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Abstract

A classic strategy to obtain high-quality discretisations of hyperbolic partial dif-
ferential equations (PDEs) is to employ a non-linear mixture of two types of approx-
imations. The building blocks for this are a monotone first-order scheme that deals
with discontinuous solution features and a higher-order method for approximating
the smooth solution parts. The blending is performed by the so-called flux limiter
function.

In this paper we introduce a novel approach to flux limiter methods. We show that
fuzzy logic (FL) is a useful tool to understand and formulate the limiter functions.
After introducing the set-up, we verify that a variety of classic flux limiters can easily
be interpreted via FL. Then we show how one can improve limiters making use of
the developed FL framework. This is done for initial data and PDEs that describe
characteristic settings for hyperbolic problems.

Our work shows for the first time in the literature that the two different fields of
fuzzy logic and numerical methods for PDEs can be brought together with benefit.

1 Introduction

Fuzzy logic (FL) is an important tool in computer science [11, 16, 36] and engineering
[12, 18, 29, 34]. It allows the control of complex processes based on a small number of
expert rules, representing explicit knowledge of the behaviour of the considered system.
In this paper, we consider a novel field of application for FL: The construction of numerical
schemes for partial differential equations (PDEs). More specifically, we deal with the
approximation of hyperbolic conservation laws (HCLs). Such equations arise in many
disciplines, e.g., in gas dynamics, acoustics, geophysics, or astrophysics, cf. [20, 22, 35] for
an overview. They describe wave propagation and transport phenomena, in classic PDEs
for instance the evolution of mass, momentum, or energy. Concerning numerical methods
for HCLs it is well known that the class of so-called flux limiter schemes gives favourable
results. In this paper we show for the first time in the literature how to use FL for the
construction of flux limiter methods.

Numerical methods for hyperbolic conservation laws. For the construction of nu-
merical methods for HCLs, it is adequate to consider the one-dimensional scalar initial
value problem for the unknown u(x, t)







∂

∂t
u(x, t) = −

∂

∂x
f(u(x, t)) for x ∈ R, t > 0

u(x, t = 0) = u0(x)

(1)

Thereby, f ∈ C2 is the so-called flux function, and u0(x) is assumed to be a piecewise
smooth function of compact support. Usually, x and t are associated with space and time,
respectively.
The difficulty in dealing with HCLs numerically stems from the fact that their solutions
involve the formation of discontinuities, see e.g. [8, 35]. It is well known that only the

1



class of monotone schemes approximates discontinuous solutions correctly. They converge
to the physically relevant entropy solution, a terminology borrowed from gas dynamics.
Unfortunately, monotone schemes are only of first-order accuracy which may limit their
practical usefulness. As a means to obtain nevertheless numerical solutions of a reason-
able quality, the high-resolution (HR) schemes have been developed. The idea of the HR
schemes is to blend a monotone method used at ’critical’ regions, i.e. at discontinuities
and data extrema, with a higher-order scheme that gives good approximations of smooth
solution parts. Supplemented by the so-called total variation diminishing (TVD) stability
notion, this approach has been one of the most successful strategies in the construction
of numerical schemes for HCLs over the last decades. For detailed accounts of HR-TVD
schemes and the underlying theory, see e.g. the textbooks [19, 20, 30].
In our paper, we deal with the construction of HR-TVD schemes by using flux limiters,
cf. [27]. For describing the set-up, let us cover the computational domain R×R

+
0 uniformly

by cells Cn
i := [xi−1/2, xi+1/2] × [tn, tn+1], where we employ for some index k the notations

xk := k · h, and tk := k · τ . Thereby, the parameters h and τ are the spatial and temporal
mesh width, respectively. Over the cells Cn

i , the unknown u(x, t) is then given in terms of
cell averages Un

i := 1
h

∫ xi+1/2

xi−1/2
u(x, tn) dx. Then a general explicit numerical scheme reads as

Un+1
i − Un

i

τ
+

Fi+1/2 − Fi−1/2

h
= 0 (2)

The numerical flux function F is supposed to be Lipschitz continuous and consistent with
the flux f . By the indices i ± 1/2 it is indicated that the numerical fluxes Fi±1/2 shall
approximate the true flux f at the left and right boundary of the cell Cn

i , respectively.
For an explicit method the numerical fluxes are evaluated at time level n. The formula
(2) is evaluated for each spatial point i of the computational domain. At the end points of
the finite computational domain in space one needs numerical boundary conditions. The
process begins at the time level n = 0, building up a solution by iterating from time level
to time level until a prescribed stopping time.
Making use of a low-order numerical flux F l and a higher-order numerical flux F h, one can
formulate a flux limiter method as

Fi−1/2 := F l
i−1/2 + ϕi−1/2

(

F h
i−1/2 − F l

i−1/2

)

(3)

where ϕ is the flux limiter. Let us stress that besides the order, the numerical fluxes F l

and F h used as components of Fi±1/2 have very different structural properties, for instance
in terms of stability. Thus, the properties of the hybrid flux limiter method are controlled
by the limiter function ϕ.
A variety of limiters has been proposed in the literature, cf. [30] for a detailed exposition.
The classic limiters are sophisticated non-linear functions. It is somewhat unsatisfactory
that their definition is at first glance rather complicated, and an intuition is difficult to
develop. Also, a fine tuning or modification of a given limiter is difficult.

Fuzzy flux limiter methods. The main expert rules used for the construction of flux
limiter methods are given by the basic idea:
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(a) Use a monotone scheme at discontinuities.

(b) Use a higher-order scheme at smooth solution parts.

Our aim is to show how a meaningful blending process of the expert rules can be formalised
using FL with benefit (i) for a deeper understanding of the limiter models, and (ii) for the
optimisation of classic limiters resulting in novel FL-based flux limiter schemes.
To our best knowledge, we employ FL for the first time in the literature for the construction
of numerical schemes for PDEs. In detail, we provide the following innovations:

1. The foundation for the construction of FL-based flux limiters is given, and the key
points in the construction of corresponding fuzzy controllers are discussed.

2. Some important classic flux limiters are shown to be the result of relatively simple
fuzzy constructions. Thus they can easily be interpreted and modified.

3. We show how to fine tune existing FL-based limiters for specific applications, leading
to a superior accuracy of the approximation.

Related work. This work represents a significant extension of our conference paper [2].
There, we gave a brief account of the first point formulated above, and we elaborated on
numerical tests concerned with fine tuning FL-based approximations of a linear advection
equation. As indicated, to our knowledge no other work has dealt before with the use of
FL for constructing numerical schemes for PDEs.

Structure of the paper. In Section 2, we briefly review the classic flux limiter approach
for hyperbolic CLs. The tools from FL that we need are introduced in Section 3. This is
followed by an exposition on the construction of fuzzy flux limiters in Section 4. Then we
show in Section 5 how classic limiters are constructed using the developed framework. In
Section 6, we elaborate on the optimisation of the standard limiters, leading to novel fuzzy
flux limiter schemes. The paper is finished by a summary and conclusion.

2 Flux Limiter Methods for HCLs

In this section, we briefly review the classic theory for TVD flux limiter methods, cf. the
concise textbooks [19, 20, 30]. For relevant original works, see especially [14, 15, 27].
The main problems when dealing with HCLs are discontinuous solution features. For non-
linear equations, these arise in general after small time, even for arbitrarily smooth initial
data. Then a solution is not defined in a classic sense anymore, so that one looks for
weak (or distributional) solutions of HCLs. While this gives a meaning to discontinuous
solutions, in general an infinite number of mathematically admissible weak solutions arise
at a discontinuity. Thus, an additional uniqueness condition is imposed, which selects the
unique, physically relevant entropy solution out of the set of weak solutions, cf. [1, 25, 26].
Dealing with numerical schemes for HCLs, a fundamental observation on schemes of sec-
ond or higher order is that they develop oscillations when approximating a discontinuous
solution feature. On the other hand, first-order schemes do not show this behaviour, but
introduce a significant blurring of discontinuities. Only for a sub-class of the first-order
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schemes, the monotone schemes, convergence to the entropy solution can be shown when
the mesh is refined [7].
High-resolution flux limiter methods perform a blending of a monotone scheme with a
higher-order method. Thereby, the monotone scheme gives the correct approximation of
discontinuities, while the higher-order method gives a good resolution of smooth solution
parts. The use of a monotone scheme also at data extrema enables the validity of a
useful stability property, namely the total variation (TV) stability. This ensures that
the numerical solution is in the compact space of functions of bounded variation over
a compact space-time domain BV([a, b] × [0, T ]). Then one can prove convergence of
numerical solutions when refining the mesh making use of a compactness argument, cf. [19,
20] for more details.

2.1 TVD Flux Limiter Schemes

We recall the basic set-up for an explicit, conservative numerical scheme:

Un+1
i = Un

i −
τ

h

(

Fi+1/2 − Fi−1/2

)

(4)

see (2), where F is a consistent numerical flux. A flux limiter method employs

Fi−1/2 := F l
i−1/2 + ϕi−1/2

(

F h
i−1/2 − F l

i−1/2

)

(5)

with the limiter ϕ, and where F l, F h are the low-order and the higher-order numerical flux,
respectively, cf. (3). In our study, we consider the classic combination of the monotone
upwind method and the second-order Lax-Wendroff scheme. For simplifying the choice of
the upwind stencil that depends on the direction of the flow, we generally assume that
f ′(·) ≥ 0 holds. Then the corresponding numerical fluxes F l and F h are given as

F l
i−1/2 := F upw (Ui−1, Ui) = f (Ui−1) (6)

F h
i−1/2 := F LW (Ui−1, Ui) =

f (Ui−1) + f (Ui)

2
−

a
(

Ui−1/2

)

τ

2h
(f (Ui) − f (Ui−1)) (7)

For the latter formula, we define as usual a(u) := (∂f/∂u)(u) and

a
(

Ui−1/2

)

:=
1

2
(a (Ui−1) + a (Ui)) . (8)

In order to switch effectively between those schemes at discontinuities and smooth solution
parts, we also need at i ± 1/2 and time level n a smoothness measure that we denote by
Θi±1/2. This is usually computed making use of the ratio of consecutive slopes, and these
are chosen in dependence on the flow direction. In our set-up the flow is from left to right,
and the smoothness measure is computed as

Θi+1/2 :=
Un

i+1 − Un
i

Un
i − Un

i−1

. (9)
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The limiter ϕ evaluates Θ, and thus it controls the blending of F l and F h at hand of the
smoothness of the approximation.
Let us turn to the desired properties of the limiter function. Concerning flux limiter
schemes, the objective to have TV stability leads by the Theorem of Harten [14] to the
notion of the TVD region. This is a part of the (θ, ϕ(θ))-domain which must contain the
limiter so that the flux limiter scheme is TVD, see Figure 1 (left). An important sub-part

0

1

2

0 1 2 3

ϕ

Θ
0

1

2

0 1 2 3

ϕ

Θ

Figure 1: Left. TVD region. Right. Sweby TVD region for second-order accuracy.

of the TVD region is the second-order TVD region identified by Sweby [27], cf. Figure 1
(right). As the notion suggests, if the graph of the limiter lies in this domain, the overall
scheme is formally of second order away from discontinuities and extrema.

2.2 Examples of flux limiters

We now briefly review three important examples of flux limiters, namely the Minmod
limiter, the Superbee limiter and the MC limiter, see Figure 2. For a thorough discussion
and other limiters see e.g. [20, 30] and the references therein.
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ϕ
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ϕ

Θ
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1

2

0 1 2 3

ϕ

Θ

Figure 2: Flux limiters (strong line) and the Sweby TVD region (shaded). Left. Minmod
limiter. Middle. Superbee limiter. Right. MC limiter.

The Minmod flux limiter. The Minmod limiter is defined via

Φ(Θ) = minmod(1, Θ) (10)
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where the minmod function is defined as follows:

minmod(a, b) =







a if |a| < |b| and ab > 0 ,
b if |b| < |a| and ab > 0 ,
0 if ab ≤ 0 .

(11)

Thus, if a and b have the same sign, the minmod function selects the one with smaller
modulus, otherwise it returns 0. We sometimes refer here to the resulting flux limiter
method as the Minmod scheme.

The Superbee flux limiter. It is well known that the Minmod scheme is, despite the
improvement compared to the uncombined basic schemes, quite dissipative at discontinu-
ities. To improve there the accuracy of the Minmod scheme, it is possible to choose a
higher modulus near discontinuities. The resulting Superbee scheme is defined by using

Φ(Θ) = max(0, min(1, 2Θ), min(2, Θ)) =































0 if Θ ≤ 0

2Θ if 0 < Θ ≤ 1
2

1 if 1
2

< Θ ≤ 1

Θ if 1 < Θ < 2

2 else

(12)

However, a problem with the Superbee method is that a smooth hump can be sharpened,
such that stair-like artefacts are introduced into the numerical solution.

The MC flux limiter. Another possibility is to choose the so-called monotonised central-
difference limiter (MC limiter), which compares the second-order central difference with
twice the forward and twice the backward difference. It is defined as follows:

Φ(Θ) = max(0, min(1 + Θ)/2, 2, 2Θ) =



















0 if Θ ≤ 0

2Θ if 0 < Θ ≤ 1
3

1+Θ
2

if 1
3
≤ Θ < 3

2 else

(13)

The resulting MC scheme is known to be a reasonable default choice for HR-TVD schemes
that does not introduce much blurring at discontinuities, nor stair-like artefacts in smooth
solution parts, cf. the discussion in [20].

3 Fuzzy Logic

In this section we review the notions from FL that we need for constructing FL-based flux
limiters. For comprehensive textbooks on FL, see e.g. [12, 29]. The objective of this section
is in particular to describe the building blocks of a fuzzy system as shown in Figure 3. It
consists of four components: A knowledge base, a fuzzifier, an inference engine, and a
defuzzifier. The knowledge base contains a set of fuzzy rules, which are production rules
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Knowledge Base

Fuzzifier Inference Engine Defuzzifier

Controlled Process

fuzzy fuzzy

crisp outputcrisp input

Figure 3: Generic model of a fuzzy controller.

of the form “IF A then B”. A convenient way is to represent fuzzy sets by a (set of)
parameterised function. Typical examples are monotonic decreasing functions, piecewise
linear functions, exponential functions, or symmetric triangular functions. Moreover, it is
common to attach a name to each fuzzy set and to identify the set by its name, resulting
in more natural rules. The fuzzifier gets input values from the process to be controlled and
maps them to fuzzy sets, thereby activating the rules. The inference engine evaluates the
active rules and handles the way in which rules are combined, resulting in a fuzzy output
set. Finally, the defuzzifier transforms the fuzzy output set to a crisp output value.
Several types of fuzzy systems that follow this general model have been proposed in the
literature, among which the most important are: (i) Mamdani controller [32], (ii) Takagi
and Sugeno controller [33], and (iii) Tsukamoto controller [31]. The differences lie in the
consequences of the fuzzy rules, and thus their aggregation and defuzzification procedures
differ accordingly. Within our setting, we will follow Mamdani’s approach, which is the
most intuitive one and most commonly used.
Fuzzy rules can either be formulated by an expert or be extracted from given data. Once
all parameters have been fixed, a fuzzy system defines a nonlinear mapping, called control
function, from the input domain to the output domain. A given control function can
be modified by changing the parameters of the underlying fuzzy sets, or by modifying
the rules of the underlying knowledge base. Indeed, a typical step in the development of
a fuzzy system consists of tuning or optimising the parameters of the controller after a
first prototype was specified. One particularly simple but powerful adaptation consists of
applying hedges or modifiers, which are operations on fuzzy sets which change their shape
while preserving their main characteristics. Within this paper we consider the standard
hedges given by the contrast operator, the dilation operator, and the concentration operator,
as specified below.

3.1 Fuzzy Sets

Fuzzy logic is directly derived from fuzzy set theory. The general idea is to allow not only
for full membership or no membership of an element in a set, but also for partial member-
ship. The membership of an element x in a set can be described by using a characteristic
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function µ(x). Then the concept of FL means that instead of allowing for a given x only
full membership µ(x) = 1 or no membership µ(x) = 0, to also allow for partial membership
i.e. µ(x) ∈ [0, 1]. A set represented by such a membership function is called fuzzy set:

Definition 1 (Fuzzy Set) Let G be a (classic) set, and µA be a (classic) function map-
ping the set G to the interval [0, 1]:

µA : G → [0, 1] (14)

The set A of all pairs (x, µA(x)) (where x in G varies and µA(x) is defined) is then called
fuzzy set over G

A = {(x, µA(x)) | x ∈ G} (15)

µA is called membership function. G is called reference set of the fuzzy set.

We observe that a classic crisp set with µ(x) ∈ {0, 1} can be represented by a particular
fuzzy set. Note that µA already determines A completely. If we understand µA as a set
of pairs in the set theoretic sense, we formally have µA = A. In the sequel we always
denote the membership function of a fuzzy set A with µA, and will write µA instead of
{(x, µA(x))|x ∈ G} when it is comfortable.
Given a fuzzy set, those individuals whose membership value is greater than zero and those
whose membership value is equal to one are of particular interest:

Definition 2 (Support, Tolerance) Let A be a fuzzy set over the reference set G. Then

supp(A) := {x | x ∈ G and µA(x) > 0} (16)

is called support of the fuzzy set. The set

{x | x ∈ G and µA(x) = 1} (17)

is called tolerance of the fuzzy set.

Usually, the support set of a fuzzy set is an interval [m1, m2] or a single point {m}. In the
latter case, the fuzzy set is also called singleton. A fuzzy set whose support is empty is
called empty fuzzy set.
A convenient way to represent the fuzzy set (x, µA(x)) is to use a set of parameterised
functions. The idea of the so-called LR representation is to have a basic representation for
very simple fuzzy sets.

Definition 3 (LR Fuzzy Set) Let A be a fuzzy set over G. A is called of type LR, if
there exist reference functions L, R over R

+
0 satisfying the following properties:

• L, R : R
+
0 → [0, 1]

• L(0) = R(0) = 1
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• L, R are monotone decreasing on R
+
0

such that µA(x) can be described as follows:

µA(x) =























L
(

m1−x
α

)

for x ∈ [a, m1]

1 for x ∈ [m1, m2]

R
(

x−m2

β

)

for x ∈ [m2, b]

0 else

(18)

x

µA

1

m1 m2
α β x

µA

1

m
α β x

µA

1

m

Figure 4: Examples for Fuzzy Sets. Left. A trapezoid fuzzy set. Middle. Triangular
fuzzy set. Right. Singleton.

Typical representatives of LR fuzzy sets are shown in Figure 4. In what follows we will
use:

• trapezoid(a, b, c, d) to represent a trapezoid fuzzy set with support [a, d], L(x) =
R(x) = max(0, 1 − x), m1 = b, m2 = c, α = b − a, and β = d − c; cf. left-hand side
of Figure 4.

• triangle(a, b, c) to represent a triangular fuzzy set with support [a, c], L(x) = R(x)
= max(0, 1 − x), m1 = m2 = b, α = b − a and β = c − b; cf. middle of Figure 4).

• singleton(a) to represent a fuzzy set with support {a} and which is 0 otherwise;
cf. right-hand side of Figure 4.

3.2 Fuzzy Linguistic, Hedges and Fuzzy Rules

A general concept for classifying several concepts for one given parameter is provided by
the fuzzy linguistic. Its basic elements are linguistic variables that describe a parameter of
interest and linguistic terms that describe corresponding values:
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Definition 4 (Linguistic Variable, Linguistic Term) Let G be a reference set, label
be the name of a fuzzy set and A be a fuzzy set over G. Then the pair 〈label, A〉 =: LT is
called linguistic term over G.
Let G be a parameter of interest with reference set G, label be the name of a fuzzy set,
and LT1, . . . , LTn be linguistic terms over G. Then 〈label, {LT1, . . . , LTn}〉 =: LV is called
linguistic variable with linguistic terms LT1, . . . , LTn.

We write label(LV ) and label(LT ) to denote the label of a linguistic variable and a linguistic
term, respectively. Linguistic terms and variables allow the identification of a fuzzy set by
means of its label and results in more natural fuzzy rules.

Hedges. A linguistic hedge is an operation that modifies the meaning of a linguistic
term by changing the membership function of the corresponding fuzzy set. More precisely,
hedges can be seen as functions operating on membership functions of fuzzy sets. For our
purpose, the following three hedges or modifier are of importance, cf. Figure 5. For their
formal definition, let A = {(x, µA(x)) | x ∈ G} be again a fuzzy set over the set G:

Concentration operator : CONn(A) = {(x, [µ(x)]n) | x ∈ U} (19)

Dilation operator : DILn(A) = {(x, n
√

µ(x) | x ∈ U)} (20)

Contrast operator : INTn(µ(x)) =

{

2µ(x)n if µ(x) < 0.5

1 − 2(1 − µ(x))n else
(21)

0

1

x

µ(x)

(a) Concentration Operator

0

1

x

µ(x)

(b) Dilation Operator

0

1

x

µ(x)

(c) Contrast Operator

Figure 5: Hedges for fuzzy sets.

Fuzzy Rules. Analogously to classic rule based systems, a fuzzy rule is represented as a
production rule “If A then B”, where A is a conjunction of linguistic terms over the input
sets, possibly modified by a hedge, and B is a linguistic term over the output set, also
possibly modified. Thus, by relying on fuzzy linguistic we derive the following definition:

Definition 5 (Fuzzy Rule, Fuzzy Knowledge Base) Let LV (1), . . . , LV (n) be linguis-

tic variables with linguistic terms LT
(i)
1 , . . . , LT

(i)
mi over the reference set Xi, 1 ≤ i ≤ n,

characterising the input parameters. Moreover, let LV (n+1) be a linguistic variable with
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linguistic terms LT
(n+1)
1 , . . . , LT

(n+1)
mn+1 over the reference set Y , characterising the output

parameter.
Then an expression of the following form is called fuzzy rule:

R : IF LV (1) is LT
(1)
j1

and . . . and LV (n) is LT
(n)
jn

THEN LV (n+1) is LT
(n+1)
jn+1

(22)

where 1 ≤ ji ≤ mi selects a linguistic term of the linguistic variable LV (i) for each 1 ≤ i ≤
n + 1.
Let R1, . . . , Rn be fuzzy rules. A finite set of fuzzy rules R = R1, . . . , Rn is called fuzzy
knowledge base. R is called consistent, if there are no rules in R with the same antecedent
but different succedents.

Note that we only allow the combination of linguistic terms in the premises of the rules by
means of the conjunction operator. This is not a restriction, because we can split a rule
containing an disjunction in two separate rules. This simple restriction, however, structures
the knowledge base and allows the evaluation of a rule just by applying the and operator
for all premises.

3.3 Fuzzification and Fuzzy Inference

The inference mechanism of a fuzzy system operates on a set of inference rules and fuzzified
input data. It works by first evaluating each single inference rule (fuzzy inference), and
then combining their results (aggregation). The underlying idea of fuzzy inference is to
understand a fuzzy rule “If A then B” as a fuzzy relation RA→B, and to use the so-called
compositional rule of inference to map a given input fuzzy for a premise via the the relation
to a corresponding fuzzy output set (the conclusion of the rule): B′ = A′ ◦ RA→B.

Fuzzification. To be able to use fuzzy inference, the discrete input value x provided by the
underlying application is used to obtain the modified input fuzzy set A′, called fuzzification.
This works by computing all membership values of the linguistic term corresponding to the
linguistic variable of the input parameter. For a linguistic variable LV (i) with mi linguistic
terms we thus obtain a vector ~v ∈ [0, 1]mi of membership values.

Compositional Rule of Inference. In the classical case, a relation over A and B is a
set of pairs R ⊂ A × B and the image of a set A under a relation R is defined as

R(A) = {y ∈ B | ∃x : x ∈ A ∧ R(x, y)} (23)

Similarly, a fuzzy relation is defined as

Definition 6 (Fuzzy Relation) Let G1, G2 be classical sets and µA be a function

µA : G1 × G2 → [0, 1] (24)

The set
A = {((x, y), µA(x, y)) | x ∈ G1, y ∈ G2} (25)

is called binary fuzzy relation over G1 × G2. As usual we write µA(x, y) to represent the
fuzzy relation.
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In analogy to the image of a set under a relation, it is possible to define the image of a fuzzy
set over a fuzzy relation. Moreover, by picking the maximal value for a fixed y, we can
define a mapping. The ∧ operator from the classical case is replaced by the intersection
operator min. As the intersection operator is defined only for fuzzy sets over the same
reference set, µA(x) is extended to µ∗

A(x, y), known as extension principle.

Definition 7 (Compositional rule of inference) Let µR be a fuzzy relation over the
reference sets G1 and G2 and let A be a fuzzy set over G1. Then the image of R under A
can be determined by the compositional rule of inference:

R(A) = sup
x∈G1

{min(µ∗

A(x, y), µR(x, y))} (26)

Thus, given an input value x′ and a fuzzy rule of the form (22), the resulting fuzzy set is
obtained by the following formula:

µB(y) = sup
x∈X

min(µA(x), R(µA(x), µB(y))) (27)

= min(µA(x′), µB(y)) (28)

Aggregation. The compositional rule of inference allows the evaluation of a single fuzzy
rule. To take several rules into accout, the standard approach is to individually evaluate
the rules and to combine their results. This process is called aggregation.
Given r rules R1, . . . , Rr, for each j with 1 ≤ j ≤ r we evaluate Rj and obtain an individual
fuzzy set µRj

. The resulting fuzzy set is computed by building the union of all individual
fuzzy sets, which can be done with the max operator:

µres = max(µR1
, . . . , µRr) (29)

3.4 Defuzzification

The result of applying all rules of the knowledge base is an aggregated fuzzy set µres(y)
over the output reference set. The process to convert this into a crisp value is called
defuzzification. The most commonly used method is the centroid or centre of gravity
technique, which determines the centre of gravity of all resulting fuzzy output values. For
a continuous aggregated fuzzy set, the center of gravity is given by the following formula

y′ =

∫

S

yµB(y)dy

∫

S

µB(y)dy
(30)

where S denotes the support of µB. In practice, the formula is often approximated. The
centroid method can be specialised for the situation that the output fuzzy sets are single-
tons. For each rule with activation degree hi the corresponding output value is multiplied
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by hi. The products hiyi are added together and divided by the sum of all activation
degrees, formally

yres =

m
∑

i=1

hiyi

m
∑

i=1

hi

(31)

4 Constructing Flux Limiters with Fuzzy Logic

HR schemes are described by a flux limiter function Φ : R → [0, 2] taking the smoothness
as input and returning a limiter value. All the steps that process the input and finally give
the limiter value are now modeled using the fuzzy controller. Following the described work
flow, the following steps need to be specified in order to define the fuzzy flux limiter:

(F1) Choosing the input and output parameter.

(F2) Determination of the domain of the input and output parameter, also called scaling
of the linguistic variables.

(F3) Partitioning of the linguistic variables by defining the linguistic terms together with
their membership functions.

(F4) Specification of the knowledge base.

Let us stress that the control function is not formulated as a mathematical formula, but
implicitly defined by the parameters of the fuzzy controller and the underlying rule base.
Therefore, there is no need to write down any code during the experiments, as all compu-
tations are covered by the FL framework.
In the remainder of this section we briefly discuss the items above with the exception of
(F3) and (F6) that are already clarified in the previous section.

(F1) and (F2): Input and Output Values and Scaling As a single input value we
take as usual the smoothness Θ, cf. (9). Note that we can restrict the domain of the input
variable to a subinterval of R that covers only the “interesting” parts of the input variable,
i.e. those parts in which the membership functions of the linguistic terms change. Values
outside of the input domain are mapped to the corresponding boundary values.

Linguistic terms. We classify the smoothness with respect to three descriptors, centered
around the smoothness measure 1, which stands for a smooth solution. The second linguis-
tic term we use identifies the situation where the data are extremal, given by a negative
smoothness measure. Finally, we introduce a third linguistic term classifying situations in
which the data are steep.

Input domain. As we do not want to classify the input data further, we can restrict the
input domain to an interval [a, b], where a is smaller than zero and b is greater than 1.
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Note that there is no need to restrict the input domain to such an interval; however, this
will ease the presentation.

Output domain. As output parameter we choose the limiter value Φ which we want to
compute. For the schemes we want to consider we know already that a domain [0, 2] for Φ
is reasonable.

(F3): Partitioning of the Linguistic Variables Using the technique of expert rules
means that an expert provides a classification of input and output parameters into concepts.
In our scenario, for the output variable we have two basic methods to choose from, namely
the upwind method and the Lax-Wendroff method. Each basic method is modeled by
means of a linguistic variable, which we call “UP” and “LW”. For the input variable, we
define three linguistic variables “bumpy”, “smooth”, and “excursive”. For the linguistic
term “smooth”, we know already that the concept is fully compatible for a smoothness
measure Θ = 1. Moreover, “bumpy” is thought to classify situations in which the data
have a maximum or minimum, given by a negative smoothness measure. Finally, we want
to use “excursive” to classify situations where the data are steep.
For the border fuzzy sets we choose trapezoid fuzzy sets, and as we are interested in a
combination of the numerical methods we choose neighboring fuzzy sets to maximally
overlap. In these situations, several rules will fire and we will thus obtain a mixture of
both methods as overall result.
As this is a key issue in our work, let us illustrate at this point our proceeding at hand of
an example where all three proposed linguistic terms are used.

Example 1 In the framework of flux limiters the upwind method is characterised by a flux
limiter value of Φ = 0, and the Lax-Wendroff method is characterised by setting the limiter
value Φ to 1. Consequently we design two linguistic terms “UP” and “LW” for the output
parameter “flux limiter”, where “UP” attains 1 for Φ = 0, and “LW” for Φ = 1.
A possible choice for the parameter “flux limiter” giving a maximal overlapping of neigh-
bouring fuzzy sets is shown in Figure 6.

0

1

0 1

UP LW
µ

ϕ

1

0 1 2−1

bumpy smooth excursiveµ

Θ

Figure 6: Left. Fuzzy sets for the parameter “flux limiter”. Right. Linguistic terms for
the parameter “smoothness”.

We now turn our attention to the modeling of the input parameter, the smoothness Θ.
Recall that the smoothness is given by building the fraction of the two cell differences, see
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(9). If these values are identical, then Θ equals one and we know that the solution is
smooth. We may choose a triangle as shape for this fuzzy set.
When departing from Θ = 1 there are now two cases. We know that if Θ is negative
the solution has a local extremum, which we want to classify by means of the concept
“bumpy”. As this predicate is fulfilled for all negative Θ, we may choose as shape of the
fuzzy set a trapezoid. If Θ is greater than 1, we assume the data to be steep. Consequently
we design a linguistic term “excursive”, classifying this situation. Again, we may choose
maximal overlapping between the neighboring terms. A possible choice for the parameter
“smoothness” is shown in Figure 6.

(F4): Specification of the knowledge base The next and central step consists of a
specification of the rule base. As we rely on a single input parameter “smoothness”, our
rules will have the following form:

If smoothness is LT smoothness
i1

then flux limiter is LT flux limiter
in+1

(32)

where LT smoothness is either “smooth”, “excursive”, or “steep”, and LT flux limiter
in+1

is “LW”
or “UP”.
To obtain a complete rule base, i.e. a rule base for which for every input a nonzero output
is computed, we have to specify one rule for each possible input situation. Consequently
we have to define three rules.

In our application there is only one input parameter “smoothness” for the measured
smoothness at a computational point. This is described by – at most – three linguis-
tic terms “bumpy”, “smooth”, and “excursive”, compare Example 1. Consequently we
design three rules with an antecedent consisting of one of these descriptors. For the succe-
dent we have to choose between the linguistic terms “LW” and “UP”. The only situation
where we want to choose the “LW” method is when the solution is smooth.
The resulting rule base is shown in Table 1. Let us stress that this is the complete set of
rules we need within this paper. We may even need only two of these rules.

If smoothness is bumpy then limiter is UP
If smoothness is smooth then limiter is LW
If smoothness is excursive then limiter is UP

Table 1: Maximal rule base for our application.

5 Fuzzy Formulation of Classic Schemes

We are now ready to show that standard schemes can be given a novel interpretation using
FL. Rebuilding existing schemes in our framework has several advantages: (i) It gives us
the possibility to compare these schemes at the level of fuzzy logic; (ii) the intuition behind
a numerical scheme becomes explicitly expressed in the rule base, and thus presented in a
clear way; (iii) it allows for extensions and modifications of these schemes.
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5.1 The Minmod Scheme

As shown in Figure 7 the control function of the Minmod scheme, cf. (10), can be classified
into three parts: Two boundary parts in which the flux limiter function is constant, and
an intermediate part in which the limiter function varies. In the left boundary part it is
constantly zero, and in the right boundary part it is constantly one. The middle part is
given by a smooth linear transition between the left and the right boundary part.

1

0 1 2−1

ϕ

Θ

Rule 2

Rule 1
Overlapping Rule 1, Rule 2

Figure 7: Control function of the Minmod scheme.
Explaining the Minmod scheme to a novice one could summarise the method via the
following two expert rules: If the data are smooth use the Lax-Wendroff scheme, and the
Upwind scheme otherwise. The first key situation is given by smooth initial data, i.e. in
the region where the flux limiter function is greater or equal to one. The other key situation
is identified by a smoothness measure of zero. Between these key situations we let fuzzy
reasoning determine the value of the flux limiter.
We define two linguistic variables, one called “smoothness” and representing the input
parameter, the other called “flux”, representing the output parameter of the fuzzy con-
troller. Moreover, each linguistic variable is partitioned by means of two linguistic terms
associated to it. For the input variable we design two classifier “extremum” and “smooth”,
representing the mentioned key situations. “extremum” has the support set ranging from
zero to the minimal admissible smoothness input value, which we fix to be −1. “smooth”
has support set ranging from 1 to the maximal admissible smoothness value, which we fix
to be 2. Values which are smaller or larger as the admissible input values are mapped to
the minimal or maximal admissible input value, respectively.
For the output parameter we define two linguistic terms “UP”, representing the Upwind
method, and “LW” for the Lax-Wendroff method. Both are modeled by means of singleton
sets with support set zero and one, respectively. Choosing singleton sets for the output
variables results in a very simple interpolation in the defuzzification process, namely a
linear combination.
The last part of our modeling addresses the rule base consisting of two rules, the first
assigning the linguistic output term “UP” to the input situation “extremum”, the other
assigning the output situation “LW” to the input situation “smooth”. The fuzzy sets and
the rule base are shown in Figure 8.

We conclude these developments via the following theorem.
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Θ

extremum smooth

(a) Input Variable

1
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µ

ϕ

UP LW

(b) Output Variable

If smoothness is extremum then limiter is UP
If smoothness is smooth then limiter is LW

(c) Rule base

Figure 8: Fuzzy sets and rule base for the Minmod limiter.

Theorem 1 The numerical fuzzy scheme given by the input linguistic input variable “smooth-
ness” with linguistic terms 〈“extremum”, trapez(−1,−1, 0, 1)〉 and 〈“smooth”,trapez(0, 1, 2, 2)〉,
and the output variable “flux” with linguistic terms 〈“UP”, singleton(0)〉 and 〈“LW”, single-
ton(1)〉, the rule base consisting of the following two rules

• R1: If smoothness is “extremum” then “flux” is “UP”

• R2: If smoothness is “smooth” then “flux” is “LW”

the inference engine 〈Mamdani,
⋃

〉 and the center of gravity defuzzification method is
equivalent to the Minmod scheme.

Proof. We consider the three cases that either only R1 or only R2 is active, or that both
R1 and R2 are active.

Case x ≤ 0: If the input parameter x ≤ 0, then only the rule R1 is active, with µextremum(x) =
1. As our inference engine 〈Mamdani,

⋃

〉 is well behaved, we get as output fuzzy
set exactly the singleton set singleton(0) associated to “UP”, which has center of
gravity 0.

Case x ≥ 1: Similar to the first case there is only the rule R2 active, with µsmooth(x) = 1,
and we obtain as output fuzzy set the singleton set singleton(1) associated to “LW”,
which has center of gravity 1.

Case 0 < x < 1: We have µextremum(x) = 1 − x and µsmooth(x) = x. The application of the
first rule (R1) results in the individual output set

µRes,R1
(y) = min(µextremum(x), µUP (y)) (33)

=

{

1 − x if y = 0

0 else
, (34)
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and the application of the second rule (R2) in

µRes,R2
(y) = min(µsmooth(x), µLW (y)) (35)

=

{

x if y = 1

0 else
. (36)

Aggregation of their results by means of
⋃

yields

µRes,R1,R2
(y) =











x if y = 0

1 − x if y = 1

0 else

. (37)

Defuzzification µRes,R1,R2
by means of the center of gravity method for singletons

gives the overall result

yres =
x · 0 + (1 − x) · 1

x + 1 − x
= 1 − x (38)

In each situation the flux limiter thus agrees with the flux limiter of the Minmod
scheme, hence both schemes are equivalent.

q.e.d.

Let us stress that we only need two rules in the rule base to construct the Minmod scheme.

5.2 The Superbee Scheme

The second scheme we consider is the Superbee scheme. Its control function is shown
in Figure 9, compare (12). Compared to the Minmod scheme there are the following

1

2

0 1 2 3−1

ϕ

Θ

Rule 1

Rule 2

Rule 3

Figure 9: The Superbee limiter

differences: (i) The flux limiter function varies in the interval [0, 2], we thus select the
domain of the input variable to the interval [−1, 3]; (ii) the range of the flux limiter function
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is [0, 2], we thus extend the domain of our output parameter “flux” to the interval [0, 2];
(iii) there are three key situations in which the flux limiter function remains constant.
Similar to the Minmod scheme we define two linguistic terms “extremum” and “smooth” for
the input parameter, and two linguistic terms “UP” and “LW” for the output parameter.
Moreover, we see that the maximal output flux is two, which gives rise to an additional
linguistic term for the output variable, which we call “2LW+Anti”. We also define a
new linguistic input parameter “excursive” as a concept identifying the situation in which
“2LW+Anti” shall be selected. The names are motivated by the fact that a flux limiter
value of two corresponds to the application of twice the Lax-Wendroff flux plus once the
Upwind flux in backward direction (antiflux). We assign to “2LW+Anti” a singleton fuzzy
set for y = 2.
Because of the new classification of our input data, we have to change the shape of the
linguistic input term “smooth” and to define a fuzzy set for the linguistic term “excursive”
when comparing to the setting used for the Minmod scheme. As tolerance of the fuzzy set
attached to “smooth” we choose the interval [0.5, 1], and as tolerance set of the fuzzy set
attached to “excursive” we select the interval [2, 3]. As before we choose fully overlapping
fuzzy sets as we want two rules to be active in the intermediate situation.
Finally, we take as rule base the rule base of the Minmod scheme and extend it by one rule
which assigns the output value “2LW+Anti” to the input situation “excursive”. The fuzzy
sets for the Superbee scheme and the rule base is shown in Figure 10. The curious reader
will already suspect that the resulting scheme can be made equivalent to the Superbee
scheme:

1

0 1 2−1

µ

Θ

extremum smooth excursive

(a) Input Parameter

0

1

0 1 2

µ

ϕ

UP LW 2LW+Anti

(b) Output Parameter

If smoothness is extremum then limiter is UP
If smoothness is smooth then limiter is LW
If smoothness is excursive then limiter is 2LW+Anti

(c) Rule base

Figure 10: Fuzzy sets and rule base for the Superbee limiter.

Theorem 2 The numerical fuzzy scheme given by the input linguistic input variable “smooth-
ness” with linguistic terms 〈“extremum”,trapez(−1,−1, 0, 0.5)〉 and 〈“smooth”,trapez(0, 0.5, 1,
2)〉, 〈“excursive′′, trapez(1, 2, 3, 3)〉, and the output variable “flux” with linguistic terms
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〈“UP”, singleton(0)〉, 〈“LW”,singleton(1)〉, and 〈 “2LW+Anti”,singleton(2)〉, the rule base
consisting of the following three rules

• R1: If smoothness is “extremum” then “flux” is “UP”

• R2: If smoothness is “smooth” then “flux” is “LW”

• R3: If smoothness is “excursive” then “flux” is “2LW+Anti”

the inference engine 〈Mamdani,
⋃

〉 and the center of gravity defuzzification method is
equivalent to the Superbee scheme.

Proof. We consider the cases that either only R1 or only R3 are active, that both R1 and
R2 are active, and that both R2 and R3 are active, respectively.

Case x ≤ 0, x ≥ 2: As in the Minmod case.

Case 0 < x < 0.5: We have µextremum(x) = 1 − 2x and µsmooth(x) = 2x. Consequently we
get two output fuzzy sets

µRes,R1
(y) = min(µextremum(x), µUP (y)) (39)

=

{

1 − 2x if y = 0

0 else
(40)

µRes,R2
(y) = min(µsmooth(x), µLW (y)) (41)

=

{

2x if y = 1

0 else
(42)

giving rise to the overall fuzzy set

µRes,R1,R2
(y)











1 − 2x if y = 0

2x if y = 1

0 else

(43)

Defuzzification by means of the center of gravity method provides the result

µres(y) =
(1 − 2x) · 0 + 2x · 1

1 − 2x + 2x
= 2x (44)

Case 1 < x < 2: We have µsmooth(x) = 1− (x− 1) and µexcursive(x) = x− 1. Evaluation of
the rules R2 and R3 and aggregation of their individual results yields the fuzzy set

µres(y) =











1 − (x − 1) if y = 1

x − 1 if y = 2

0 else

(45)

which is defuzzified to

µres(y) =
(1 − (x − 1)) · 1 + (x − 1) · 2

1 − (x − 1) + x − 1
= 2 − x + 2x − 2 = x (46)

20



In each situation the control function thus agrees with the flux limiter of the Superbee
scheme, hence both schemes are equivalent. q.e.d.

5.3 The MC Scheme

1

2

0 1 2 3 4−1

ϕ

Θ

Rule 1

Rule 2

Rule 3

Figure 11: MC flux limiter

Let us now consider the MC scheme, whose flux limiter function is shown in Figure 11,
where the limiter function is defined as in (13). To model the MC limiter within the
framework of fuzzy logic, we follow the approach from the previous two sections which
has shown to be successful. We identify as key situations those situations at which the
gradient of the flux limiter function does not change. Note that in contrast to the previous
two schemes, where the fuzzy sets for the output parameter where classified by singletons
at integer values zero, one, and two, we identify this time the locations zero, 2

3
, and two.

Thus from our basic scheme only the Upwind scheme is directly represented as linguistic
term of the linguistic output variable, the other two are already combinations of Upwind
and Lax-Wendroff method. The fuzzy sets and the rule base are shown in Figure 12. It is
quite surprising that the natural encoding of our expert rules directly results in the MC
scheme:
Theorem 3 The numerical fuzzy scheme given by the input linguistic input variable “smooth-
ness” with linguistic terms 〈“extremum”, trapez(−1,−1, 0, 1

3
)〉 and 〈“smooth”, triangle(0, 1

3
, 3)〉,

〈“excursive′′, trapez(1
3
, 3, 5, 5)〉, the output variable “flux” with linguistic terms 〈“UP”,single-

ton(0)〉, 〈“UP+LW”, singleton(2
3
)〉, and 〈“2LW + Anti′′, singleton(2)〉 the rule base con-

sisting of the following three rules

• R1: If smoothness is “extremum” then “flux” is “UP”

• R2: If smoothness is “smooth” then “flux” is “UP+LW”

• R3: If smoothness is “excursive” then “flux” is “2LW+Anti”

the inference engine 〈Mamdani,
⋃

〉, and the center of gravity defuzzification method is
equivalent to the MC scheme.

Proof. We consider the cases that either only R1 or only R3 are active, that both R1 and
R2 are active, and that both R2 and R3 are active, respectively.
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If smoothness is extremum then limiter is UP
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(c) Rule base

Figure 12: Fuzzy sets and rule base for the MC limiter

Case x ≤ 0, x ≥ 3: Similar to the Minmod case.

Case 0 < x ≤ 1
3
: We have µextremum(x) = 1 − 3x and µsmooth(x) = 3x. Consequently we

get two output fuzzy sets,

µres,R1
(y) =

{

1 − 3x if y = 0

0 else
(47)

µres,R2
(y) =

{

3x if y = 2
3

0 else
(48)

whose aggregation defines the overall fuzzy set

µres,R1,R2
(y) =











1 − 3x if y = 0

3x if y = 2
3

0 else

(49)

Thus defuzzification yields

(1 − 3x) · 0 + 3x · 2
3

1 − 3x + 3x
= 2x (50)

Case 1
3
≤ x < 3: We have µsmooth(x) = 1 − (3

8
(x − 1

3
)) and µsmooth(x) = 3

8
(x − 1

3
). Conse-
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quently we get two output fuzzy sets,

µres,R1
=

{

1 − (3
8
(x − 1

3
)) if y = 2

3

0 else
(51)

µres,R3
=

{

3
8
(x − 1

3
) if y = 2

0 else
(52)

whose aggregation defines the overall fuzzy set

µres,R1,R2
(y) =











1 − (3
8
(x − 1

3
)) if y = 2

3
3
8
(x − 1

3
) if y = 2

0 else

(53)

Thus defuzzification yields

(1 − 3
8
(x − 1

3
)) · 2

3
+ 3

8
(x − 1

3
) · 2

1 − (3
8
(x − 1

3
)) + 3

8
(x − 1

3
)

=
2

3
−

1

4
(x −

1

3
) +

6

8
(x −

1

3
) =

1 + x

2
(54)

q.e.d.

Remarks. We have seen that one can easily model the Minmod scheme, the MC scheme,
and the Superbee scheme in the framework of fuzzy logic. Only two respectively three
linguistic terms and the same number of fuzzy rules were already sufficient for this. Even
more, for all schemes the main rules in the rule base were identical, with one additional
rule added for the MC and the Superbee scheme.
As a technical remark, the flux computation based on FL is relatively complex from a
numerical point of view. Therefore the FL-based formulation can be a little bit slower
with respect to runtime compared to the classic formulation. However, it is possible to
compute the values of the control function beforehand and to store them in a lookup
table. Then the output values for a specific combination of input values can directly be
determined in O(1) without further computation. As a consequence, the computation of
the control function will be for free and the resulting schemes faster.

6 Improvement of Fuzzy Flux Limiter Schemes

We now show how our framework allows for the improvement of the numerical schemes
considered so far. To this end, we aim to enhance the accuracy of a given numerical scheme
by modifying the input parameters of the controller via the application of hedges. This is
done for several characteristic situations encountered when solving HCLs. The presentation
is focused on the improvement of the MC scheme: This is already a reasonable method and
we want to show that also a good method can be improved significantly by our approach.
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Analogous improvements of the Minmod and the Superbee scheme are also mentioned, yet
not in as much detail as for the MC scheme.
Our method for the improvement of fuzzy flux limiter (FFL) schemes works by system-
atically considering combinations of applications of the standard operators concentration,
dilation, and contrast to the linguistic input parameters. To obtain a feasible method and
a finite search space we restrict the parameter n of the operators to values of 0, 2, 4, 6, 8, 10.
Each obtained controller is then evaluated for characteristic test data and the best numer-
ical scheme is returned.
Let us note that more complex means of optimisation are possible, for instance the use of
sophisticated learning techniques to adapt the control system automatically [4]. However,
this goes much beyond the scope of this work.

The discrete setting. In our experiments we use a time step size ∆t = 0.0025 and a
spatial grid size ∆x = 0.01. The error measurements are always given in terms of the
discrete L1-error. In the case of the sine wave experiments described in the following we
take into account the staircaising effect by identifying the number of neighboring cells
which come very close to the maximum of the sine wave. We measure the number of
points adjoining the maximum and whose cell value differs from the maximum less than
0.01; these we denote as stairs.

6.1 Linear Advection

In our first experiment we deal with the specific linear advection equation

u(x, t)t + u(x, t)x = 0 (55)

We consider two characteristics test cases, the box function test and the sine wave test.
The first setting deals with the main difficulty arising in solutions of hyperbolic PDEs,
namely discontinuous solution features. In the second test, a discretised sine wave signal
is evolved under periodic boundary conditions, addressing the approximation of smooth
solutions. The exact solutions in these problems are given just by translating the initial
signals in time. Let us note, however, that in practical linear problems as e.g. in acoustics
the solution can often not be determined analytically, and that the numerical resolution of
linear problems can be more challenging than in the non-linear setting.

The box function test

The best improvement for modifying the MC scheme is obtained by applying the concen-
tration operator with n = 8 to the linguistic term “extremum”, the concentration operator
with n = 6 to the linguistic term “smooth”, and the dilation operator with n = 8 to the
linguistic term “steep”. We see that the jump is approximated in a much sharper way,
with an impressive improvement concerning the error, cf. Table 2. It is interesting but
not surprising that adding numerical compression in this way leads to the modfied control
function leaving the Sweby TVD region, cf. Figure 13(b).

24



Iterations MC Error MC mod. Error Improvement
400 0.0323959 0.00880443 72.82%
800 0.0388851 0.0088456 77.25%
2000 0.0499126 0.00900397 81.96%
4000 0.0607585 0.00934881 84.61%

Table 2: Box function test. Original and modified MC scheme.

Iterations Minmod Error Minmod mod. Error Improvement
400 0.0569887 0.0461998 18.93%
800 0.0725024 0.0581026 19.86%
2000 0.0993293 0.0787437 20.72%
4000 0.1257290 0.0992058 21.10%

Table 3: Box function test. Original and modified Minmod scheme.

Iterations Superbee Error Superbee mod. Error Improvement
400 0.0176138 0.0123212 30.05%
800 0.0181226 0.0124733 31.17%
2000 0.0182743 0.0127764 30.09%
4000 0.0182816 0.0131188 28.24%

Table 4: Box function test. Original and modified Superbee scheme.

The other schemes. The best improvement of the Minmod scheme ist obtained when
applying the concentration operator with n = 8 to the linguistic term “extremum” and the
dilation operator with n = 2 to the linguistic term “smooth”. An analysis of the error is
given in Table 3. Again, we see that the initial numerical method is drastically improved,
around 20 percent for all iterations.
In the case of the Superbee scheme, the best improvement is obtained by the application
of the dilation modifier with parameter value n = 8 to the linguistic term “smooth”, and
the dilation modifier with parameter value n = 6 to the linguistic term “steep”. The
improvement of about thirty percent is somewhat surprising as the basic Superbee scheme
is expected to perform already very well for bumpy data.
It is also a somewhat surprising result of this experiment that the modified MC scheme
performs slightly better than the Superbee scheme on discontinuous data, even after mod-
ification of the latter.

The sine wave test

The most accurate FFL method on the basis of the MC scheme is obtained by applying
the concentration operator with n = 8 to the linguistic term “extremum”, and leaving the
other linguistic terms unchanged. The fuzzy sets describing the input parameter and the
resulting control function are shown in Figure 14(a) and Figure 14(b), respectively.
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Figure 13: Box function test. Modified linguistic terms and modified control function
(red line) of the improved MC scheme.
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Figure 14: Sine wave test. Modified linguistic terms and modified control function of
the improved MC scheme.

Let us briefly comment on the modified control function. We observe that it leaves to some
part the TV stability region. However, this is not crucial for this test, as also the application
of just the second-order Lax-Wendroff scheme we use as our higher-order component does
not result in oscillations for smooth solutions, see e.g. [19].

The other schemes. The optimisation of the Minmod scheme yields the best improve-
ment by applying the concentration operator with n = 10 to the linguistic term “ex-
tremum” and the dilation operator with the same parameter value to the linguistic term
“smooth”. An error analysis can be found in Table 6. We see that the basis scheme is
drastically improved with respect to our test data, the improvement is about 40 per cent
at t = 1, 2 and even about 50 per cent at t = 5, 10.
An undesirable property of the Superbee scheme is that it tends to introduce artificial
stairs. We are especially interested to find a modification in which this effect is reduced.
The modification we present here is given only by an application of the contrast operator
with n = 2 to the linguistic term “steep”, and letting the other linguistic terms untouched.
An evaluation of the scheme can be found in Table 7. We see that in particular for the
first iterations the modified scheme performs much better than the original scheme.
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Iterations MC Error Stairs MC mod. Error Stairs Improvement
400 0.00141052 5 0.00121663 5 13.75%
800 0.00246478 6 0.00225588 6 8.48%
2000 0.00532868 7 0.00499149 5 6.33%
4000 0.00948061 7 0.00916584 6 3.32%

Table 5: Sine wave test. Original and modified MC scheme.

Iterations Minmod Error Stairs Minmod mod. Error Stairs Improvement
400 0.0067651 6 0.00418487 4 38.14%
800 0.0127694 7 0.00764521 4 40.13%
2000 0.031728 8 0.0165611 4 47.8%
4000 0.0561814 8 0.0268332 3 52.24%

Table 6: Sine wave test. Original and modified Minmod scheme.

Iterations Superbee Error Stairs Superbee mod. Error Stairs Improvement
400 0.0048704 7 0.00350904 6 27.95%
800 0.00885299 8 0.00632758 7 28.53%
2000 0.0182049 11 0.0140664 7 22.73%
4000 0.0253891 12 0.0248731 7 2.03%

Table 7: Sine wave test. Original and modified Superbee scheme.
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Discussion of first results

Let us consider the MC scheme and its improvements for the linear tests. The effects of
the new control functions to our examples are shown in Figure 15.
We see that the sine wave – a smooth solution – is approximated almost perfectly. However,
in this test case the improvement is not impressive as the MC scheme in its basic version
already performs well for smooth data, see Table 5. For the box function test, an impressive
improvement is gained.
Let us stress that this is qualitatively what can be expected also for the following tests.
Smooth solutions can be made better depending on the accuracy obtained by the original
MC scheme which is already in a reasonable range. For the Minmod scheme, for instance,
such an improvement is potentially more significant since the original scheme is relatively
dissipative. At discontinuous solution features, some accuracy can nearly always be gained.
We summarise in the following these behaviours mainly by giving the L1 errors as there is
no surprise in plotted solutions; any improvements give qualitatively the same impression
as indicated via Figure 15.
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Figure 15: Original (top row) and modified MC scheme (bottom row) with ∆t = 0.0025,
∆x = 0.01, t = 10. Left. The sine wave test. Right. The box function test.

6.2 The Burgers equation

Burgers’ equation is considered to be the most simple non-linear test case:

ut + (
1

2
u2)x = 0 (56)

The flux function is convex, and thus either (discontinuous) shocks or (continuous) rar-
efaction waves appear in the solution of Riemann problems, i.e. for a jump function with
a single discontinuity as initial data.
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Case 1: Shock Wave

As first initial data, we consider ul = 1 and ur = 0, i.e.,

u(x, 0) =

{

1 x < 0

0 x > 0
(57)

The exact solution in this case is a a shock, i.e. the initial discontinuity is translated with
velocity s = 1/2. We only consider the solution at t = 1 and t = 2, as this suffices to see
what can be achieved by our improvement algorithm.

The most accurate improved MC scheme is obtained by applying the concentration op-
erator with parameter value n = 6 to the linguistic term “extremum”, and the dilation
modifier with parameter value n = 8 to the linguistic term “steep”, whereas the linguistic
term “smooth” is not modified. The resulting control function is shown in Figure 16(a).
The improved scheme is around 20 percent better than the original scheme, cf. Table 8.

The other schemes. The best improvement of the Minmod scheme is gained by modifying
the linguistic terms for the input parameters as follows: The concentration modifier is
applied to the linguistic term “extremum” with a parameter value of “n=2”, and the
dilation modifier is applied to the linguistic term “smooth” with a parameter value of
n = 8. Comparing the computed errors of the original with the improved scheme we see
that the error is reduced by 36 percent, cf. Table 9.
Also the Superbee scheme can drastically be improved using our algorithm, namely around
20 percent for the test case, cf. Table 10. The improved scheme is obtained by the ap-
plication of the concentration modifier with parameter value n = 8 to the linguistic term
“extremum”, the application of the dilation operator with parameter value n = 2 to the
linguistic term “smooth”, and the dilation operator with parameter value n = 8 to the
linguistic term “steep”.

Case 2: Rarefaction Wave

As second test case, we consider the initial data

u(x, 0) =

{

0 x < 0

1 x > 0
(58)

In this case, the correct solution is a rarefaction wave, where the density decreases contin-
uously across the wave. It is given by the following equation:

u(x, t) =















ul x < ul · t
x

t
ut · t ≤ x ≤ ur · t

ur x > ur · t

(59)

The best improvement of the MC scheme is obtained when applying the concentration
modifier with parameter value n = 6 to the linguistic term “smooth”, and applying the
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Iterations MC Error MC mod. Error Improvement
400 0.00313272 0.00248803 20.58%
800 0.00313222 0.00252466 19.40%

Table 8: Shock wave test. Original and modified MC scheme.

Iterations Minmod Error Minmod mod. Error Improvement
400 0.00383789 0.00243818 36.47 %
800 0.00383739 0.00243768 36.48 %

Table 9: Shock wave test. Original and modified Minmod scheme.

Iterations Superbee Error Superbee mod. Error Improvement
400 0.00296601 0.00239133 19.38%
800 0.00296551 0.00239083 19.38%

Table 10: Shock wave test. Original and modified Superbee scheme.

concentration operator with parameter value n = 2 to the linguistic term “steep”. By
doing so we can improve the accuracy of the numerical method by 35 percent, as shown in
Table 11. The modified control functions for both tests concerned with Burgers’ equation
are shown in Figure 16. Note that even in the considered simple settings, the optimised
control functions seem to be non-trivial, non-linear functions.

The other schemes. We first try to fine tune the Minmod scheme. However, for the
first time our improvement algorithm fails, as the returned numerical scheme is less than a
half percent better then the original numerical scheme. It is obtained by the application of
the contrast operator with parameter value n = 2 to the linguistic term “extremum”, and
the application of the contrast operator with parameter value n = 8 to the linguistic term
“smooth”. An analysis of the data shows that this is because the smoothness measure Θ
is higher than one in large parts of the rarefaction. The unsatisfactory behaviour of the
tuning algorithm can be explained by the fact that the application of a modifier does not
change the tolerance set of a fuzzy set. A closer look at the linguistic term “smooth” shows
that a smoothness measure larger than 1 lies in the tolerance set of the fuzzy set. Thus
the application of a modifier does not affect the treatment of the rarefaction wave.
The analysis of the input data in the previous case lets us hope that we can obtain an im-
proved version of the Superbee scheme, as the rule base for the latter contains an extra rule
covering a smoothness measure of larger than 1. Indeed, for this case we can improve the
scheme around 50 percent, c.f. Table 12. The best accuracy is obtained by the application
of the dilation operator with parameter value n = 6 to the linguistic term “extremum”,
the concentration operator with parameter value n = 8 to the linguistic term “smooth”,
and the concentration operator with parameter value n = 2 to the linguistic term “steep”.
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Figure 16: Control functions of modified MC schemes for simulations of Burgers’ equation.

6.3 The Buckley-Leverett Equation

This test is concerned with a non-linear HCL featuring the non-convex flux function

f(u) =
u2

u2 + a(1 − u)2
(60)

where a := 1/2 is a constant parameter. Due to the non-convexity, the solution of the
Riemann problem with initial data as in (6.2) is given by a mixed wave, i.e. a shock to
which a rarefaction wave is attached, see e.g. [19].

The most accurate modified MC scheme is obtained by applying the dilation operator
with parameter value n = 6 to the linguistic term “extremum”, the contrast operator
with parameter value n = 2 to the linguistic term “smooth”, and the contrast operator
with parameter value n = 2 to the linguistic term “steep”. In this case, a significant
gain in resolution quality is achieved when resolving the moving shock; this explains the
considerably improvement observable in Table 13. The modified linguistic terms and the
highly non-linear control function is displayed in Figure 17.

The other schemes. The fine tuning of the Minmod scheme results in a mediocre im-
provement using the dilation operator with parameter value n = 2 applied to the linguistic

Iterations MC Error MC mod. Error Improvement
200 0.00106768 0.000685669 35.78%
400 0.00104649 0.000679524 35.07%

Table 11: Rarefaction wave test. Original and modified MC scheme.

Iterations Superbee Error Superbee mod. Error Improvement
200 0.000553645 0.000282717 48.94%
400 0.000559025 0.000299164 46.48%

Table 12: Rarefaction wave test. Original and modified Superbee scheme.
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term “extremum” and to the linguistic term “smooth”, cf. Table 14. However, a signifi-
cant quality gain can not be achieved for this scheme here; compare our discussion of the
rarefaction wave test in the previous paragraph.
The modification provided by our algorithm for the Superbee scheme is given by an applica-
tion of the dilation operator with parameter value n = 8 to the linguistic term “extremum”,
the application of concentration modifier with parameter value n = 8 to the linguistic term
“smooth”, and the application of the dilation operator with parameter value n = 8 to the
linguistic term “steep”. An evaluation of the scheme can be found in Table 15, revealing
a considerable improvement of about fifty percent.

Iterations MC Error MC mod. Error Improvement
200 0.00924061 0.00574125 37.87 %
400 0.00908056 0.00490976 45.93 %
600 0.00853300 0.00446720 47.65 %

Table 13: Buckley-Leverett test. Original and modified MC scheme.

Iterations Minmod Error Minmod mod. Error Improvement
200 0.00464404 0.00431400 7.11 %
400 0.00452810 0.00360098 20.47 %
600 0.00532273 0.00388623 26.99 %

Table 14: Buckley-Leverett test. Original and modified Minmod scheme.

Iterations Superbee Error Superbee mod. Error Improvement
200 0.0139729 0.00822150 41.16%
400 0.0150731 0.00715809 52.51%
600 0.0155228 0.00654816 57.82%

Table 15: Buckley-Leverett test. Original and modified Superbee scheme.
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Figure 17: Buckley-Leverett test. Modified fuzzy sets and control function for the MC
scheme.
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7 Summary and Conclusion

In this paper we have proposed a novel idea for constructing flux limiter methods using
fuzzy logic. The benefits of our framework are that flux limiters can be given an easy
interpretation, and it is also easy to modify them. We have investigated how accurate
novel FL-based schemes can be obtained by improving basic schemes using hedges.

Our work shows that the FL-based approach can be used with benefit for the construction
of numerical schemes for PDEs. We are optimistic that this paper gives the foundation of
a fruitful line of future works concerned with more intricate FL-based methods, using e.g.
sophisticated optimisation procedures, other inference engines, or additional rules within
the rule base.
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