

$$th'(t) = \int_0^t \frac{d}{ds} \left[sh'(s) \right] \, ds = h(t) + \int_0^t sh''(s) \, ds \ge 2h(t),$$

and in conclusion

$$a(h) := \inf_{t>0} \frac{h'(t)t}{h(t)} \ge 2$$

Therefore h is a N-function of (global) type (∇_2) , which follows from Corollary 4 on p. 26 in [RR], and we have

Corollary 4.1. The Korn type inequalities stated in Lemma 4.1 hold for the N-function h.

Remark 4.1. If we consider the N-function $\tilde{h}(t) = t^{\omega}h(t)$, then we have $a(\tilde{h}) \geq 2 + \omega$, hence Lemma 4.1 applies to \tilde{h} as well.

Remark 4.2. Using the interpolation argument outlined in the work of Acerbi and Mingione [AM] we obtain the Korn inequality in terms of the Luxemburg norm

$$\left\|\nabla w\right\|_{L_{h}(\Omega)} \leq c(n,h,\Omega) \left\|\nabla \varepsilon(w)\right\|_{L_{h}(\Omega)}$$

valid for fields $w \in W_0^{1,h}(\Omega, \mathbb{R}^n)$. We refer to Lemma 4.3 and Lemma 4.4, where this interpolation argument is applied to the sequence \tilde{h}_{λ_m} defined in Section 3.

Lemma 4.2. Let h satisfy (A1)-(A3), consider $u_0 \in W^{1,h}(\Omega, \mathbb{R}^n)$ such that div $u_0 = 0$ and define the class C as done in section 1. Then the variational problem (1.8) admits a unique solution u in C.

Proof: If $u_k \in \mathcal{C}$ denotes a minimizing sequence, then Lemma 4.1 a) (applied to $u_k - u_0$) in combination with the Poincaré inequality from [FO] gives the boundedness of u_k in the space $W^{1,h}(\Omega, \mathbb{R}^n)$. Since h is of type $(\Delta_2) \cap (\nabla_2)$, we see that $W^{1,h}$ is reflexive (compare [RR], Corollary 4 on p. 26, and [Ad], Theorem 8.28), and our claim follows from standard arguments.

Next we are going to prove that we have uniform Korn type inequalities for the scaled N-functions

$$\widetilde{h}_{\lambda}(t) := \lambda^{-2} \widetilde{h}(\lambda t),$$

where $\lambda > 0$ denotes a parameter and where $\tilde{h}(s) := s^{\omega}h(s)$, h satisfying (A1)-(A3). This will be done along the lines of [AM], proof of Theorem 3.1, using the following auxiliary result:

Lemma 4.3. We can find some exponents $p_1, p_2 > 1$ such that the function $\tilde{h}_{\lambda}(t)/t^{p_1}$ increases and the function $\tilde{h}_{\lambda}(t)/t^{p_2}$ decreases. Furthermore there are positive constants k_1 and k_2 independent of λ such that the estimates

$$\int_0^t \frac{\widetilde{h}_{\lambda}(s)}{s^{p_1}} \frac{ds}{s} \le k_1 \frac{\widetilde{h}_{\lambda}(t)}{t^{p_1}},\tag{4.1}$$

$$\int_{t}^{\infty} \frac{\widetilde{h}_{\lambda}(s)}{s^{p_2}} \frac{ds}{s} \le k_2 \frac{\widetilde{h}_{\lambda}(t)}{t^{p_2}},\tag{4.2}$$

hold for all t > 0.

Proof: We set $p_1 := 1 + \omega$ and choose $p_2 > \omega + \overline{k}$ with ω and \overline{k} from (A2) and (A3). It follows

$$\frac{\widetilde{h}_{\lambda}(t)}{t^{p_1}} = \lambda^{\omega-2} \frac{h(\lambda t)}{t}$$

which is increasing on account of $th'(t) - h(t) \ge 0$. Moreover we have by (A3) and h'(0) = 0

$$\int_0^t \frac{\widetilde{h}_{\lambda}(s)}{s^{p_1}} \frac{ds}{s} = \lambda^{\omega-2} \int_0^t \frac{h(\lambda s)}{s} \frac{ds}{s} \le \lambda^{\omega-1} \int_0^t \frac{h'(\lambda s)}{s} ds$$
$$\le \lambda^{\omega} \int_0^t h''(\lambda s) \, ds = \lambda^{\omega-1} h'(\lambda t).$$

If we use (1.5), we get from this estimate

$$\int_0^t \frac{\widetilde{h}_{\lambda}(s)}{s^{p_1}} \frac{ds}{s} \le \overline{k} \lambda^{\omega - 1} \frac{h(\lambda t)}{\lambda t} = \overline{k} \frac{\widetilde{h}_{\lambda}(t)}{t^{p_1}},$$

hence (4.1) holds with $k_1 = \overline{k}$. From (1.5) we obtain

$$\frac{d}{dt} \left[\widetilde{h}_{\lambda}(t)/t^{p_2} \right] \le \lambda^{\omega-2} t^{\omega-p_2-1} \left[h'(\lambda t)\lambda t - \overline{k}h(\lambda t) \right] \le 0,$$

hence $\tilde{h}_{\lambda}(t)/t^{p_2}$ is decreasing. Finally we prove (4.2): since the function $s \mapsto h(s)/s^{\overline{k}}$ is also decreasing, we have

$$\int_{t}^{\infty} \frac{\tilde{h}_{\lambda}(s)}{s^{p_{2}}} \frac{ds}{s} = \lambda^{\omega + \bar{k} - 2} \int_{t}^{\infty} \frac{h(\lambda s)}{(\lambda s)^{\bar{k}}} \frac{1}{s^{p_{2} - \bar{k} - \omega}} \frac{ds}{s}$$

$$\leq \lambda^{\omega + \bar{k} - 2} \frac{h(\lambda t)}{(\lambda t)^{\bar{k}}} \int_{t}^{\infty} s^{-1 - p_{2} + \bar{k} + \omega} ds$$

$$= \frac{1}{p_{2} - \bar{k} - \omega} \lambda^{\omega + \bar{k} - 2} \frac{h(\lambda t)}{(\lambda t)^{\bar{k}}} t^{\bar{k} + \omega - p_{2}}$$

$$= \frac{1}{p_{2} - \bar{k} - \omega} \frac{\tilde{h}_{\lambda}(t)}{t^{p_{2}}},$$

which completes the proof of Lemma 4.3.

Lemma 4.4. With the notation introduced before Lemma 4.3 we have for all $w : \Omega \to \mathbb{R}^n$ with $|w|, |\varepsilon(w)| \in L_{\widetilde{h}_{\lambda}}(\Omega)$ and all $\Omega^* \Subset \Omega$

$$\left\|\nabla w\right\|_{L_{\tilde{h}_{\lambda}}(\Omega^{*})} \leq c_{1}(h) \left\|\varepsilon(w)\right\|_{L_{\tilde{h}_{\lambda}}(\Omega)} + c_{2}(h,\Omega^{*}) \left\|w\right\|_{L_{\tilde{h}_{\lambda}}(\Omega)},$$

where the constants c_i are independent of the parameter λ . Moreover, c_2 growth like $\operatorname{dist}(\partial\Omega, \Omega^*)^{-1}$.

Proof: From Lemma 4.3 and [AM], Theorem 3.3, we get for all $v \in C_0^{\infty}(\mathbb{R}^n, \mathbb{R}^n)$

$$\left\|\nabla v\right\|_{L_{\tilde{h}_{\lambda}}(\mathbb{R}^{n})} \le c(h) \left\|\varepsilon(v)\right\|_{L_{\tilde{h}_{\lambda}}(\mathbb{R}^{n})}$$

$$(4.3)$$

with a positive constant c(h) being independent of λ . For w with $|w|, |\varepsilon(w)| \in L_{\tilde{h}_{\lambda}}(\Omega)$ and $\Omega^* \subseteq \Omega$ we choose $\eta \in C_0^{\infty}(\Omega)$ such that $\eta \equiv 1$ on $\Omega^*, 0 \leq \eta \leq 1$ and $|\nabla \eta| \leq c/\operatorname{dist}(\Omega^*, \partial \Omega)$. From (4.3) applied to $v := \eta w$ we conclude (using a standard approximation argument)

$$\|\nabla w\|_{L_{\widetilde{h}_{\lambda}}(\Omega^{*})} \leq c(h) \|\varepsilon(w)\|_{L_{\widetilde{h}_{\lambda}}(\Omega)} + c(h) \|\nabla \eta \odot w\|_{L_{\widetilde{h}_{\lambda}}(\Omega)},$$

and the claim of Lemma 4.4 is a consequence of the choice of η .

References

- [Ad] R. A. Adams (1975): Sobolev spaces. Academic Press, New York-San Francisco-London.
- [AM] A. Acerbi, G. Mingione (2002): Regularity results for stationary electrorheological fluids. Arch. Rat. Mech. Anal. 164, 213-259.
- [BF1] M. Bildhauer, M. Fuchs (2003): Variants of the Stokes problem: the case of anisotropic potentials. J. Math. Fluid Mech. 5, 364-402.
- [BF2] M. Bildhauer, M. Fuchs (2001): Partial regularity for variational integrals with (s, μ, q) -growth. Calculus of Variations 13, 537-560.
- [BF3] M. Bildhauer, M. Fuchs (2009): Variational integrals of splitting-type: higher integrability under general growth conditions. Ann. Math. Pura Appl. 188, 467-496.
- [BFZ] M. Bildhauer, M. Fuchs, X. Zhong (2005): A lemma on the higher integrability of functions with applications to the regularity theory of two-dimensional generalized Newtonian fluids. Manus. Math. 116(2), 135-156.
- [Fu1] M. Fuchs (2008): Regularity results for local minimizers of energies with general densities having superquadratic growth. to appear in Algebra i Analysis/ Preprint 217, Saarland University.

- [Fu2] M. Fuchs (2008): A note on non-uniformly elliptic Stokes-type systems in two variables. to appear in J. Math. Fluid Mech. DOI 10.1007/s00021-008-0285-y.
- [Fu3] M. Fuchs (2009): Korn inequalities in Orlicz spaces. Preprint 251, Saarland University.
- [Fu4] M. Fuchs (1996): On quasistatic Non-Newtonian fluids with power law. Math. Meth. Appl. Scineces 19, 1225-1232.
- [Fu5] M. Fuchs (2009): Local Lipschitz regularity of vector valued local minimizers of variational integrals with densities depending on the modulus of the gradient. to appear in Math. Nachrichten.
- [FGR] M. Fuchs, J. Grotowski, J. Reuling (1996): On variational models for quasistatic Bingham fluids. Math. Meth. Appl. Sciences 19, 991-1015.
- [FO] M. Fuchs, V. Osmolovskij (1998): Variational integrals on Orlicz-Sobolev spaces. Z. Anal. Anw. 17, 393-415.
- [FS] M. Fuchs, G. Seregin (2000): Variational methods for problems from plasticity theory and for generalized Newtonian fluids. Lecture Notes in Mathematics Vol. 1749, Springer Verlag, Berlin-Heidelberg-New York.
- [Ga1] G. Galdi (1994): An introduction to the mathematical theory of the Navier-Stokes equations Vol. I, Springer Tracts in Natural Philosophy Vol. 38. Springer, Berlin-New York.
- [Ga2] G. Galdi (1994): An introduction to the mathematical theory of the Navier-Stokes equations Vol. II, Springer Tracts in Natural Philosophy Vol. 39. Springer, Berlin-New York.
- [Gi] M. Giaquinta (1987): Growth conditons and regularity, a counterexample. Manus. Math. 59, 245-248.
- [Gi2] M. Giaquinta (1993) Introduction to regularity theory for nonlinear elliptic systems. Birkhäuser Verlag, Basel-Boston-Berlin.
- [Gi3] M. Giaquinta (1983): Mulitiple integrals in the calcules of variations an nonlinear elliptic systems. Ann. Math. Studies 105, Princeton University Press, Princeton.
- [GM] M. Giaquinta, G. Modica (1982): Nonlinear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math. 330, 173-214.
- [Ho] M. C. Hong (1992): Some remarks on the minimizers of variational integrals with non standard growth conditions. Boll. U.M.I. (7) 6-A, 91-101.

- [La] O. A. Ladyzhenskaya (1969): The mathematical theory of viscous incompressible flow. Gorden and Breach.
- $[{\rm KMS}] \quad {\rm P. \ Kaplický, \ J. \ Málek, \ J. \ Stará \ (1999): \ C^{1,\alpha}-{\rm solutions \ to \ a \ class \ of \ nonlinear fluids in two dimensions stationary Dirichlet problem. Zapiski Nauchnyh Seminarov POMI 259, 122-144.}$
- [MNRR] J. Málek, J. Necăs, M. Rokyta, M. Růžička (1996): Weak and measure valued solutions to evolutionary PDEs. Chapman & Hall, London-Weinheim-New York.
- [NW] J. Naumann, J. Wolf (2005): Interior differentiability of weak solutions to the equations of stationary motion of a class of Non-Newtonian fluids. J. Math. Fluid Mech. 7, 298-313.
- [RR] M. M. Rao, Z. D. Ren (1991): Theory of Orlicz spaces. Marcel Dekker, New York-Basel-Hongkong.
- [Wo] J. Wolf (2007): Interior $C^{1,\alpha}$ -regularity of weak solutions to the equations of stationary motion to certain non-Newtonian fluids in two dimensions. Boll U.M.I. (8) 10B, 317-340.