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A note on inner functions
and spherical isometries

Michael Didas

A commuting tuple T = (T1, . . . , Tn) ∈ B(H)n of bounded linear Hilbert-space
operators is called a spherical isometry, if

∑n

i=1
T ∗

i Ti = 1H . In [12] Prunaru
initiated the study of T -Toeplitz operators which he defines to be the solutions
X ∈ B(H) of the fixed-point equation

∑n

i=1
T ∗

i XTi = X . Using results of
Aleksandrov on abstract inner functions we show that X ∈ B(H) is a T -
Toeplitz operator precisely when X satisfies J∗XJ = X for every isometry J in
the unital dual operator algebra AT ⊂ B(H) generated by T . As a consequence
we deduce that a spherical isometry T has empty point spectrum if and only if
the only compact T -Toeplitz operator is the zero-operator. Moreover we show
that if σp(T ) = ∅, then an operator which commutes modulo the finite-rank
operators with AT is a finite-rank perturbation of a T -Toeplitz operator.

§1 Introduction

A spherical isometry is a commuting tuple T = (T1, . . . , Tn) ∈ B(H)n of Hilbert-
space operators satisfying

T ∗
1 T1 + T ∗

2 T2 + . . . + T ∗
nTn = 1H .

Since this condition is modelled after the defining function for the boundary ∂Bn of
the Euclidean unit ball Bn in C

n, one should expect that the operator theory of such
a tuple T is closely related to the function theory on Bn. The desired link is settled
by a result of Athavale (Proposition 2 in [2]) saying that each spherical isometry is
subnormal. More explicitly, for each spherical isometry T ∈ B(H)n there exist a
Hilbert space K ⊃ H and a spherical unitary, i.e. a commuting tuple U ∈ B(K)n

of normal operators with Taylor-spectrum σ(U) ⊂ ∂Bn, such that Ti = Ui|H for
i = 1, . . . , n. Replacing K by

∨
α∈Nn

0

(U∗)αH, if necessary, we may assume that U
is the minimal normal extension of T which is known to be unique up to unitary
equivalence.

Let E(·) denote the projection-valued spectral measure for U . If we fix a separating
unit vector z ∈ H for W ∗(U), then the probability measure µ = 〈E(·)z, z〉 is a
scalar-valued spectral measure of U . Since µ is supported by the Taylor spectrum
of U , we may regard µ as a measure on ∂Bn. This measure will in the sequel be
referred to as ”the” scalar-valued spectral measure associated with T . (Note that µ
is unique modulo mutually absolute continuity.) The multi-variable spectral theory
for commuting tuples of normal operators asserts the existence of an isomorphism
of von Neumann algebras

ΨU : L∞(µ) → W ∗(U) ⊂ B(K)

mapping the coordinate functions zi to the operators Ui (i = 1, . . . , n). If we define
H∞(µ) to be the dual subalgebra

H∞(µ) = {[p|∂Bn]µ : p ∈ C[z]}
w∗

⊂ L∞(µ),

where z = (z1, . . . , zn), and write

AT = {p(T ) : p ∈ C[z]}
w∗

⊂ B(H)
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for the unital dual operator algebra generated by the components of T , then it is
well known that the map ΨU induces a dual algebra isomorphism (i.e. isometric
isomorphism and weak∗ homeomorphism)

γT : H∞(µ) → AT , f 7→ ΨU (f)|H

extending the polynomial functional calculus of T in a unique way (see Conway [4],
Proposition 1.1). It is a simple and well-known fact that this isomorphism yields a
correspondence between so-called µ-inner functions, i.e. elements

θ ∈ H∞(µ) with |θ| = 1 µ-a.e. on ∂Bn,

and isometric operators related to T . For completeness sake, we give a proof.

1.1 Lemma. Let T ∈ B(H)n be a spherical isometry with associated spectral mea-
sure µ ∈ M+(∂Bn). An operator J ∈ AT is an isometry if and only if J = γT (θ)
with some µ-inner function θ ∈ H∞(µ).

Proof. Note that, for every x ∈ H and every θ ∈ H∞(µ), we have

‖γT (θ)x‖2 = ‖ΨU (θ)x‖2 = 〈ΨU (|θ|2)x, x〉.

If θ is inner, we can extend the preceding line by . . . = ‖x‖2 proving that γT (θ) is
an isometry. For the reverse direction, remember that µ = 〈E(·)z, z〉 with z ∈ H
being a separating vector for U . So if J ∈ AT is assumed to be an isometry and
J = γT (θ) with θ ∈ H∞(µ), then we obtain by the above equality applied to x = z
that

0 = ‖z‖2 − 〈ΨU (|θ|2)z, z〉 = 〈ΨU (1 − |θ|2)z, z〉 =

∫

∂Bn

(1 − |θ|2)dµ.

The identity ‖θ‖∞,µ = ‖J‖ = 1 shows that the integrand 1 − |θ|2 is non-negative,
hence it must be zero (µ-a.e.), proving that θ is indeed inner. �

Via this correspondence, richness and approximation results for µ-inner functions
immediately yield informations about the structure of the dual algebra AT . The
aim of the next section is therefore to collect and extend some known approximation
devices for µ-inner functions.

§2 Approximation by inner functions

The results in this section will be formulated in a more general setting than it is
needed for spherical isometries. In the sequel we may–without any additional effort–
replace the sphere ∂Bn by a general compact subset K ⊂ C

n. We write M+(K) for
the set of all finite positive regular Borel measures on K and C(K) for the space of
all C-valued continuous functions on K.

Given a unital closed subalgebra A ⊂ C(K) containing the polynomials C[z]|K in
n-complex variables z = (z1, . . . , zn) and a measure µ ∈ M+(K), the triple (A,K,µ)
is called regular in the sense of Aleksandrov [1], if for every function ϕ ∈ C(K) with
ϕ > 0, there exists a sequence (fk) in A with |fk| < ϕ for all k and limk→∞ |fk| = ϕ
µ-a.e. on K. Obviously, if ν ∈ M+(K) is absolutely continuous with respect to
µ and (A,K,µ) is regular, then so is (A,K, ν). For a regular triple (A,K,µ) the
support of µ is necessarily contained in the Shilov boundary S(A) of A. Remember
that S(A) is the smallest closed set S ⊂ K with the property that ‖f‖∞,K = ‖f‖∞,S

for every f ∈ A.
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To give an example of a regular triple relevant for spherical isometries, let

A(Bn) = {f ∈ C(Bn) : f |Bn is holomorphic} ⊂ C(Bn)

be the ball algebra. Setting K = ∂Bn and A = A(Bn)|K, which is isomorphic to
A(Bn) by the maximum-modulus principle, Aleksandrov showed in [1] that the triple
(A,K,µ) is regular for every finite regular Borel measure µ ∈ M+(∂Bn).

Before we can formulate Aleksandrov’s existence result of inner functions for regular
triples, we have to gather some more notation. Recall that a measure µ ∈ M+(K)
is said to be continuous, if µ({ζ}) = 0 for every ζ ∈ K and discrete, if there is a
countable set ∆ ⊂ K with µ(K \∆) = 0. Note that, for each measure µ ∈ M+(K),
the set ∆ = {ζ ∈ K : µ({ζ}) > 0} is countable, and µ possesses a decomposition
µ = µd + µc (µd⊥µc) into a discrete and a continuos part defined by

µd(ω) = µ(ω ∩ ∆) and µc(ω) = µ(ω ∩ ∆c)

for every Borel subset ω ⊂ K. The elements of ∆ are called (one-point) atoms of µ.

In the sequel, we write H∞
A (µ) for the weak∗-closure of A in L∞(µ) and H2

A(µ) for
the norm closure of A in L2(µ). We write

Iµ = {θ ∈ H∞
A (µ) : |θ| = 1 µ-a.e.} ⊂ L∞(µ)

for the set of µ-inner functions. The following approximation theorem (see Corollary
29 in [1]) shows that, for a regular triple based on a continuous measure, the algebra
H∞

A (µ) has a rich supply of inner functions.

2.2 Proposition. (Aleksandrov) Let µ ∈ M+(K) be a continuous measure such
that the triple (A,K,µ) is regular. Then the weak∗ closure of the set

Iµ = {θ ∈ H∞
A (µ) : |θ| = 1 µ-almost everywhere}

contains the L∞(µ)-equivalence classes of all functions f ∈ A with |f | ≤ 1 on K.

This immediately implies that H∞
A (µ) = LH

w∗

Iµ. �

Since L1(µ) is separable, the weak∗-topology on the closed unit ball B of L∞(µ) is
metrizable. Since Iµ ⊂ B, the weak∗-closure and the weak∗-sequential closure of Iµ

in L∞(µ) coincide. Thus, to every f ∈ A with ‖f‖∞,K ≤ 1 there is even a sequence

of inner functions θk ∈ Iµ (k ∈ N0) converging to f (weak∗). As a consequence,
the weak∗-closure in the above density relations may be replaced by the sequentially
weak∗-closure.

If µ = µc + µd is the decomposition of an arbitrary measure into its discrete and
continuous part (as descriebd above) then there are natural isometric isomorphisms

L2(µc) ⊕ L2(µd)
σ2−→ L2(µ) and L∞(µc) ⊕ L∞(µd)

σ∞−→ L∞(µ)

mapping (f, g) 7→ fχ∆+gχK\∆ with inverse given by [f ]µ 7→ ([f ]µd
, [f ]µc). Concern-

ing the induced splitting results for the subspaces Hp
A(µ) ⊂ Lp(µ), the regularity

allows one to show that the Hp
A(µd)-part is indeed an Lp-summand.

2.3 Proposition. In case of a regular triple (A,K,µ), the decompositions

H2
A(µ) = L2(µd) ⊕ H2

A(µc) and H∞
A (µ) = L∞(µd) ⊕ H∞

A (µc)

hold.
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Proof. Fix an arbitrary ζ ∈ ∆ and choose a sequence of functions gk ∈ A corre-
sponding to ε = 1/k in the following lemma. It is not hard to show (cp. Eschmeier
[9] for the H2-case) that gk converges to χ{ζ} both in the L2(µ)-norm and the weak∗-
topology of L∞(µ). This settles the non-trivial inclusion ”⊃”. �

2.4 Lemma. Let (A,K,µ) be a regular triple, and {ζ} ⊂ K be a one-point atom of
µ. Then, for each ε > 0, there exist an open neighborhood U of ζ with µ(U \{ζ}) < ε
and a function g ∈ A satisfying

|g(ζ) − 1| < ε, |g| < ε (on K \ U) and |g| ≤ 1 on K.

Proof. The outer-regularity of the Borel measure µ allows us to choose an open
neighborhood U of ζ in such a way that µ(U) < µ({ζ}) + ε. By the Urysohn-
Tietze extension theorem there is a positive continuous function ϕ : K → [ε, 1] with
ϕ(ζ) = 1 and ϕ|K \ U = ε. Since (A,K,µ) is regular, there exists a sequence of

functions (gj) in A such that |gj | < ϕ on K and |gj |
j→∞
−→ ϕ µ-a.e. on K. Since

{ζ} has positive µ-measure, this implies that |gj(ζ)| → 1 as j → ∞. Therefore the
function g = αgk, where k ∈ N is sufficiently large and α ∈ C with |α| = 1 is suitably
chosen, has all the desired properties. �

The above decomposition of H∞
A (µ) allows us to prove an approximation result

similar to Proposition 2.2 without any continuity assumption on the underlying
measure. Though weaker than the original one, the assertion is still suitable for
applications in operator theory.

2.5 Proposition. For every regular triple (A,K,µ) without any continuity assump-
tion on µ, the assertion

H∞
A (µ) = LH

w∗

Iµ

holds true. Moreover, the weak∗ closure on the right hand side may be replaced by
the sequentially weak∗ closure.

Proof. It suffices to show that every f ∈ A with ‖f‖∞,K ≤ 1 belongs to the
weak∗ closure on the right-hand side. The direct sum representation H∞

A (µ) =
L∞(µd) ⊕ H∞

A (µc) allows us to decompose [f ]µ = [g]µd
⊕ [h]µc with g = fχ∆ and

h = fχK\∆, where ∆ denotes the set of all (one-point) atoms of µ. By the cited result
of Aleksandrov (see Proposition 2.2), the continuous part [h]µc can be approximated
in the weak∗ topology of L∞(µc) by a sequence (θk)k≥0 of µc-inner functions θk ∈
Iµc ⊂ H∞

A (µc), k ≥ 0. For later use, we choose a representative hk : K → C of
θk ∈ L∞(µ) with hk|∆ = 0 (k ≥ 0).

To treat the discrete part, observe that |Re g|, |Im g| ≤ |f | ≤ 1. So we may define
four bounded measurable functions u+, u−, v+, v− : K → C by the formulas

u± = Re g ± i
√

1 − (Re g)2, v± = Im g ± i
√

1 − (Im g)2.

If u is any of these four functions u±, v±, then we have by construction that u = 0 on
K \∆ and |u|2 = uu = 1 on ∆. Hence, the equivalence classes [u±]µd

and [v±]µd
are

µd-inner functions since they are unitary elements of L∞(µd) = H∞
A (µd). Moreover,

g = 1
2(u+ + u−) + i

2 (v+ + v−).

To finally solve the approximation problem stated in the assertion, we define four
sequences of inner functions in H∞

A (µ) by

η1
k = [u+]µd

⊕ [hk]µc , η2
k = [u−]µd

⊕ [hk]µc , η3
k = [v+]µd

⊕ [hk]µc ,
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η4
k = [v−]µd

⊕ [(−hk)]µc (k ≥ 0),

where ⊕ refers to the direct sum H∞
A (µ) = L∞(µd) ⊕ H∞

A (µc). Obviously, the
sequence (fk) with

fk =
1

2
(η1

k + η2
k) +

i

2
(η3

k + η4
k) (k ≥ 0)

belongs to LH(Iµ) and has f as its weak∗-limit. �

2.6 Corollary. In the situation of the preceding corollary, we also have

L∞(µ) = LH
w∗

{η · θ : η, θ ∈ Iµ}.

Proof. Since the complex polynomials in z = (z1, . . . , zn) and z̄ are weak∗-dense in
L∞(µ), it suffices to show that, for arbitrary multi-indices α, β ∈ N

n
0 , the monomials

p(z) = zαz̄β are in the weak∗ closure of the set LH{η · θ : η, θ ∈ Iµ}. According to
the previous proposition, there exist sequences (fk) and (gk) in LH(Iµ) such that

fk
k
→ zα and gk

k
→ zβ. Obviously, the sequence (fk · gk) belongs to LH{η · θ :

η, θ ∈ Iµ}, and using the separate weak∗ continuity of the multiplication in L∞(µ)
and the weak∗ continuity of the complex conjugation on L∞(µ), one can show that

fkgk
k
→ p, as desired. �

§3 Applications to spherical isometries

In order to use the approximation results established in the preceding section for our
purposes, we have to set there K = ∂Bn and A = A(Bn)|∂Bn. Since the polynomials
in z = (z1, . . . , zn) are norm-dense in A(Bn) the dual algebras H∞

A (µ) (from the last
section) and H∞(µ) (defined in the introduction) coincide. Note that we freely make
use of the symbols U , ΨU , γT defined in the introduction.

A) Reflexivity revisited. With every subset S ⊂ B(H) one associates a
WOT -closed unital operator algebra called AlgLat(S ) as the set of all operators
C ∈ B(H) that leave invariant every closed S -invariant subspace of H. The family
S is called reflexive if the identity

AlgLat(S ) = WS

holds with WS being the smallest WOT -closed subalgebra containing 1H and S . A
commuting tuple T ∈ B(H)n is called reflexive, if AlgLat(T ) = WT , where (in abuse
of notation) we use the symbol T also to denote the subset T ⊂ B(H) consisting of
the different entries of the tuple T .

The fact that spherical isometries are reflexive has been shown by the author in [7].
The proof given there can be shortened by using Proposition 2.5. Note that this
proposition and Lemma 1.1 guarantee that

AT = LH
w∗

IT

if we define IT = {J : J is an isometry in AT }. As a family of commuting isome-
tries, IT is reflexive by a result of Bercovici (see Theorem 2.4 in [3]). Using this we
obtain

AlgLat(T ) = AlgLat(AT ) = AlgLat(IT ) = WIT
⊂ ran(γT )

WOT
= WT ,
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without a decomposition of T into a unitary and pure part as it was necessary in
[7].

B) Toeplitz operators. Recall that a classical result of Brown and Halmos
says that an operator X ∈ B(H2(D)) is a Hardy-space Toeplitz operator over the
unit disc D if and only if T ∗XT = X where T = Mz denotes the multiplication with
z which is an isometric operator on H2(D). Generalizing this algebraic condition,
Prunaru [12] defines the set of all Toeplitz operators with respect to a spherical
isometry T ∈ B(H)n to be

T (T ) = {X ∈ B(H) :

n∑

i=1

T ∗
i XTi = X}.

Prunaru even extends this definition to commuting families of spherical isometries:
Given an arbitrary index set Γ and natural numbers nα ∈ N (α ∈ Γ), a family
F = (Tα)α∈Γ of multi-operators is called a commuting family of spherical isometries,
if each operator tuple Tα = (Tα,1, . . . , Tα,nα) ∈ B(H)nα is a spherical isometry and
all operators Tα,j with α ∈ Γ and 1 ≤ j ≤ nα commute with each other. Following
[12] the set of all F -Toeplitz operators is then defined to be

T (F ) =
⋂

α∈Γ

T (Tα).

One of the main results of Prunaru [12] (see part (3) of Theorem 2.9 therein) is the
identification of the set of all F -Toeplitz operators as

T (F ) = {PHY |H : Y ∈ (F̂ )′}

where F̂ = (Nα) ⊂ B(K) denotes the minimal normal extension of the family

F = (Tα) ⊂ B(H), and (F̂ )′ =
⋂ (

(Nα,j)
′ : α ∈ Γ, 1 ≤ j ≤ nα

)
⊂ B(K) denotes

the commutant of F̂ .

Now let us return from this abstract setting to a concrete situation, namely the
Hardy space H = H2(Bn) over the unit ball in C

n (with respect to the surface
measure on the sphere) on which the multiplication tuple T = (Mz1

, . . . ,Mzn) ∈
B(H)n constitutes a spherical isometry. Guo and Wang found out (see Proposition
2.1 in [11]) that the T -Toeplitz operators are characterized by the condition that
M∗

η XMη = X for every inner function η ∈ H∞(Bn). The following can be thought
of as the abstract analogue of this result in the context of spherical isometries.

3.7 Proposition. Let T ∈ B(H)n be a spherical isometry. An operator X is a
T -Toeplitz-operator, i.e. satisfies

∑n
i=1 T ∗

i XTi = X, if and only if

J∗XJ = X for every isometry J in the dual algebra AT .

Proof. With the notations defined above consider the operator-families IT =
(γT (θ))θ∈Iµ

on H and IU = (ΨU (θ))θ∈Iµ
on K. Note that IT consists of com-

muting isometries, IU consists of commuting unitary operators and IU is a normal
extension of IT . From the density assertion established in Corollary 2.6 we deduce
that

W ∗(U) = ΨU(L∞(µ)) = LH
w∗

{A∗B : A,B ∈ IU}.

This implies that every subspace M ⊂ K which is reducing for IU also reduces U ,
and hence IU is the minimal normal extension of IT . Moreover, Proposition 2.5
asserts that

AU = ΨU (H∞(µ)) = LH
w∗

(IU ),
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proving the commutants (U)′ = (AU )′ = (IU )′ to be equal. By Theorem 2.9 in
Prunaru [12] we obtain

T (T ) = PH(U)′|H = PH(IU )′|H = T (IT ).

Now a look at Lemma 1.1 finishes the proof. �

Our next aim is to show that the decomposition µ = µc +µd of the spectral measure
µ ∈ M+(∂Bn) associated with a spherical isometry T ∈ B(H)n into a continuous and
a discrete part (see Section 2 for details) gives rise to an orthogonal decomposition
of H = Hc ⊕ Hd which is reducing for every T -Toeplitz operator. Before proving
this, we recall from the classical spectral theory of subnormal tuples that µ({ζ}) > 0
for some ζ ∈ C

n if and only if ζ is an eigenvalue of the minimal normal extension
U ∈ B(K)n of T , and that in this case the operator Pζ = ΨU (χ{ζ}) ∈ B(K) is the
orhogonal projection onto the joint eigenspace

⋂n
i=1 ker(ζi −Ui). (Here χ{ζ} denotes

the characteristic function of the one-point atom {ζ}.) Using the minimality of U
it is not hard to show that U and T have the same eigenvalues, i.e.

σp(T ) = σp(U) = {ζ ∈ C
n : µ({ζ}) > 0}),

where σp stands for the point spectrum of the underlying tuple, and that the cor-
responding eigenspaces of T and U coincide. In the sequel, we abbreviate them
by

Hζ
d =

n⋂

i=1

ker(ζi − Ti) =

n⋂

i=1

ker(ζi − Ui) (ζ ∈ σp(T )),

and write Hd =
⊕

ζ∈σp(T ) Hζ
d , where the d in the notation refers to the discrete part.

The orthogonal complement of Hd is denoted by Hc = H ⊖ Hd.

A spherical isometry T ∈ B(H)n for which Hd is zero will be called continuous. So
T is continuous if and only if µ is a continuous measure.

3.8 Proposition. Let T ∈ B(H)n be a spherical isometry. The orthogonal decom-

position H = Hc ⊕
⊕

ζ∈σp(T ) Hζ
d reduces all T -Toeplitz operators and gives rise to a

direct sum decomposition

T (T ) = T (Tc) ⊕
⊕

ζ∈σp(T )

B(Hζ
d ),

where Tc = T |Hc ∈ B(Hc)
n is a continuous spherical isometry.

Proof. Let ζ ∈ C
n be an eigenvalue of T , i.e. a one-point atom of µ. Then the

characteristic function χ{ζ} belongs to H∞(µ) (see Proposition 2.3) and hence to
the restriction algebra. Thus Pζ = ΨU(χ{ζ}) leaves H invariant, and thus commutes

with PH ∈ B(K). Qζ = Pζ |H is the orthogonal projection from H onto Hζ
d . So

given any T -Toeplitz operator X = PHA|H with A ∈ (U)′ and an arbitrary vector
h ∈ H we find that

XQζh = PHA|HQζh = PHAPζh = PζPHA|Hh = QζXh,

proving the first part of the assertion as well as the inclusion ”⊂”. For the reverse
inclusion, fix Xc ∈ T (Tc) and arbitrary operators Xζ ∈ B(Hζ

d ). Given h ∈ H, we
decompose h = hc ⊕

⊕
ζ hζ to obtain

n∑

i=1

T ∗
i XTih =

n∑

i=1

(Tc)
∗
i Xc(Tc)ihc ⊕

⊕

ζ∈σP (T )

n∑

i=1

ζiXζζihζ = Xchc ⊕
⊕

ζ

Xζhζ = Xh.
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So finally Xc ⊕
⊕

ζ Xζ ∈ T (T ). �

3.9 Theorem. A spherical isometry T ∈ B(H)n has empty point spectrum if and
only if the zero-operator is the only compact T -Toeplitz operator.

Proof. Suppose ζ ∈ σp(T ) 6= ∅ is an eigenvalue of T . Fix a rank-one operator

Xζ ∈ B(Hζ
d ) on the corresponding eigenspace Hζ

d . Setting Xh = XζPζh (h ∈ H)
defines a non-zero compact Toeplitz operator by the previous proposition.

On the other hand, if σp(T ) = ∅, then T = Tc and the spectral measure µ associated
with T is continuous. Thus there exists a weak∗ zero sequence (θk) of µ-inner
functions by Aleksandrovs approximation theorem (cp. Proposition 2.2). Since the
functional calculus γT : H∞(µ) → B(H) is weak∗ continuous, the corresponding
sequence of isometries Jk = γT (θk) ∈ B(H) is a weak∗ zero sequence. In particular,

Jkh
k

−→ 0 weakly for every vector h ∈ H.

Now suppose X to be a compact T -Toeplitz operator. Using Proposition 3.7 we
deduce that

‖Xh‖ = ‖J∗
kXJkh‖ ≤ ‖XJkh‖

but the right-hand side tends to zero as k → ∞ since X, as a compact operator,
maps weak zero-sequences to norm zero-sequences. �

As another application of Proposition 3.7 we prove a necessary condition for an
operator S ∈ B(H) to have finite-rank commutators

[S,A] = SA − AS for every A ∈ AT .

Problems like this are inspired by a work of Davidson [5] who succeeded to identify
the essential commutant of the set of all analytic Toeplitz operators on the Hardy
space H2(D) over the unit disc. The corresponding generalization to the unit-ball
case has been established by Guo in [10]. As a variation of this theme, Guo and Wang
(see [11]) characterized all operators S ∈ B(H2(Bn)) having finite-rank commutators
[S, Tf ] with all analytic Toeplitz operators Tf ∈ B(H2(Bn)), f ∈ H∞(Bn).

In the sequel we closely follow the work of Guo and Wang [11] and the corresponding
ideas from Davidson [5].

3.10 Lemma. (a) Let (Fk)k≥1 be a sequence in B(H) satisfying rank(Fk) ≤ M
for k ≥ 1 with some fixed natural number M . If (Fk) has a WOT-limit
F ∈ B(H), then rank(F ) ≤ M .

(b) Let A ⊂ B(H) be a closed subspace. If S ∈ B(H) has the property that [S,A]
is of finite rank for all A ∈ A, then there exists a constant M > 0 such that
rank([S,A]) ≤ M for all A ∈ A.

Proof. The proof is almost a word-by-word repetition of that in [11]. For the
reader’s convenience, we state it here. Assuming rank(F ) > M one can find
N = M + 1 vectors x1, . . . , xN ∈ H and an orthonormal system {y1, . . . , yN} ⊂ H
such that d = det(〈Fxi, yj〉ij) 6= 0. Since for every k ∈ N the set of vectors

{Fkx1, . . . , FkxN} is linearly dependent, we obtain 0 = det(〈Fkxi, yj〉ij)
k→∞
−→ d 6= 0,

a contradiction which finishes the proof of part (a).

The hypothesis of part (b) guarantees that the Banach space A can be represented
as the union A =

⋃∞
k=1 Γk of the norm-closed sets Γk = {A ∈ A : rank([S,A]) ≤ k}.
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Baire’s category theorem asserts the existence of an inner point A0 in some ΓN with
N ∈ N. Since ΓN − A0 is an open neighborhood of zero, every operator C ∈ B(H)
satisfies C/α ∈ ΓN − A0 with some suitably chosen number α = α(C) > 0. Hence
C ∈ αΓN − αΓN , implying that rank([S,A]) ≤ 2N for every A ∈ A. �

Theorem 3.1 in Guo-Wang [11] says that, for T = Mz ∈ B(H2(Bn))n and n ≥ 2,
an operator S ∈ B(H2(Bn)) commutes modulo the finite-rank operators with all
analytic Toeplitz operators Tf (f ∈ H∞(Bn)), if and only if S = Tg + F with
g ∈ H∞(Bn) and rank(F ) < ∞. Giving up the special structure of H2(Bn) at least
the following can be said.

3.11 Theorem. Let T ∈ B(H)n be a spherical isometry with σp(T ) = ∅. Given
a bounded linear operator S ∈ B(H) such that [S,A] is of finite rank for every
A ∈ AT . Then S = X + F with X ∈ T (T ) and a finite-rank operator F ∈ B(H).

Proof. By the remarks preceding Proposition 3.8 the scalar-valued spectral mea-
sure µ associated with T is continuous. According to Aleksandrov’s approximation
theorem (cp. Proposition 2.2) there exists a weak∗ zero sequence of µ-inner func-
tions (θk)k≥1 in H∞(µ). In view of Lemma 1.1, the sequence Jk = γT (θk) (k ≥ 1) is
a weak∗ zero-sequence of isometries in AT . Passing to a subsequence, if necessary,
we may assume that the bounded sequence (J∗

kSJk)k≥1 converges to an operator
X ∈ B(H) with respect to the weak∗ topology. By Lemma 3.10 (b) (applied to
A = AT ) there is a constant M > 0 such that rank([S, Jk]) ≤ M for every k ≥ 1.
Now applying part (a) of the cited lemma we deduce that the operator

F = S − X = w∗ − lim
k

S − J∗
kSJk = w∗ − lim

k
J∗

k (JkS − SJk)

is at most of rank M . It remains to check that X is a Toeplitz operator. In order
to verify the criterion established in Proposition 3.7, we fix an arbitrary isometry
V ∈ AT and write

V ∗J∗
kSJkV = J∗

kV ∗SV Jk = J∗
kV ∗(V S + SV − V S)Jk = J∗

kSJk + J∗
k [S, V ]Jk

Note that the last summand satisfies |〈J∗
k [S, V ]Jkx, y〉| ≤ ‖[S, V ]Jkx‖ · ‖Jky‖ for

arbitrary vectors x, y ∈ H. Using the fact that the compact operator [S, V ] maps
the weak zero-sequence (Jkx)k≥1 in H to a norm zero-sequence, we deduce that

J∗
k [S, V ]Jk

k
−→ 0 (WOT). Thus passing to WOT-limits in the above algebraic iden-

tity yields

V ∗XV = X (V being an arbitrary isometry in AT ),

as desired. �

C) Spherical isometries of class C·0. We finally take a look at spherical
isometries T ∈ B(H)n whose functional calculus satisfies a certain additional con-
tinuity condition. Here ”functional calculus” does not refer to the dual algebra
isomorphism γT : H∞(µ) → AT but to another natural extension of the polynomial
functional calculus of T arising as follows: The von Neumann-type inequality

‖p(T )‖ ≤ ‖p(U)‖ ≤ ‖p‖∞,∂Bn
(p ∈ C[z])

which is inherited by T from its spherical unitary extension U , yields a contractive
A(Bn)-functional calculus ΦT : A(Bn) → B(H) for T . Obviously, ΦT is related to
γT via the formula

ΦT (f) = γT ([f |∂Bn]µ) (f ∈ A(Bn)).
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A spherical isometry T is said to be of class C·0 if ΦT satisfies the additional conti-
nuity assumption that

ΦT (fk)
∗ k→∞
−→ 0 (SOT )

whenever (fk) is a Montel-sequence, i.e. a bounded sequence in A(Bn) such that
fk|Bn is a pointwise zero-sequence. It is well known that a sequence (fk)k in A(Bn)
is of this type precisely when ([fk|∂Bn])k is a weak∗-zero sequence in H∞(σ) (or,
equivalently, L∞(σ)), where σ denotes the normalized surface measure on the sphere
∂Bn.

If T is of class C·0, then one easily deduces that the map ΦT : A(Bn) → B(H)
extends to a weak∗ continuous contractive homomorphism H∞(Bn) → B(H), again
denoted by ΦT . In this case, the composition

rµ : H∞(Bn)
ΦT−→ AT

γ−1

T−→ H∞(µ)

yields an abstract boundary-value map, that is, a contractive and weak∗ continuous
homomorphism mapping each polynomial p ∈ C[z] to its boundary-value equiva-
lence class [p|∂Bn]µ in L∞(µ). A measure ν ∈ M+(∂Bn) possessing such a weak∗

continuous and contractive boundary value map rν : H∞(Bn) → H∞(ν) is called
a Henkin measure. It is called faithful, if rν is isometric (and hence an isometric
isomorphism and weak∗ homeomorphism, i.e. a dual algebra isomorphism). It is
well known that the surface measure σ on ∂Bn is a faithful Henkin measure.

As a final remark, we state that, given two Henkin measures η ≪ ν in M+(∂Bn),
the boundary homomorphisms of η and ν are related to each other via

rν
η ◦ rν = rη

(to be checked on polynomials) where rν
η denotes the canonical weak∗ continuous

contraction
rν
η : L∞(ν) → L∞(η), [f ]ν 7→ [f ]η.

3.12 Lemma. Let T ∈ B(H)n be spherical isometry of class C·0. Then there exists
a sequence (Jk)k≥1 of isometries in AT satisfying

J∗
k

k→∞
−→ 0 (SOT).

Proof. Let µ ∈ M+(∂Bn) be the scalar-valued spectral measure associated with
T which, by the considerations above, is a Henkin measure and thus continuous
(cp. Lemma 2.2.3 in [6]). By the approximation theorem of Aleksandrov stated as
Proposition 2.2 above, there exists a sequence of (µ + σ)-inner functions

(θk)k≥0 in Iµ+σ ⊂ H∞(µ + σ) with θk
w∗

−→ 0 in L∞(µ + σ).

According to the estimate

‖f‖∞,Bn = ‖rσ(f)‖∞,σ = ‖rµ+σ
σ (rµ+σ(f))‖∞,σ ≤ ‖rµ+σ(f)‖∞,µ+σ (f ∈ H∞(Bn)),

the measure µ + σ is a faithful Henkin measure and so we are able to define the
desired operator-sequence as

Jk = ΦT (r−1
µ+σ(θk)) (k ≥ 1).
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Indeed, (J∗
k )k≥0 is a SOT-zero sequence in view of the C·0-property of T and the

weak∗-continuity of r−1
µ+σ . In order to check that Jk is an isometry for k ≥ 1, we

write
Jk = ΦT (r−1

µ+σ(θk)) = γT (rµ(r−1
µ+σ(θk))) = γT (rµ+σ

µ (θk))

and observe that |rµ+σ
µ (θk)| = 1 (µ− a.e.) since |θk| = 1 ((µ + σ)− a.e.). By Lemma

1.1, the proof is complete. �

3.13 Proposition. A spherical isometry T ∈ B(H)n is of class C·0 if and only if it
is completely non-unitary.

Proof. A result of Eschmeier (Corollary 2.4 in [8]) says that a completely non-
unitary spherical isometry is of class C·0 and this settles the difficult part.

To prove the opposite direction, fix a spherical isometry of class C·0 and assume
that M ⊂ H is a reducing subspace for T such that N = T |M ∈ B(M)n is a
spherical unitary tuple. In order to show that M must be the zero space, first note
that the identity ΦT (p)∗|M = (ΦT (p)|M)∗ = ΦN (p)∗, trivially valid for polynomials
p ∈ C[z], extends by continuity to all functions p ∈ A(Bn), proving that N , viewed
as a spherical isometry, is of class C·0.

Consider the isomorphism of von Neumann algebras ΨN : L∞(ν) → W ∗(N) as-
sociated with the tuple N by the spectral theory for normal tuples (as usual, the
scalar-valued spectral measure of N is regarded as a measure ν ∈ M+(∂Bn)). Then
AN = ΨN (H∞(ν)) and by Lemma 1.1 and the lemma above, there exists a sequence
of isometries Jk = ΨN (θk) with inner functions θk ∈ H∞(ν) such that J∗

k → 0 (SOT)
on M . But since in this special case the isometries Jk = ΨN (θk) are even unitaries
(with inverse ΨN (θk)), we see that

‖x‖ = ‖J∗
kx‖

k→∞
−→ 0 (x ∈ M).

This proves that M is the zero-space, as we claimed. �
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