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Abstract

We discuss partial regularity results concerning local minimizers u : R3 ⊃ Ω → R3 of
variational integrals of the form∫

Ω

{
a(|εD(w)|) + b(| div(w)|)

}
dx,

where a and b are N -functions of rather general type. We prove partial regularity results
under quite natural conditions between a and b. Furthermore we can extend this to the
non-autonomous situation which finally leads to the study of minimizers of the functional∫

Ω

{
(1 + |εD(w)|2)

p(x)
2 + (1 + | div(w)|2)

q(x)
2

}
dx,

where p and q are Lipschitz-functions.

Mathematics Subject Classification (2000): 94 N 60, 74 B 20, 74 G 40, 74 G 65, 35 J 50

Keywords: local minimizers, nonstandard growth, nonlinear Hencky materials, partial
regularity

1 Introduction

Let Ω ⊂ R3 be a bounded open set describing an elastic body on which the displacement
u : Ω → R3 is defined. In the case of linear elasticity the elastic energy of the deformation
is defined by

J1[u] =

∫
Ω

[
1

2
λ(div(u))2 + κ|ε(u)|2

]
, (1.1)

where λ, κ > 0 denote physical constants and ε(u) = 1
2

(
ε(u) + ε(u)T

)
is the symmetric

gradient of u. Minimizing the functional given in (1.1) leads to a linear elliptic system
which has solutions of class C∞ (compare, e.g., [FS]). In order to model a nonlinear
material behaviour, in particular the nonlinear Hencky material (see [Ze]), J1 is replaced
by

J2[u] =

∫
Ω

[
1

2
λ(div(u))2 + ϕ(|εD(u)|)

]
(1.2)

for a suitable function ϕ. Here εD(u) = ε(u) − 1
3
div(u)I denotes the deviatoric part of

the symmetric gradient. In the simplest case one assumes power growth conditions in the
sense of (F (ε) = ϕ(|ε|))

Λ1(1 + |ε|2)
p−2
2 |σ|2 ≤ D2F (ε)(σ, σ) ≤ Λ2(1 + |ε|2)

p−2
2 |σ|2
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for all ε, σ ∈ S with positive constants Λ1,Λ2 and for an exponent p > 1. Here S denotes
the space of symmetric 3 × 3-matrices. In case p ∈ (1, 2] partial regularity is obtained
in [Se1] and [Se2], whereas full regularity in the 2D case is a consequence of the work
of Frehse/Seregin [FrS] with a little modification. Since the model above is used as an
approximation for plasticity, the density usually is of nearly linear growth which means
ϕ(t) = t ln(1 + t) or ϕ(t) = (1 + t2)

p
2 for some p > 1 close to 1 (compare [Ka], [Kl] and

[NH]).
In [BF1] the superquadratic case is studied for the first time with the result, that mini-
mizers in two dimensions are of class C1,α, provided

p < 4. (1.3)

This result is generalized in [BF2], where the authors consider functionals of the type

J3[u] =

∫
Ω

[
a(| div(u)|) + b(|εD(u)|)

]
dx, (1.4)

where a and b are N -functions (see [Ad] for a definition) with superquadratic growth. In
the 3D situation, according to our knowledge, no regularity results for the functional J3

are available which motivates the studies in this work.
To be precise, we assume for h ∈ {a, b} that h : [0,∞) → [0,∞) is a C2-function satisfy-
ing:

h is strictly increasing and convex with

lim
t→0

h(t)

t
= 0 and lim

t→∞

h(t)

t
= ∞.

(A1)

Furthermore we assume the existence of a positive number ĥ such that we have for all
t ≥ 0

h′(t)

t
≤ h′′(t) ≤ ĥ

h′(t)

t
. (A2)

We further require that our problem is non-degenerate at the origin, i.e.

h′′(0) > 0. (A3)

A discussion of property (A2), as well as examples for functions which satisfy the con-
ditions above, can be found in [BF3]. Finally we suppose the existence of a c > 0 such
that

a(t) ≤ cb(t) for large t. (A4)

Note that quite similar conditions are used in [BF2], [Fu1], [Fu2] and [BrF]. Let us give
some comments on (A1-4):

i) We have h(0) = h′(0), and by convexity h′ is an increasing function with h′(t) > 0
for all t > 0.
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ii) The inequality h′(t)
t
≤ h′′(t) implies that the function t 7→ h′(t)

t
is increasing, moreover

we deduce the lower bound

h(t) ≥ 1

2
h′′(0)t2, t ≥ 0 . (1.5)

(A1) shows that h is a N -function in the sense of Adams [Ad, Section 8.2].

iii) From (A2) it is to deduce that h and h′ satisfy global (∆2)-conditions (compare
[BF3], Lemma A.1), and it is easy to see that

h(t) ≤ c(tq + 1) (t ≥ 0) (1.6)

for a suitable exponent q ≥ 2 and a constant c. Therefore the convexity of h implies
that h′(t) can be bounded in terms of tq−1.

iv) From the (∆2)-condition of h and from the convexity of h we deduce the inequality

k
−1
h′(t)t ≤ h(t) ≤ th′(t) (t ≥ 0) . (1.7)

v) Let F (ε) := a(| tr(ε)|)+ b(|εD|) then we conclude from (A2) the ellipticity condition

D2F (ε)(τ, τ) ≈ a′(| tr(ε)|)
| tr(ε)|

| tr τ |2 +
b′(|εD|)
|εD|

|τD|2 (1.8)

for all ε, τ ∈ S. Recalling iii) and using ( see ii)) h′(|Z|)
|Z| ≥ h′′(0), we get from (1.8)

min {a′′(0), b′′(0)} |τ |2 ≤ D2F (ε)(τ, τ) ≤ C(1 + |ε|2)
q−2
2 |τ |2 , (1.9)

and (1.9) means that F is of anisotropic (2, q)–growth.

vi) Condition (A4) can also stated in the form b(t) ≤ ca(t) for large t.

Finally we need an assumption limiting the range of anisotropy in terms of a and b. More
precisely we suppose

b(t) ≤ ctωa(t) for large t with ω ≥ 0. (A5)

Now we can state our main result in the autonomous setting:

THEOREM 1.1. Let u ∈ W 1,a
loc (Ω) be a local minimizer of (1.4) under the assumptions

(A1)-(A5) with ω < 4/3. Then we have

a)

∫ | div(u)|

0

√
a′(t)

t
dt,

∫ |εD(u)|

0

√
b′(t)

t
dt ∈ W 1,2

loc (Ω);

b) a(| div(u)|), b(|εD(u)|) ∈ L3
loc(Ω).
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THEOREM 1.2. Let u ∈ W 1,a
loc (Ω,R3) be a local minimizer of (1.4) under the

assumptions (A1)-(A5) with ω < 4/3. Then there is an open subset Ω0 of Ω with
full Lebesgue measure such that u ∈ C1,α(Ω0,R3) for any 0 < α < 1.

An explicit description of the set Ω0 is given after Lemma 3.1. Unfortunately we could
not rule out the occurrence of singular points (for ∇u), but even if they exist, the solution
itself is at least continuous. In fact, from Theorem 1.1 b) combined with (1.5) it follows
that |ε(u)| ∈ L6

loc(Ω) holds, and we deduce from Korn’s inequality (see e.g. [FS] or [AM])
and Sobolev’s embedding theorem

Corollary 1.1. Under the assumptions of Theorem 1.1 and 1.2 any local minimizer of
problem (1.4) is locally Hölder continuous with exponent 1/2.

Remark 1.1. • A definition of the Orlicz-Sobolev space W 1,a(Ω) can be found in
[Ad]. A solution u ∈ W 1,a(Ω,R3) of the global problem w.r.t. to boundary data
in W 1,a(Ω,R3) can be generated as in [BrF] (Lemma 4.5) since a ≤ cb.

• It is easy to see that the result of Theorem 1.1 extends to higher dimensions, if we
require ω < 4/n with integrability up to n/(n− 2).

• Our model clearly covers the functional in (1.2), where we obtain p < 2+4/3 which
corresponds to (1.3) noting that we have n = 3.

• In [BrF] the first author and Fuchs consider minimizers of∫
Ω

h(|ε(u)|) dx

assuming h′′(t) ≤ c(1 + t2)
ω
2

h′(t)
t

(all other assumptions on h are the same). They
prove partial regularity of local minimizers if ω < 4/3. The r.h.s. is obviously much
weaker than the one of (A2) but in our case the anisotropy is generated by (A5).

• A main tool for our approach is a Korn-type inequality in Orlicz spaces proved by
Fuchs (see [Fu3]).

Now we would like to consider the non-autonomous situation, i.e.

J4[u] =

∫
Ω

[
a(x, | div(u)|) + b(x, |εD(u)|)

]
dx. (1.10)

Here we suppose the assumptions (A1)-(A5) uniformly in x ∈ Ω. A first assumption to
handle the x-dependence is requiring the natural condition (h ∈ {a, b})

|∂γh
′
(x, t)| ≤ c2h

′
(x, t) for all (x, t) ∈ Ω× R+

0 (A6)

and all γ ∈ {1, ..., n} with a constant c2 ≥ 0. Since the research of Esposito, Leonetti
and Mingione [ELM] it is known that regularity results from the autonomous situation
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do not necessarily stay true if one allows an additonal x-dependece of the density (in
case of anisotropic growth conditions). If we assume special structure conditions for the
x-dependence the reslts should adjust (compare [Br1]). Therefore we suppose, following
the ideas of [Br3], the existence of constants θ1, θ2 ≥ 0 such that (B b Ω)

a(x, t) ≤ θ1 t
θ2|x−y|a(y, t) for all t� 1 and all x, y ∈ B (A7)

as well as

argminy∈B a(y, t) is independent of t. (A8)

Hence we obtain

THEOREM 1.3. Let u ∈ W 1,2
loc (Ω,R3) be a local minimizer of (1.10) under the assump-

tions (A1)-(A5) with ω < 4/3 uniformly in x ∈ Ω as well as (A6)-(A8). Then there is
an open subset Ω0 of Ω with full Lebesgue measure such that u ∈ C1,α(Ω0,R3) for any
0 < α < 1.

Remark 1.2. • Since the N-functions we are considering now depend on x we are
not able to construct a solution in an Orlicz-space and so we work with a local
W 1,2-minimizer which clearly exists.

• By (A7) and (A8) we are able to extend Theorem 1.1 and Theorem 1.2 to the case
of x-dependent integrands. An easy way to obtain an example is

h(x, t) := α(x)h(t),

where h satisfies (A1)-(A4) and α is a strictly positive Lipschitz-function.

• Since the standard regularization we use in the autonomous case does not converge,
it is not trivial to extend the result from this situation. Another difficulty occurs in
the blow-up procedure on account of our x-dependent excess function. Those are the
same problems as in the classical variational setting of (1.3), see [Br2] and [Br3].

• Corollary 1.1 stays true in the fashion of Theorem 1.3.

Finally we would like to consider minimizers of

J5[u] =

∫
Ω

{
(1 + |εD(w)|2)

p(x)
2 + (1 + | div(w)|2)

q(x)
2

}
dx, (1.2)

where p and q are Lipschitz-functions from Ω → [2,∞). It is easy to establish (A1)-(A3)
as well as (A7) and (A8) for the functions

a(x, t) := (1 + t2)
p(x)

2 − 1 and b(x, t) := (1 + t2)
q(x)
2 − 1

but they do not fullfill (A6). Hence this energy is not covered by Theorem 1.3. In this
case we obtain
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THEOREM 1.4. Let u ∈ W 1,2
loc (Ω,R3) be a local minimizer of (1.2) under the assump-

tions p ≤ q and ‖p− q‖∞ < 4/3. Then there is an open subset Ω0 of Ω with full Lebesgue
measure such that u ∈ C1,α(Ω0,R3) for any 0 < α < 1.

Remark 1.3. The differences between the proofs of Theorem 1.3 and Theorem 1.4
are exactly the same as the ones between the proofs in [Br3] and [Br4]. Therefore
we only give a proof of Theorem 1.3.

• In order to obtain regularity results for minimizers of (1.2) in two dimensions we
have to modify the proof of Theorem 1.3 in [BF2] in the same way as done in [Br4],
Theorem 1.1 b), with the result full C1,α-regularity without any restriction between
p and q.

Remark 1.4. • Let us finally compare our results with the classical variational set-
ting, which means

J [u] =

∫
Ω

[a(|∇1u|) + b(|∇2u|)] dx,

where ∇u = (∇1u,∇2u) is an arbitrary decomposition. In this case we have to
suppose weaker ω < 2 to obtain the same result (this is also true in case (1.10)
and (1.2), see [Br2]-[Br4]). In our setting we do not have a maximum principle for
minimizers, which is a crucial tool in in the papers [Br2]-[Br4]. Hence we need a
completely different approach to obtain higher integrability.

• A further problem is that we have to estimate ∇u by ε(u) in terms of N-functions,
which means we need Korn-type inequalities in Orlicz-spaces. In the blow-up pro-
cedure Lemma 4.7 from [BrF] is therefore a crucial tool whereas we use the Korn-
inequality in W 1,h

0 from [Fu3] during the higher integrability proof.

Our paper is organized as follows: In section 2 we prove Theorem 1.1, where we use the
standard regularization working with Sobolev’s inequaility. In section 3 we prove Theorem
1.2 via blow-up. For the proof of Theorem 1.3 in section 4 we work with a regularization
which was intruduced in [BF2] and extends the techniques from the other sections for a
x-dependence.

2 Higher integrability

In this section we prove Theorem 1.1. A first step is to approximate (1.4) locally by
variational problems with sufficiently regular minimizers. Let

δ := δ(ρ) :=
1

1 + ρ−1 + ‖(ε((u)ρ)‖2q
Lq(B)

,

Hδ(ε) := δ
(
1 + |ε|2

) q
2 +H(ε)

6



for ε ∈ S and for a small parameter ρ > 0. Here the parameter q is defined in (1.9) and
(u)ρ denotes the mollification of u with radius ρ. For B := BR0(x0) b Ω we define uδ as
the unique minimizer of

Jδ [w,B] :=

∫
B

Hδ(ε(w))dx (2.1)

in (u)ρ +W 1,q
0 (B,R3). Some elementary properties of uδ are summarized in the following

Lemma (see [BF1], Lemma 3.1, Lemma 4.1 and estimate (4.10), as well as the inequalities
(12) and (13) from [Fu2] for part c). Note that our situation is easier since we do not have
to work under the constraint divw = 0):

Lemma 2.1. Let the hypothesis of Theorem 1.1 hold. Then we have

a) uδ ∈ W 2,2
loc (B,R3),

b) (1 + |ε(uδ)|2)
q
4 ∈ W 1,2

loc (B),
and for all η ∈ C∞

0 (B), Q ∈ R3×3 and γ ∈ {1, ..., n} we obtain∫
B

η2D2Hδ(ε(uδ))(∂γε(uδ), ∂γε(uδ)) dx

≤ c
∫

B

D2Hδ(ε(uδ))([∂γuδ −Q]�∇η, [∂γuδ −Q]�∇η) dx.

c) As ρ→ 0 we have uδ ⇁ u in W 1,2(B,R3) and

δ

∫
B

(
1 + |ε(uδ)|2

) q
2 dx→ 0.

d) The integrals
∫

B

[
a(| div(uδ)|) + b(|εD(uδ)|)

]
dx are bounded independent of δ and

therefore the same is true for
∫

B
a(|ε(uδ)|) dx on account of (A4).

Furthermore we need the following statements, which can be proven exactly as Lemma
2.2 from [BrF]:

Lemma 2.2. Under the assumptions of Theorem 1.1 it holds:

a) uδ is uniformly bounded in W 1,a(B,R3).

b) The sequence a(|uδ|) is uniformly bounded in any space Lχ(B), χ < 3, so that

a(|uδ|)|uδ|µ ∈ L1(B)

uniformly, provided µ < 4.
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After these preparations we start with the proof of Theorem 1.1 following the main ideas
of [BrF], Theorem 1.1: In a first step we work with a cut-off function η1 ∈ C∞

0 (B
er(z))

with η1 ≡ 1 on Br(z), 0 ≤ η1 ≤ 1 and |∇η1| ≤ c/(r̃ − r), where 0 < r < R are such that
BR(z) b B and r̃ := R+r

2
. We get by Sobolev’s inequality∫

Br(z)

a(| div(uδ)|)3 dx ≤
∫

B
er(z)

η6
1a(| div(uδ)|)3 dx

≤ c

{∫
B
er(z)

|∇η1|2a(| div(uδ)|) dx+

∫
B
er(z)

η2
1

[a′(| div(uδ)|)]2

[a(| div(uδ)|)]
|∇ div(uδ)|2 dx

}3

.

Using (1.7), Lemma 2.1 d) and (A3) we obtain for a suitable positive number β (summation
w.r.t. γ ∈ {1, 2, 3})∫

Br(z)

a(| div(uδ)|)3 dx ≤ c(R− r)−β + c

{∫
B
er(z)

η2
1

a′(| div(uδ)|)
| div(uδ|

|∇ div(uδ)|2 dx
}3

≤ c(R− r)−β + c

{∫
B
er(z)

η2
1D

2H(ε(uδ))(∂γε(uδ), ∂γε(uδ)) dx

}3

.

A similar calculation shows the same inequality for
∫

Br(z)
b(|εD(uδ)|)3 dx and therefore∫

Br(z)

a(| div(uδ)|)3 dx+

∫
Br(z)

b(|εD(uδ)|)3 dx

≤ c(R− r)−β + c

{∫
B
er(z)

η2
1D

2H(ε(uδ))(∂γε(uδ), ∂γε(uδ)) dx

}3

. (2.2)

In order to discuss the integral on the r.h.s. of (2.2) we apply the Caccioppoli-type
inequality from Lemma 2.1 c): we have for all κ > 0∫

B
er(z)

η2
1D

2Hδ(ε(uδ))(∂γε(uδ), ∂γε(uδ)) dx

≤ c
∫

B
er(z)

D2H(ε(uδ))(∂γuδ �∇η1, ∂γuδ �∇η1) dx

+cδ

∫
B
er(z)

(
1 + |ε(uδ)|2

) q−2
2 |∇η1|2|∇uδ|2 dx. (2.3)

The δ-term can be estimated by c(R − r)−2 using the same arguments as in [BrF]. The
remaining term in (2.3) decomposes into∫

B
er(z)

a′(| div(uδ)|)
| div(uδ)|

|∇uδ|2|∇η1|2 dx

+

∫
B
er(z)

b′(|εD(uδ)|)
|εD(uδ)|

|∇uδ|2|∇η1|2 dx

8



on account of (1.8) which can be estimated by

c(R− r)−2

[∫
B
er(z)

a(|∇uδ|) dx+

∫
B
er(z)

b(|∇uδ|) dx
]

c(R− r)−2

[
1 +

∫
B
er(z)

a(|∇uδ|)|∇uδ|ω dx
]

as a consequence of (A2), Lemma 2.2 a) and (A5). Following the lines of [BrF] gives us
together with Lemma 2.2 b)∫

B
er(z)

a(|∇uδ|)|∇uδ|ω dx ≤ c(R− r)−α

[
1 +

∫
BR(z)

a(|ε(uδ)|)|ε(uδ)|ω dx
]

for a positive exponent α. Combining this with (2.2) and (2.3) we arrive at (by enlarging
β if necessary) ∫

Br(z)

a(| div(uδ)|)3 dx+

∫
Br(z)

b(|εD(uδ)|)3 dx

≤ c(R− r)−β

[
1 +

{∫
BR(z)

a(|ε(uδ)|)|ε(uδ)|ω dx
}3

]
. (2.4)

In a final step we argue similarly to [BrF] to see (κ > 0 is arbitary)∫
Br(z)

a(| div(uδ)|)3 dx+

∫
Br(z)

b(|εD(uδ)|)3 dx

≤ c(κ)(R− r)−ν + κ

∫
BR(z)

a(|ε(uδ)|)3 dx

for a ν > 0, where ω < 4/3 is needed. On account of convexity of a, (∆2)-condition, (A4)
and a suitable choice of κ we get∫

Br(z)

a(| div(uδ)|)3 dx+

∫
Br(z)

b(|εD(uδ)|)3 dx

≤ c(R− r)−ν +
1

2

[∫
BR(z)

a(| div(uδ)|)3 dx+

∫
BR(z)

b(|εD(uδ)|)3 dx

]
. (2.5)

To inequality (2.5) we may apply Lemma 3.1, p. 161, of [Gi] in order to see that
a(| div(u)|)3 and b(|εD(u)|) are in the space L1

loc(Ω) uniformly w.r.t. δ. This proves
Theorem 1.1 a).
During our calculations we have shown that

D2H(ε(uδ))(∂γε(uδ), ∂γε(uδ)) ∈ L1
loc(B) (2.6)

holds uniformly w.r.t. the approximation parameter. From (1.5) and (1.9) in combination
with (2.6) we deduce uniform W 2,2

loc -bounds on uδ, hence for suitable subsequences it holds

u ∈ W 2,2
loc (Ω,R3), uδ ⇁ u in W 2,2

loc (B,R3),

9



∇uδ → ∇u a.e. on B.

Moreover, we see that the functions

ψ1
δ :=

∫ | div(uδ)|

0

√
a′(t)

t
dt, ψ2

δ :=

∫ |εD(uδ)|

0

√
b′(t)

t
dt

are uniformly bounded in the space W 1,2
loc (B), thus we have weak W 1,2

loc (B)-convergence of
ψ1

δ and ψ2
δ with limits

ψ1 :=

∫ | div(u)|

0

√
a′(t)

t
dt, ψ2 :=

∫ |εD(u)|

0

√
b′(t)

t
dt,

which finally proves Theorem 1.1. Note that D2H(ε(uδ))(∂γε(uδ), ∂γε(uδ)) is bounded
from below by

a′(| div(u)|)
| div(u)|

|∂γ div(u)|2 +
b′(|εD(u)|)
|εD(u)|

|∂γε
D(u)|2

as a consequnce of the growth condition in (1.8) and we can sum up over γ ∈ {1, 2, 3}.�

Remark 2.1. Returning to the Caccioppoli inequality stated in Lemma 2.1 - now with
arbitrary matrix Q ∈ R3×3 - it is easy to see that the appropriate variant of (2.3) after
passing to the limit δ → 0 gives the inequality∫

B

η2
[
|∇ψ1|2 + |∇ψ2|2

]
dx ≤ c

∫
B

|∇η|2|D2H(ε(u))||∇u−Q|2 dx (2.7)

valid for any η ∈ C∞
0 (B) and all Q ∈ R3×3. Alternatively we may replace |∇ψ1|2 + |∇ψ2|2

by (or just |∇ε(u)|2) in this inequality. The reader should note that the l.h.s. of the
δ-version of (2.7) is treated via lower semicontinuity, whereas on the r.h.s. we use equi-
integrability in order to pass to the limit δ → 0, we refer to [Br2] (section 2) for details
in a related fashion.

3 Proof of Theorem 1.2

Now we prove the partial regularity theorem stated in Theorem 1.2, where we combine
the arguements from [BrF] and [Br2]. Let u denote a local J3-minimizer and suppose
w.l.o.g. that ω ∈ [1, 4

3
) in (A3). We further let

ã(t) := tωa(t), t ≥ 0 ,

and recall that ã is a N -function. From Lemma 2.2 and Theorem 1.1 b) follows that u is
an element of the space ∈ W 1

ea,loc(Ω; R3), hence the excess-function

E(x, r) :=

∫
Br

− |ε(u)− (ε(u))x,r|2 dy +

∫
Br

− ã(|ε(u)− (ε(u))x,r|) dy

for balls Br(x) b Ω is well-defined. Here and in what follows
∫
−f, (f) denote the mean

value of a function f .
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Lemma 3.1. Fix L > 0 and a subdomain Ω′ b Ω. Then there is a constant C∗(L) such
that for every τ ∈ (0, 1) one can find a number κ = κ(L, τ) with the following property:
if Br(x) ⊂ Ω′ and if

|(ε(u))x,r| ≤ L, E(x, r) ≤ κ , (3.1)

then it holds
E(x, τr) ≤ C∗(L)τ 2E(x, r) . (3.2)

Once having established Lemma 3.1, it is standard (see, e.g. Giaquinta’s textbook [Gi3])
to prove the desired partial regularity result. It turns out that the regular set Ω0 is given
by

Ω0 =

{
x ∈ Ω : sup

r>0
|(ε(u))x,r| <∞ and lim inf

r↓0
E(x, r) = 0

}
,

i.e. Lemma 3.1 shows that the set on the r.h.s. is open and ∇u ∈ C0,α there for any
0 < α < 1. Obviously Ω0 is a set of full Lebesgue measure.

Proof of Lemma 3.1: We argue by contradiction (compare [Fu1]). Let L > 0 and
choose C∗ = C∗(L) as outlined below. Then, for some τ ∈ (0, 1), there is a sequence of
balls Brm(xm) b Ω′ such that

|(ε(u))xm,rm| ≤ L, E(xm, rm) =: λ2
m → 0, as m→∞ , (3.3)

E(xm, τrm) > C∗τ
2λ2

m . (3.4)

Letting Am := (ε(u))xm,rm we define for z ∈ B1 := B1(0)

ũm(z) :=
1

λmrm

[
u(xm + rmz)− rmAmz

]
, (3.5)

um(z) := ũm(z)−Rm(z), (3.6)

where Rm is the orthogonal projection of ũm into the space of rigid motions with respect
to the L2(B,R3) inner product. We get from (3.3) using

ε(um)(z) =
1

λm

[
ε(u)(xm + rm(z))− Am

]
the relations

|Am| ≤ L,

∫
B1

− |ε(um)|2 dz + λ−2
m

∫
B1

− ã(λm|ε(um)|) dz = 1 . (3.7)

On the other hand, (3.4) reads after scaling∫
Bτ

− |ε(um)− (ε(um))0,τ |2 dz + λ−2
m

∫
Bτ

− ã(λm|ε(um)− (ε(um))0,τ |) dz > C∗τ
2 . (3.8)

After passing to suitable subsequences we obtain from (3.7)

Am →: A, um ⇁: u in W 1
2 (B1; R3) ,

11



λmε(um) → 0 in L2(B1; S) and a.e. , (3.9)

where obviously (ε(u))0,1 = 0. To prove the second convergence we need Korn’s inequality
(see for example [FS], Lemma 3.0.1 and 3.0.3 and in particular [AM], Proposition 2.6 (g)
and Proposition 2.7 (c)) which gives by the choice of Rm

‖um‖W 1,2(B) ≤ ‖ε(um)‖L2(B) .

If we argue as in [Br2] (note that our assumptions on a and b are a little bit stronger than
the conditions supposed there and of course monotonicity of a′(t)/t and b′(t)/t simplifies

the calculations), after (3.9), replacing ∇ by ε, ∇̃ by div and ∂n by εD we obtain the limit
equation: ∫

B1

D2H(A)(ε(u), ε(ϕ)) dz = 0.

valid for any ϕ ∈ C∞
0 (B1,R3). Quoting standard results on weak solutions of elliptic

systems with constant coefficients involving the symmetric gradient (see, e.g., [GM] or
[FS], Lemma 3.5, our situation is easier since we have no imcompressibility condition) will
give a contradiction to (3.8) as soon as we can show

ε(um) → ε(u) in L2
loc (B1,S) , (3.10)

λ−2
m

∫
Br

− ã (λm|ε(um)|) dz → 0, r < 1. (3.11)

For a detailed exposition of how to obtain the desired contradiction we refer to the com-
ments given in “Step 2: Strong convergence of the scaled functions” in [Br2]. In order to
prove (3.10) and (3.11) we return to (2.7) (with |∇ε(u)|2 in place of |∇ψ1|2 + |∇ψ2|2 on
the l.h.s.) and get after scaling and with appropriate choice of the testfunction η∫

Bt

|∇ε(um)|2 dz ≤ C(s− t)−2

∫
Bs

|D2H (λmε(um) + Am) ||∇um|2 dz (3.12)

valid for 0 < t < s < 1. On [λm|ε(um)| ≤ K] we have∣∣D2H (Am + λmε(um))
∣∣ |∇um|2 ≤ c(K)|∇um|2 ,

whereas on [λm|ε(um)| ≥ K] it holds (K large enough)∣∣D2H (λmε(um) + Am)
∣∣ |∇um|2

≤ c(K)

[
1 +

a′(λm| div(um)|)
λm| div(um)|

+
b′(λm|εD(um)|)
λm|εD(um)|

]
|∇um|2

≤ c(K)
[
|∇um|2 + λ−2

m ã (λm|∇um|)
]
.

Here we have used monotonicity of a′(t)/t and b′(t)/t, (1.8), as well as b(t) ≤ ã(t) for large
t (compare (A5)). Therefore, (3.12) implies on account of |∇2um| ≤ c|∇ε(um)|∫

Bt

|∇2um|2 dz ≤ c(s− t)−2

[∫
Bs

|∇um|2 dz + λ−2
m

∫
Bs

h̃ (λm|∇um|) dz
]
. (3.13)
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If we follow the lines of [BrF] (compare the calculations after (3.13), here one has to know
ω ≥ 1) we can bound the r.h.s. of (3.13) uniformly in m and therefore we obtain uniform
L2

loc-bounds on ∇2um, which shows (3.10) after passing to a subsequence.
In order to prove our claim (3.11) we introduce the auxiliary functions

Ψ1
m :=

1

λm

{∫ |λm div(um)+tr(Am)|

0

√
a′(t)

t
dt−

∫ | tr(Am)|

0

√
a′(t)

t
dt

}
,

Ψ2
m :=

1

λm

{∫ |λmεD(um)+AD
m|

0

√
b′(t)

t
dt−

∫ |AD
m|

0

√
b′(t)

t
dt

}
.

After scaling we can follow from (2.7) (0 < t < 1)∫
Bt

[
|∇Ψ1

m|2 + |∇Ψ1
m|2

]
dz ≤ c(t) (3.14)

since the r.h.s. of (3.13) is an upper bound. Following the lines of [Br2] (after (3.22))

(replacing ∇̃ by div and ∂n by εD) we easily obtain L2
loc-bounds on Ψ1

m and Ψ2
m and

therefore together with (3.14) it is shown that

‖Ψ1
m‖W 1

2 (Bt), ‖Ψ
2
m‖W 1

2 (Bt) ≤ c(t) <∞ , 0 < t < 1. (3.15)

With (3.15) we can repeat exactly the arguments presented after (3.17) in the paper [Br2]
ending up with (3.11). Note that the condition

a(t) ≥ t
ω
2
(n−2) (t� 1)

required in [Br2] is clearly satisfied in our context as a consequence of the superquadratic
growth of h and the hypothesis ω < 4/3. This completes the proof of Lemma 3.1. �

4 Proof of Theorem 1.3

Now we assume that the function h = h(x, t) satisfies (A1)-(A5) uniformly in x ∈ Ω.
Furthermore we suppose (A6)-(A8) to handle the x-dependence. The first step is to
approximate the variational problem (1.10) by a sequence of problems with sufficient
regular minimizers. The standard regularitzation which we have used in section 2 does
not converge in case of x-dependence on account of the anisotropic behaviour of the two
parts in the decomposition of the densitiy H. This problem was firstly discussed in [ELM],
note that if a and b behave like powers there is no problem (see [BF4], Remark 3 b) and
[BF5], proof of Lemma 2.1, those arguments work in our setting, too). In [BF2] the
authors develop a regularization function hM (M � 1) to approximate h (we clearly need
a function aM to approximate a and bM to approximate b) with the following poperties (a
proof is given in [Br3] and [BF2], for the (∇2)-condition in part c) have a look at (5.1))
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Lemma 4.1. Suppose that the functions a and b satisfy (A1)-(A6) uniformly in x ∈ Ω.
Then we have

a) hM ∈ C2(Ω× [0,∞)), hM(x, t) = h(x, t) for all t ≤ 3M/2 and

lim
M→∞

hM(x, t) = h(x, t) for all (x, t) ∈ Ω× R+
0

as well as hM ≤ h.

b) The regularization functions aM and bM satisfy (A1)-(A6) uniformly in x ∈ Ω and
uniformly in M .

c) aM and bM satisfy uniformly (∆2)- and (∇2)-conditions.

d) We have for h ∈ {a, b} and a positive µ independent of M uniformly in x ∈ Ω

µh′M(·, t)t ≤ hM(·, t) ≤ h′M(·, t)t for all t ≥ 0.

e) We have with HM(x, ε) := aM(x, | tr(ε)|) + bM(x, |εD|)

λ|τ |2 ≤ D2
εHM(·, ε)(τ, τ) ≤ ΛM |τ |2

for all ε, τ ∈ S with a uniform constant λ and a constant ΛM depending on M .

f) hM and HM satisfiy the growth-conditions stated in (1.5)-(1.9) uniformly in x ∈ Ω
and uniformly in M .

After these preparations we define uM as the unique minimizer of (B := BR(x0) b Ω,
where x0 ∈ Ω is arbitrary whereas we will choose R depending on ω very small, which
does not restrict our argumentation)

JM [w] :=

∫
B

HM(·, ε(w)) dx :=

∫
B

[
aM(·, | div(w)|) + bM(·, |εD(w)|)

]
dx

in u+W 1,2
0 (B,R3). The regularization uM has the following properties:

Lemma 4.2. a) uM belongs to the space W 2,2
loc (B,R3).

b) aM(·, | div(uM)|)3 and bM(·, |ε(uM |)3 are elements of L1
loc(B).

c) for γ ∈ {1, ..., n} ∂γuM solves∫
B

D2
εHM(·, ε(uM))(ε(w), ε(ϕ)) dx

+

∫
B

∂γDεHM(·, ε(uM)) : ε(ϕ) dx = 0 for all ϕ ∈ W 1,2
0 (B,R3)

with spt(ϕ) b B.
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d) uM is in W 1,2(B,R3) uniformly bounded and we have

sup
M

∫
B

HM(·, ε(uM)) dx <∞.

On account of Lemma 4.1 e) we consider the minimizer of an isotropic problem with
quadratic growth and can deduce part a) from [Br5] (Lemma 2.1, note that our situation
is easier since we do not restrict us to the constraint div(w) = 0). Part b) follows from
part a) by Sobolev’s inequality and the quadratic growth of hM stated in Lemma 4.1 e)
and f). Weak differentiablity of DεHM(ε(uM)) follows from [Br5] (Lemma 2.1) and so
∂γuM is clearly a solution if we restrict us to testfunctions ϕ ∈ C∞

0 (B,R3), hence part
c) follows by approximation as a consequnce of the growth conditions of D2

εHM(·, ε(uM))
and ∂γDεHM(·, ε(uM)) (see Lemma 4.1). We have by Lemma 2.1 a)

sup
M

∫
B

HM(·, ε(uM)) dx ≤ sup
M

∫
B

HM(·, ε(u)) dx ≤
∫

B

H(·, ε(u)) dx,

hence we receive d).
To end up with the preparations we have to show higher integrability of uM uniformly in
M similar to Lemma 2.2. Therefore we choose x̂ ∈ B such that

a(x̂, t) ≤ a(x, t) for all (x, t) ∈ B × [0,∞)

and define â(t) := a(x̂, t) (remember (A8)). Hence we get ε(u) ∈ Lba(Ω), since∫
B

H(·, ε(u)) dx <∞

and a ≤ cb.

Lemma 4.3. a) We get for big t and all x, y ∈ B

aM(x, t) ≤ ctθ|x−y|aM(y, t)

uniformly in M , which means (A7) extends to aM .

b) We have aM(·, |uM |)|uM |µ ∈ L1(B) uniformly, provided µ < 4.

Proof: Since a(x, t) behaves like ta′(x, t) and aM(x, t) behaves like ta′M(x, t) it is enough
to show the inequality for a′M instead of aM . We have for t� 1 (see [Br3])

a′M(x, t)

t
= η(t)

a′(x, t)

t
+

∫ t

0

{
−η

′(s)

s

}
a′(x, s) ds

≤ cη(t)tθ|x−y|a
′(y, t)

t
+ c

∫ t

0

{
−η

′(s)

s

}
sθ|x−y|a′(y, s) ds

≤ ctθ|x−y|a
′
M(x, t)

t
,
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where we used (A7) for a′ (η is a cut off function with η ≡ 1 on [0, 3M/2] and η′ ≤ 0).
This proves part a).
In order to prove part b) we define âM(t) := aM(x̂, t) and receive for all (x, t) ∈ B× [0,∞)

âM(t) ≤ caM(x, t) (4.1)

uniformly in M . To prove (4.1) we start with

â′M(t)

t
=
a′M(x̂, t)

t
= η(t)

a′(x̂, t)

t
+

∫ t

0

{
−η

′(s)

s

}
a′(x̂, s) ds

≤ cη(t)
a′(x, t)

t
+ c

∫ t

0

{
−η

′(s)

s

}
a′(x, s) ds = c

a′M(x, t)

t

since a(x, t) ≈ ta′(x, t). By Lemma 4.1 d) we can conclude (4.1). We receive from (4.1)

and Lemma 4.2 d) uniform boundedness of âM(|uM |)
1
β in Lβ(B,R3) for any β ∈ (1, 2).

By Lemma 4.1 d) we have∫
B

|∇âM(|uM |)
1
β |β dx ≤ c

∫
B

â′M(|uM |)|uM |1−β|∇uM |β dx.

Following the ideas of [BrF] we can control the r.h.s. by the W 1,baM -norms of uM (note
that the constants in the calculations do not depend on M , since all estimates are uniform
on account of Lemma 4.1). Hence we have to find a uniform bound for ‖∇uM‖LbaM . Using
Lemma 5.1 a) we receive (note that uM − u ∈ W 1,2

0 (Ω,R3))

‖∇uM‖LbaM ≤ c {‖ε(uM)‖LbaM + ‖∇u‖LbaM }

for a constant c, which does not depend on M (remember Lemma 4.1 c)). By (4.1) the
first norm on the r.h.s. is uniformly bounded: we have∫

B

âM(|ε(uM)|) dx ≤ c

∫
B

aM(x, |ε(uM)|) dx ≤ c

∫
B

HM(x, ε(uM)) dx ≤ c

independent of M (compare Lemma 4.2 d)). For the LbaM norms of ∇u we get by (4.1)
and Lemma 5.2 c)

‖∇u‖LbaM ≤ ‖∇u‖Lba ≤ c {‖∇u‖2 + ‖ε(u)‖Lba} .

In this calculation the first term is clearly finite because u ∈ W 1,2
loc (Ω,R3), whereas the

same is true for the second one on account of∫
B

â(|ε(u)|) dx ≤
∫

B

a(·, |ε(u)|) dx ≤ c

∫
B

H(·, ε(u)) dx <∞,

since u is a local minimizer and a ≤ cb. This means that âM(|uM |)
1
β is bounded in

W 1,β(B,R3) and we deduce from Sobolev’s embedding theorem âM(|uM |) ∈ Lχ(B) uni-
formly in M for all χ < 3. As a consequence of the superquadratic growth of aM we
obtain for all µ̃ < 4

âM(|uM |)|uM |eµ ∈ L1(B).
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For a given µ < 4 we can choose diam(B) small enough such that θ|x − y| ≤ (4 − µ)/2
which gives by part a) and the definition of âM (and (4.1))

aM(·, |uM |)|uM |µ ∈ L1(B).

This proves Lemma 4.3. �

Now we are going to modify the arguments of section 2 to get higher integrability in case
of x-dependence: we want to estimate∫

Br(z)

aM(·| div(uM)|)3 dx.

We notice there that all estimates we used in section 2 are now independent of M by
Lemma 4.1. If we follow the lines of the proof of Theorem 1.1 we have to add the term∫

B
er(z)

η2
1|∇xaM(x, | div(u)|)

1
2 |2 dx

in the second estimation, which behaves like∫
B
er(z)

η2
1aM(x, | div(u)|) dx

on account of Lemma 4.1 b) and is therefore uncritical. The second difference is that we
have to add (remember Lemma 4.2) c))

−
∫

B

∂γDεHM(·, ∂γε(uM)) : ε(η2
1∂γuM) dx

on the r.h.s. of the Caccioppoli-type inequality. Since h′M(t)/t behaves like h′′M(t) (see
Lemma 4.1 b)) we have no problems with this integral (compare the calculations after
(2.4) in [Br3] for details). We arrive at∫

Br(z)

aM(·, | div(uM)|)3 dx+

∫
Br(z)

bM(·, |εD(uM)|)3 dx

≤ c(R− r)−β

[
1 +

{∫
B
er(z)

aM(·, |∇uM)|)|∇uM |ω dx
}3

]
. (4.2)

In order to replace ∇ by ε on the r.h.s. we make the following calculations:∫
B
er(z)

aM(·, |∇uM)|)|∇uM |ω dx ≤ c

∫
B
er(z)

aM(z, |∇uM)|)|∇uM |ω+erθ dx

≤ c

∫
BR(z)

aM(z, |∇(η2uM)|)|∇(η2uM)|ω+erθ dx
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≤ c

∫
BR(z)

aM(z, |ε(η2uM))|)|ε(η2uM)|ω+erθ dx

Here we have used Lemma 4.3 a) and Lemma 5.1 with uniform constants. By the uniform
∆2-condition of aM (see Lemma 4.1 c)) we can extract ‖∇η2‖∞ and obtain the upper
bound (α is a positive exponent)∫

BR(z)

aM(z, |ε(uM))|)|ε(uM)|ω+erθ dx+ c(R− r)−α

∫
BR(z)

aM(z, |uM |)|uM |ω+erθ dx

≤ c

∫
BR(z)

aM(·, |ε(uM))|)|ε(uM)|ω+2Rθ dx+ c(R− r)−α

∫
BR(z)

aM(·, |uM |)|uM |ω+2Rθ dx

on account of Lemma 4.3 a). If we choose R small enough we are going to get uniform
bounds for the second integral by Lemma 4.3 b) and it follows from (4.2) for all R ≤ R0∫

Br(z)

aM(·, | div(uM)|)3 dx+

∫
Br(z)

bM(·, |εD(uM)|)3 dx

≤ c(R− r)−β

[
1 +

{∫
BR(z)

aM(·, |ε(uM)|)|ε(uM)|ω+2R0θ dx

}3
]
. (4.3)

By a suitable choice of R0 we get ω + 2R0θ < 4/3 since ω < 4/3, hence we can end up as
in section 2 to show

a(·, | div(uM)|)3, b(·, |εD(u)|)3 ∈ L1
loc(B). (4.4)

Furthermore we can show∫ | div(u)|

0

√
a′(·, t)
t

dt,

∫ |εD(u)|

0

√
b′(·, t)
t

dt ∈ W 1,2
loc (Ω) (4.5)

where we use the fact hat the x-derivates of the functions above can be estimated by the
functions itselfs by (A6). Moreover, we can deduce a Caccioppoli-type inequality similar
to Remark 2.1 if we add (compare [Br3], section 3)

T 1 :=

∫
B

a(·, | div(u)|)η2 dx,

T 2 :=

∫
B

a′(·, | div(u)|)|∇u− P |η|∇η| dx,

T 3 :=

∫
B

b(·, |εD(u)|)η2 dx,

T 4 :=

∫
B

b′(·, |εD(u)|)|∇u− P |η|∇η| dx

on the r.h.s. Now we come to the blow up procedure: There are four main differences to
the autonomous situation (the first two and the fourth are the same as in [Br3], where
find more details can be found).
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1) We have to “enlarge” the excess function, i.e. we define

ã(x, t) := tω+2R0a(x, t)

and R0 is the biggest number we allow for the radius which we assume to be small.
We get well-defineness of E(x, r) similar to the situation in [Br3] on account of (4.4)
together with (A5) and ω < 4/3.

2) Instead of (3.1) and (3.2) we have

|(ε(u))x,r| ≤ L, E(x, r) + rγ∗ ≤ κ , (4.6)

and
E(x, τr) ≤ C∗(L)τ 2

[
E(x, r) + rγ∗

]
. (4.7)

This is to guarantee that λ−1
m rm converge to zero.

3) Now we can prove (3.3)-(3.9) as done before (note that ã now depends on xm + rmz
in the scaled version). In order to show the strong convergence from (3.10) and
(3.11) we have to bound

λ−2
m

∫
Bs

a (xm + rmz, λm|∇um|) |λm∇um|ω dz

≤ λ−2
m

∫
Bs

a (xm, λm|∇um|) |λm∇um|ω+R0 dz,

where we used rm ≤ R0 and (A7). We obtain for ˜̃a(t) := a(xm, t)t
ω+R0 and hλ(t) :=

λ−2h(λt)

‖λm∇um‖e
eaλm

≤ c(s) ‖λmum‖e
eaλm

+ c ‖λmε(um)‖
e

eaλm

if we use Lemma 4.4 from [BrF]. In this calculation the first term can be bounded
as done before and for the second integral we receive the estimate

λ−2
m

∫
Bs

˜̃a(|λmε(um)|) dz ≤ λ−2
m

∫
Bs

ã(|λmε(um)|) dz

as a consequence of (compare (A7))˜̃a(t) ≤ a(xm + rmz, t)t
ω+2R0 = ã(xm + rmz, t).

So we find uniform bounds by the obvious version of (3.7). This finally proves the
strong convergence of the scaled functions. If we define functions ψ1

m and ψ2
m similar

to section 3, we have to estimate additonal x-derivatives, but they are bounded by
ψ1

m and ψ2
m itselfs on account of (A6).

4) In order to get the continuous growth condition after iterating the blow up lemma
we have to use (A8). Details of this arguments are presented in [Br3], end of section
3.
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5 Appendix

In this section we collect some auxiliary material concerning Korn-type inequalities, which
are crucial tools in this work. We start with

Lemma 5.1. a) Let Ω denote a bounded Lipschitz domain in Rn and let ϕ denote a
N-function of class (∆2) ∩ (∇2) (see, e.g., [RR] for a definition). Then there is a
constant C = C(n, ϕ,Ω) such that∫

Ω

ϕ(|∇w|) dz ≤ c

∫
Ω

ϕ(|ε(w)|) dz

holds for any w ∈ W 1,ϕ
0 (Ω,Rn). C only depends on the (∆2)- and (∇2)-condition of

ϕ.

b) In the case that Ω is a ball BR(x0) the constant C has the form

C = c(n, ϕ)R−β

for a positive exponent β.

The proof of Lemma 5.1 a) is presented in [Fu3], part b) can easily be derived from this
first inequality by scaling and using the (∆2)-property of ϕ. The proof in [Fu3] is based
on a regularity theorem for Poisson equations in Orlicz spaces from Jia, Li and Whang
[JLW]. From the calculations after (3.23) in [JLM] one can see that the constant depends
on n, Ω, k and k where k > 1 is the constant in

ϕ(2t) ≥ kϕ(t), t ≥ 0.

�

Suppose now that h satisfyies(A1)-(A3). Then we have

th′(t) =

∫ t

0

d

ds
[sh′(s)] ds = h(t) +

∫ t

0

sh′′(s) ds ≥ 2h(t),

and in conclusion

a(h) := inf
t>0

h′(t)t

h(t)
≥ 2. (5.1)

Therefore h is a N -function of (global) type (∇2), which follows from Corollary 4 on p.
26 in [RR], and we have (assuming (A1)-(A3) in the following)

Lemma 5.2. a) Let u ∈ Lh(Ω) be a function such that ε(u) ∈ Lh(Ω), then u belongs
to the space W 1,h(Ω) and we have

‖u‖W 1,h(Ω) ≤ c
{
‖u‖Lh + ‖ε(u)‖Lh(Ω)

}
for a positive constant c only depending on the (∆2)-condition of h (and Ω and n).
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b) Let u ∈ L2(Ω) be a function such that ε(u) ∈ Lh(Ω), then we have

‖u− γ‖Lh(Ω) ≤ c ‖ε(u)‖Lh(Ω)

for a constant c depending on h and Ω. Thereby γ is the orthogonal projection of u
into the space of rigid motions w.r.t. the L2(Ω) inner product.

c) Let u ∈ L2(Ω) be a function such that ε(u) ∈ Lh(Ω), then the we have

‖u‖Lh(Ω) ≤ c
{
‖u‖L2(Ω) + ‖ε(u)‖Lh(Ω)

}
for a constant c depending on h and Ω.

Proof: In [MM] the authors prove the representation

∇u = Lu(u) + Lε(ε(u))

where the components of Lu and Lε are singular integral operators whose continuity in
Lp(Ω,R3) (1 < p <∞) is established in [CZ]. This means we have for all 1 < p <∞ and
L ∈ {Lu, Lε}

‖L(w)‖p ≤ c(p) ‖L(w)‖p

for all w ∈ Lp(Ω,R3). Now we have to find some exponents p1, p2 ∈ (1,∞) with the
following properties: the function h(t)/tp1 increases and the function h(t)/tp2 decreases
and we have positive constants k1 and k1 independent of t such that∫ t

0

h(s)

sp1

ds

s
≤ k1

h(t)

tp1
, (5.2)∫ ∞

t

h(s)

sp2

ds

s
≤ k1

h(t)

tp2
. (5.3)

If we have found them, we can quote the interpolation arguments of Torchinsky [To] to
follow

‖L(w)‖Lh(Ω) ≤ c ‖L(w)‖Lh(Ω)

for all w ∈ Lh(Ω,R3). Thereby c depends on p1, p2, the norms of the operators Lu, Lε in
the space Lp(Ω) and the constants k1, k1 given in (5.2) and (5.3).
If we have a look at the proof of Lemma 4.3 in [BrF] (choose λ = 1 and ω = 0), we see
that every exponent p2 > k is a possible choice. Let p1 ∈ (1, 2) than we have(

h(t)

tp1

)′

=
tp1−1(h′(t)t− p1h(t))

t2p1
≥ t−1(2− p1)h(t)

tp1
≥ 0

by (5.1). Now we prove (5.2): by (A3) and (1.7) we get∫ t

0

h(s)

sp1

ds

s
≤

∫ t

0

h′(s)

s
s1−p1 ds ≤ h′(t)

t

∫ t

0

s1−p1 ds ≤ k

2− p1

h(t)

tp1
.
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Altogether, part a) is shown.
In order to prove part b) we use indirect arguments similar to Lemma A. 3.1 (3.4) in [FS].
Let

V ∗ :=

{
v ∈ Lh(Ω) : ε(v) ∈ Lh(Ω),

∫
Ω

vw dx = 0 for all w in V∗

}
where V∗ is the space of rigid motions. Now we assume that the inequality

‖u‖Lh(Ω) ≤ c ‖ε(u)‖Lh(Ω) (5.4)

for u ∈ V ∗ is not right, than we find a sequence (uk) ⊂ Lh(Ω) such that

‖uk‖Lh(Ω) ≥ k ‖ε(uk)‖Lh(Ω) . (5.5)

We define
vk :=

uk

‖uk‖Lh(Ω)

and deduce from part a) and (5.5) uniform boundedness of vk in W 1,h(Ω). Reflexivity of
this space, which follows from (∆2)- and (∇2)-condition (see [Ad], Theorem 8.28), gives

vk ⇁: v ∈ in W 1,h(Ω).

This suggests v ∈ V ∗ (remember Lh(Ω) ↪→ L2(Ω) is continuous). From [Ad], Theorem
8.32, we deduce compactness of the embedding W 1,h(Ω) ↪→ Lh(Ω) provided∫ ∞

1

h−1(t)

t
n+1

n

dt <∞ (5.6)

(So we have (27) on p. 248 in [Ad] and (26) on p. 248 follows from superquadratic growth
if n ≥ 3). To prove the compactness we have to show according to Adams that h growth
more slowely then h∗ given by

h∗(t) =

∫ t

0

h−1(τ)

τ
n+1

n

dτ =

∫ h−1(t)

0

τh′(τ)

h(τ)
n+1

n

dτ ≤ c

∫ h−1(t)

0

1

τ
2
n

dτ (5.7)

near infinity (using (1.7) and (1.5)). This follows from

h−1
∗ (h(t)) ≤ ct1−

2
n ,

which is a consequence of (5.7). Hence

vk → v in Lh(Ω).

By definition of vk we can follow

‖v‖Lh(Ω) = 1. (5.8)
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On the other hand we receive from (5.5)

ε(vk) → 0 in Lh(Ω)

which means we have v ∈ Vx and therefore v = 0, which contradicts (5.8). Therefore (5.4)
is right and by orthogonal projection we obtain part b), if h satisfies (5.6).
Let us have a look at the other situation, i.e.∫ ∞

1

h−1(t)

t
n+1

n

dt = ∞. (5.9)

Then we deduce from [Ad], (39) on p. 253

‖u‖∞ ≤ c
{
‖u‖Lh(Ω) + ‖∇u‖Lh(Ω)

}
≤ c

{
‖u‖Lh(Ω) + ‖ε(u)‖Lh(Ω)

}
(5.10)

where we used a) for the last inequality. In the following we estimate the Lh-norm of u:
we have on account of (1.5) and (1.6) for any κ > 0

‖u‖Lh(Ω) ≤ c
{
‖u‖2 + ‖u‖q

}
≤ c

{
‖u‖2 + ‖u‖θ

χ ‖u‖
1−θ
2

}
≤ κ ‖u‖χ + c(κ) ‖u‖2 ≤ κc(Ω) ‖u‖∞ + c(κ) ‖u‖2

Here χ > q is an arbitrary exponent and θ ∈ (0, 1) the suitable number from the inter-
polation inequality (compare [GT], 7.9, p. 146). Inserting this into (5.10) and absorbing
the κ-term on the l.h.s. we get

‖u‖∞ ≤ c
{
‖u‖2 + ‖ε(u)‖Lh(Ω)

}
, (5.11)

which proves part c) if (5.9) is satisfied. If u ∈ V ∗ we receive from (5.11)

‖u‖Lh(Ω) ≤ c
{
‖ε(u)‖2 + ‖ε(u)‖Lh(Ω)

}
≤ c ‖ε(u)‖Lh(Ω)

by [FS] Lemma 3.0.3 (ii) and (1.5). We receive part b) by orthogonal projection.
In a last step we show part c) if (5.6) is satisfied. In this case we have shown part b).
Note that we have the representation

γ(z) =
∑

i

(∫
Ω

uRi dx

)
Ri(z),

where (Ri) is an orthonormal base of the space of rigid motions. So we obtain

‖γ‖∞ ≤ c ‖u‖2

for a constant c depending on (Ri), hence we deduce part c) from part b). �

Remark 5.1. Note that we only used the first inequality in (A2) to prove Lemma 5.1,
the second one is not necessary if one supposes a global (∆2)-condition for h.
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[NH] Necǎs, J., Hlaváček, I.: Mathematical theory of elastic and elasto-plastic bodies:
an introduction. Elsevier Publishing Company, Amsterdam-Oxford-New York,
1981.

[RR] Rao, M.M., Ren, Z.D. (1991): Theory of Orlicz spaces. Marcel Dekker, New
York- Basel-Hongkong.

[Se1] Seregin, G.: On the regularity of weak solutions of variational problems in plas-
ticity theory. Algebra i Analiz 2 (1990), 121-140 (in Russian). English transla-
tion: Leningrad Math. J. 2 (1991), 321-338.

25



[Se2] Seregin, G.: On the regularity of minimizers of certain variational problems
in plasticity theory. Algebra i Analiz 4 (1992), 181-218 (in Russian). English
translation: St. Petresburg Math. J. 4 (1993), 989-1020.

[To] A. Torchinsky (1976/77): Interpolation of operations in Orlicz classes. Studia
Math. 59, 177-207.

26


