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February 24, 2010

Abstract

We introduce a new global approach for image dithering, stippling,
screening, and sampling. It is inspired by the physical principles of elec-
trostatics. Repelling forces between equally charged particles create a ho-
mogeneous distribution in flat areas, while attracting forces from the image
brightness values ensure a high approximation quality. Our model is trans-
parent and uses only two intuitive parameters: One steers the granularity
of our halftoning approach, and the other its regularity. We evaluate two
versions of our algorithm: A discrete version for dithering that ties points
to grid positions, as well as a continuous one which does not have this re-
striction, and can thus be used for stippling or sampling density functions.
Our methods create very few visual artefacts, reveal favourable blue-noise
behaviour in the frequency domain, and have a lower approximation error
under Gaussian convolution than state-of-the-art methods.

1 Introduction
Image halftoning describes a class of techniques to virtually increase the colour
depth of printing or display devices. Though early examples go back to times be-
fore letterpress printing, the development of algorithms for digital image halfton-
ing has recently enjoyed additional focus. Many devices are still unable to produce
a high colour depth due to technical reasons. Printers and fax machines, for ex-
ample, can often create only purely black and white images without intermediate
grey values. Offset printers overlay few monochrome layers to create the impres-
sion of arbitrary colours. Even for digital image processing and storage, so-called
dithering methods are frequently used to find a best representation of full-colour
images in indexed colour palettes. However, today’s accurate algorithms are no

1



Figure 1: Comparison between halftoned result and original: Structure and tone
are both well preserved.

longer restricted to preprint purposes only, but can additionally be applied to sam-
pling problems occurring in rendering, re-lighting, or object placement, as well as
for artistic non-photorealistic image visualisation.
One of the first dithering techniques was proposed by Goodall [Goo51]. In this
work, images are intentionally perturbed by additive Gaussian noise prior to quan-
tisation. Though the image might become less accurate using this method, quan-
tisation boundaries almost disappear to the human observer. Another early class
is the so-called ordered dithering [Bay73], which approximates colour values lo-
cally by a predefined pattern. This technique is often applied in modern laser
printers. In 1994, Purgathofer et al. introduced an approach which replaces the
optimal regular pattern used in [Bay73] by a more random arrangement [PTG94].
Although this yields less accurate results, there are also noticeably less artefacts
with this method.
Further classic approaches frequently used today are those based on the so-called
error diffusion. This concept considers a local image similarity measure and dis-
tributes the local error into the neighbourhood. Such algorithms often suffer from
global artefacts, but remain popular thanks to their run-time efficiency. A promi-
nent member of this class is the method proposed by Floyd and Steinberg [FS76].
Many methods are based upon this idea and extend it by a different neighbourhood
treatment or grid structure [JJN76, Stu81, SA85], or by additional edge enhance-
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ment [JJN76, JR76]. A variant of error diffusion, which is called dot diffusion,
has been proposed by Knuth [Knu87].
More sophisticated approaches improved these early methods even further: Os-
tromoukhov extended the error diffusion idea by proposing a stencil design which
depends on the grey values being processed [Ost01]. This reduces some artefacts
created by the Floyd-Steinberg approach. Further improvements were introduced
by Zhou and Fang [ZF03], who used threshold modulation [Kno89] and stencils
optimised for this situation. Recently, Chang et al. [CAO09] proposed to use
thresholds and error diffusion stencils depending on the local frequency, orienta-
tion, and contrast in the image. This is done by using five lookup tables created
manually in a calibration step. A related technique which locally optimises space
distance measures based on a physical model has been proposed and patented by
Ilbery [Ilb00].
Another technique to reduce local errors is given by the optimisation of frequen-
cies occurring within a local neighbourhood. Two equivalent models approaching
this aim with neural networks and Markov simulations, respectively, have been
proposed by Geist et al. [GRS93]. A more recent method of Pang et al. optimises
a structure-preserving energy functional with related techniques, thereby obtain-
ing sharp and detailed visual results [PQW∗08]. For many practical applications,
this method is still suboptimal since it often overemphasises edges noticeably.
Furthermore, it relies on a good initialisation whose artefacts are often preserved.
An algorithmically less demanding approach has recently been proposed by Van-
derhaeghe and Ostromoukhov, whose idea is based on a polyomino tiling of the
image [VO08] which helps to avoid regular patterns. For artistic purposes, there
are also modern techniques which intentionally alienate images to simulate tra-
ditional drawing or printing techniques [OH95]. In this context, there has also
been work focused on results in a continuous domain, like halftoning based on the
Eikonal equation [PB96] which uses lines instead of points to visualise the image.
A related class of algorithms that obtains continuous instead of discrete results has
drawn attention in the field of non-photorealistic rendering: So-called stippling
aims at an imitation of dot-based halftoning known from pointillism or techni-
cal drawings. While early approaches like [Sec02] focus on creating visually
pleasing results, recent techniques also consider more objective criteria for eval-
uation [BSD09]. In both approaches, a weighted Voronoi tessellation are used.
Note that such continuous methods are also required in the context of importance
sampling, e.g. for Quasi-Monte Carlo processes, or to estimate integrals.
Many modern algorithms used in the previously mentioned fields today target
application-dependent features such as structure-enhancement, and introduce these
characteristics as an integral and mandatory part of their model. Thus, they are
typically very inflexible and cannot adapt to related applications or changing ex-
ternal conditions. In contrast to these approaches, we propose a new continuous
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model motivated by physics which finds numerous applications in the fields of
stippling (cf. Figure 1), dithering, screening, or sampling. To this end, we design
a very general model, and propose intuitive and flexible extensions to provide
particular attributes. Consequently, our algorithm is edge enhancing to a freely
adjustable degree, can easily be adapted to any printer resolution, works equally
well on colour and grey images, and can be fine-tuned to yield either energetically
or visually optimal results. This last property has become important in the last
decade [MF92, BSD09].
Still, we like to stress that all of these extensions are entirely optional. In fact, a
constant parameter set already yields highly accurate results of unsurpassed qual-
ity. We discuss these observations in more detail in Section 6.
Our paper is structured as follows: In Section 2 we give an overview of the par-
ticle model we use. After discussing extensions to this model in Section 3, we
sketch our algorithm in Section 4. In Section 5 we then describe a GPU-based
implementation. Finally, we evaluate the quality of our methods in Section 6, and
conclude with a summary in Section 7.

2 Electrostatic Model

2.1 Repulsion
Our halftoning approach is motivated by the intuitive assumption that, for regions
of constant density, e.g. regions of constant grey value in an input image, black
points in the output image shall be equally distributed. We obtain this solution by
modelling points as charged particles in a global particle system. A similar idea
was already mentioned in [Han05], but not pursued any further – in particular
since this model only allows uniform densities as input. In contrast, we now
introduce an easy and versatile new model which we extend to arbitrary images in
the next section.
To formalise this idea, let us consider a continuous greyscale input image f : Ω→
[0,1]. The output image g of the dithering or sampling process will admit only
the values 0 and 1. We regard black pixels as small equally-charged particles in
an environment without frictional forces. Due to repulsion, the steady state of
this evolution will always be an equilibrium maximising the pairwise distances
between all particles. Thus, one obtains a globally optimal result.
To achieve this goal, we first sample f at a regular grid, and obtain a discrete
image u : Γ → [0,1] with

Γ :=
{

(i, j)>
∣∣∣ i ∈ {1, . . . ,nx}, j ∈ {1, . . . ,ny}

}
. (1)
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Based on this sampling, we then compute the number of black particles in our
target image g as

|P| := round

(
∑
xxx∈Γ

(1−u(xxx))

)
, (2)

where round(x) denotes the nearest integer value of x. With this choice, the av-
erage grey value of the image is approximately preserved. Let some particle
n ∈ P := {1,2, . . . , |P|} be characterised by a position pppn and a charge qn. We
will now compute an energetically ideal particle distribution within a system of
electrostatic repulsive forces.
Consider two point charges q1,q2 at positions ppp1, ppp2, as well as the unit vector
eee1,2 from ppp1 to ppp2:

eee1,2 :=
ppp2− ppp1
‖ppp2− ppp1‖

, (3)

where ‖·‖ denotes the Euclidean norm. Let us first compute the repulsive force
FFFr,1,2 acting on the first particle. Different to classical physics, however, we do
not consider a 3-D world here, but deduce this interaction in a pure 2-D model.
For this purpose, we first obtain the electric flux Φ through a circular curve of
radius r by

Φ = 2πr|EEE|, (4)

where EEE is the electrical field [Mes06]. By the theorem of Gauß-Ostrogradski,
this electric flux also equals

Φ =
q2

ε0
, (5)

where ε0 is the electric constant. Combining (4) and (5) results in

|EEE|= q2

2πε0r
, (6)

which is now used to compute the influence on the other particle:

|FFFr,1,2|= q1|EEE|=
q1q2

2πε0r
=

kq1q2

‖ppp2− ppp1‖
, (7)

where k := 1
2πε0

, i.e. k equals twice Coulomb’s constant. Since this force acts in
direction −eee1,2, we obtain

FFFr,1,2 =− k ·q1 ·q2

‖ppp2− ppp1‖
eee1,2. (8)

The negative sign stresses the repulsive character of FFFr,1,2, and will be used later
to separate it from positive attractive forces introduced in the next section. Note
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that, in contrast to the 3-D world, there is a decay of forces of the form 1
r rather

than 1
r2 . This finding might seem surprising at first, but can also be derived from

the 3-D world by considering infinitely long, thin, charged cylinders which are
aligned parallel to each other. In this scenario, one plane perpendicular to the
cylinders exactly represents our 2-D system, and the forces involved in this case
are again given by (8) (cf. [Mes06]).
Next, we compute the accumulated force on one particle n∈P by summing up its
interactions with all other particles:

FFFr,n =− ∑
m∈P
m6=n

k ·qn ·qm

‖pppm− pppn‖
eeen,m. (9)

This is the first force that will be used in our approach. If we restrict the admissible
positions of the particles to the finite, two-dimensional image domain, the forces
will be zero if the particles are uniformly distributed. We will see later that the
restriction on the particle positions is not necessary in our final model.

2.2 Attraction
So far, we have only considered particles with a uniform distribution over the
image domain. However, this simple model is only justified for constant images
having only a single grey value. To extend our approach to arbitrary images con-
sisting of multiple grey values, we introduce additional attractive forces that pull
particles towards dark image regions. This is done by regarding each image grid
point xxx ∈ Γ with grey value u(xxx) as a particle with charge (1− u(xxx)) · q, where q
is the charge of a ‘black’, i.e. most attractive, grid point. The attracting force of
the image onto a particle n is then given by:

FFFa,n = ∑
xxx∈Γ

xxx 6=pppn

k ·qn · (1−u(xxx)) ·q
‖xxx− pppn‖

eeen,x. (10)

In a similar style as before, eeen,x denotes the unit vector from the particle position
pppn to the image point xxx.
To ensure that the particles will distribute over the complete image domain, the
attractive image forces must equal the repulsive particle forces, i.e. the system is
required to be electrically neutral. If we neglect rounding inaccuracies introduced
by (2), this holds automatically when the charge of all particle are equal, e. g.

∀n ∈ P : qn := q := 1. (11)

6



Combining (9), (10) and (11), we obtain the force

FFFn = k ·q2 ·

 ∑
xxx∈Γ

xxx 6=pppn

1−u(xxx)
‖xxx− pppn‖

eeen,x− ∑
m∈P
m6=n

1
‖pppm− pppn‖

eeen,m

 . (12)

Within regions with constant grey values, attractive forces will be homogeneously
distributed. This means that energetically ideal positions within such regions are
still given at locations which maximise the distance between the particles. The
model fulfils exactly the properties imposed in Section 2.1. In textured regions or
at image boundaries, however, attractive forces predominate their repulsive coun-
terparts and tie particles onto locations with darker grey values.
Moreover, we can observe the effect that, whenever a region contains the amount
of particles it should do according to its average grey value, it behaves neutral
with respect to ‘external’ particles. This means, it will neither attract nor repulse
any other particles. However, if one particle enters this region because of external
force, another one will leave it at some less restrictive location to restore the neu-
tral state. Note in particular that the whole image represents a neutral region now,
which automatically binds particle locations to the image domain. Our previous
restriction to certain admissible locations introduced at the end of Section 2.1 thus
becomes redundant.

2.3 Algorithmic Solution
Our approach computes the halftoned image as steady-state of the described par-
ticle system. Since we are only interested in the steady-state, but not in the evolu-
tion, we do not study accelerated particles in the electric field. Instead, we propose
an artificial time evolution which is numerically more stable and also leads to the
desired equilibrium of forces: The translation of one particle performed at a time
step is given by the weighted force vector currently acting on it. From an opti-
misation viewpoint this can be regarded as decreasing the overall imbalance of
forces every time step by repositioning the particles in accordance with the force
field. The corresponding time-discrete, space-continuous update equation is given
by

pppk+1
n = pppk

n + τ

 ∑
xxx∈Γ

xxx 6=pppn

1−u(xxx)
‖xxx−pppn‖

eeen,x−∑
m∈P
m 6=n

1
‖pppm−pppn‖

eeen,m

 (13)

where pppk
n is the position of particle n at time step k, and where the parameter τ

controls the artificial time step size. In our experiments we use τ = 0.1. Note that
τ incorporates some constants such as the point charges and Coulomb’s constant.
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3 Extensions

3.1 Discrete Particle Locations
The model developed so far is perfectly suited to find optimal point locations for
applications situated in the continuous domain. For dithering, however, the set of
admissible locations is finite: It is given by the rectangular grid imposed by the
discrete image domain.
In order to obtain an optimal solution, it is not advisable to simply discretise the
continuous result: Hexagonal structures, which are optimal in the continuous set-
ting, cannot be adequately represented on the rectangular grid. As a consequence,
unpleasant artefacts and multiple particles being assigned to one grid position
yield intolerable visual results and alter the image brightness.
As a remedy, we model the rectangular grid with an additional constraint. In a
first step, we thus introduce a force term to concentrate particles in the vicinity of
grid points. This results in a much better solution when particles are mapped to
the nearest discrete grid point after convergence. More precisely, we use the force

FFFg,n = α · 1

1+ ‖dddnxxx‖8

λ8

· dddnxxx

‖dddnxxx‖
, (14)

where dddnxxx is the vector from the particle n to the nearest grid point xxx ∈ Γ, the
contrast weight λ := 1√

10
decides by how much a particle is pulled back depending

on the distance to this grid point, and the regularisation weight α := 3.5 steers the
influence of this force on the system. Algorithmically, this modification is realised
by adding a term τFFFg,n to (13).
In a second step, we account for the problem that there are still local minima
in which particles can get stuck between the grid lines. When the converged
system is eventually sampled to obtain a discrete dithering result, this fact can
lead to ambiguous and thus sub-optimal mappings. Thus, on each time step, we
project all particles back onto the closest horizontal or vertical line connecting the
grid points. This operation forces particles to align in a rectangular grid structure
instead of a hexagonal arrangement.
A special treatment is applied to white regions. Those should not contain any
particles, and yet this can happen in particular if particles undergo large displace-
ments per time step. While this does not constitute a problem for the continu-
ous algorithm, our extensions for the discrete case dominate attractive forces of
coloured image parts, and particles cannot return. As a remedy, we limit the max-
imal motion to one pixel per time step, and switch off our additional force term
and projection in white regions. While the first aspect prevents a particle to move
too far from desirable locations, the latter one ensures that the remaining forces
suffice to let the particle return.
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3.2 Edge Enhancement
To enhance the perceptual quality of dithering algorithms such as Floyd-Steinberg,
an edge enhancing preprocessing of the initial image has been proposed in the
literature [JJN76,JR76]. These algorithms modify the effect of a dithering method
in such a way that it no longer approximates the original image as good as possible
from a mathematical viewpoint, but creates a result that is visually more pleasant
for human observers.
As it turns out, these filters are very similar to the well-known unsharp masking
method [GW08]. Our model can easily employ this technique by applying a pre-
processing step to the initial image f . This can either be a classic unsharp masking
involving convolution with a Gaussian, or a discrete variant like it can be applied
for the Floyd-Steinberg filter [JJN76]. Note that during edge enhancement, image
values might leave the range [0,1]. Though values greater than 1 even repel parti-
cles rather than attracting them, our algorithm works well under these conditions.

3.3 Different Pixel Sizes
Up to now, we assumed that a pixel in the image has the same size than a blob of
the output device. However, this is not always the case: One way to deal with this
problem in classic dithering schemes is to sparsify point clouds recursively, as is
described in [KCDL06].
In contrast to such post-processing steps, the proposed algorithm can already
adapt to arbitrary printer resolutions in a fully-automatic manner: Let η be the
ratio between the area of a pixel and one blob. In that case, the number of particles
is divided by η, while the charge of each particle is multiplied by η. Technically,
this comes down to scaling the pixels in the input image by a factor 1

η
.

3.4 Multi-Channel Images
For colour images, we suggest a separable treatment using either the RGB or the
CMY colour model. In both cases, the colour channels are independent from each
other and can hence be computed separately. Although we did not optimise our
algorithm for colour images, it turns out to perform well under these conditions:
Both structure and colours are very accurately represented, as is shown in Sec-
tion 6.1.
We are convinced that our model can be extended to ‘coupled’ colour models like
CMYK. In such cases, the channels are no longer independent, but need to be
simultaneously optimised with respect to the joint (‘K’) channel. This non-trivial
extension is part of our ongoing work.
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3.5 Artefact Prevention (‘Jittering’)
If there are large uniform regions in an image, our algorithm tends to arrange
dots in energetically optimal, hexagonal structures. However, such regular pat-
terns often attract the attention of the observer and are thus undesired in some
applications. To deal with this problem, we now introduce a ‘jittered’ variant of
our algorithm. Since we are convinced that the avoidance of regular patterns is a
purely application-specific aim, we do not understand this extension as an integral
part of the algorithm. In contrast to other methods proposed in the literature, we
can control the degree of ‘jittering’ in our framework, and can thus find an optimal
tradeoff between visual and analytic quality.
During the initialisation phase, we set up a dense, high-frequent turbulence field
T , which we evaluate for all interactions with the underlying image. To this extent,
we create a random vector (

wx ·R · sin(ϕ)
wy ·R · cos(ϕ)

)
(15)

for each grid point xxx∈ Γ, where R(xxx) is a uniformly distributed random number in
the interval [0,0.1], and ϕ(xxx) is a random direction in the interval [0◦,360◦). The
weights wi( f ,xxx) := 1−|Di f (xxx)| account for the fact that jittering is predominantly
required in homogeneous regions, i.e. where the finite difference approximation
Di f of the gradient ∂i f is close to zero. The turbulence field T is then obtained
by bilinear interpolation between the grid points. Thus, we add τT (pppk

n) to (13)
in order to obtain the new particle time step. Note that T is constant during this
evolution, such that this process is convergent.
Due to the introduced turbulence field, the regular structures in the solution are
broken apart. Consequently, the obtained results look much more pleasing to the
eye. However, this comes at the cost of a slightly higher error.

4 Algorithm
In our algorithm, we implemented the particle evolution given by Equation (13).
Since the attraction term FFFa,n only depends on the current position, and not of
the position of other particles, it is constant over the course of the evolution, and
can hence be precomputed. Note that if the ‘jittering’ extension is desired for
the current application, this precomputation also helps in this case to significantly
reduce the computation time: The turbulence field described in Section 3.5 can be
added to the image-based force field FFFa,n once at initialisation time and will no
longer be performed over the run of the evolution.
In order to obtain a smooth representation of the attractive force field, we sample
the respective forces for all grid points and perform bilinear interpolation.
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Our algorithm consists of three major steps:

1. Initialise the positions of the particles.

2. Precompute image-based force field FFFa,n.

3. Process the particle evolution until converged (or maximal number of itera-
tions is reached).

For the first step, any initialisation with the correct amount of black pixels (see
Equation (2)) can be used. Possible choices are, for example, the result from
another dithering or sampling method, or a image in which the positions of the
particles have been chosen randomly. In all our experiments, we used random
positions whereas the probability that a position xxx is chosen is proportional to
1− u(xxx). The remaining two stages can be implemented straightforwardly by
using Equations (10) and (13), respectively.
By applying Equation (13), the minimisation procedure is likely to end in a local
minimum, thus yielding globally suboptimal results. In order to diminish this
problem, we also included a procedure we called ‘shaking’: Every ten iterations,
each particle is moved into a random direction with a random magnitude. Thereby,
the maximal displacement decreases with the iteration number. More specifically,
we set the maximal displacement in the a-th iteration to

c1 · exp
(

−a
1000

)
, c1 := max

(
0,

log2(NOI)−6
10

)
, (16)

where NOI is the total number of iterations to be done. From a physical stand-
point, this can be regarded as Brownian motion, whereas the temperature of the
particles decreases during the iterations. Such an approach is also known as sim-
ulated annealing which is a widely used optimisation strategy.

5 Implementation on a GPU
Since the proposed algorithm is perfectly suited to exploit the potential of Graph-
ics Processing Units (GPUs), we implemented our method on an NVidia GeForce
GTX 285 card using CUDA. Particle systems are well-known in the literature: De-
pending on the application, we find electrostatic or gravitational forces between
the different bodies. A fast parallelisation technique for such an N-body particle
system has been proposed by Nyland et al. [Ngu07]. We use the same idea as
a basis for our algorithm. However, our model requires certain extensions and
modifications to this approach, since it also relies on interaction with an input
image.
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As is described in the previous section, we split our algorithm in three stages,
whereof the first stage, the initialisation phase, is computed on the CPU. The
attractive image force field computed in step two is stored in texture memory.
During the particle evolution, it can thus be read out with hardware-supported
bilinear interpolation and a better caching strategy.

5.1 Creation of the Force Field
As a first GPU kernel, we compute the image-driven force field. It turns out
that even this operation is structurally similar to a particle system: For a single
test charge that is moved over all i · j = M locations, we compute the impact of
all other M− 1 point charges on grid points other than the one we are currently
observing. All those forces can be arranged in an M×M force matrix with a zero
main diagonal. The overall force FFFm acting on any location m is then given by an
integration of the m-th row:

FFFm =
M

∑
k=1

Ak,m. (17)

Without going too much into detail, we refer the reader to the well-written paper
by Nyland et al. [Ngu07] and only sketch the differences:
Every pixel is determined by its position, which can be computed in-line, and by
its grey value that can be retrieved from a texture fetch. To this extent, all threads
in a block first compute the distance of ‘their’ coordinate to a certain other pixel,
and fetch the grey value at this point. Then, they compute the resulting force in-
crements, and add them to their force vector. Note that during this process, at most
M· #Blocks many loads, and M writes from and to GPU memory are needed.

5.2 Evolution of the Particles
Each particle evolution step depends on three variables: The particle’s own lo-
cation, the image force at this point, and the other particles’ locations. Since
attractive image forces are encoded in a texture information that can immediately
be evaluated once per update, we only need to find a suitable parallelisation strat-
egy for the repulsive forces. Here we apply a similar technique we used for the
computation of the force field (cf. Section 5.1): This time, however, we regard N
particles each of which interacts with N−1 other ones. In this way, we obtain an
N×N matrix of forces with a zero diagonal, which we integrate in one direction.
For this purpose, we use similar implementation parameters as before.
In order to check the convergence after every iteration step, each thread com-
putes the norm of its particle displacement and compares this value to a constant
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threshold. Since GPU-CPU-bandwidth is rare, a per-block reduction operation is
applied to these flags prior to downloading this information to the CPU. As long as
one particle does not meet the convergence requirements, we proceed with our al-
gorithm. Moreover, after a certain number of iterations, we usually want to apply
‘shaking’. Since no random generator is available on the graphics card, we down-
load the entire point cloud in this case, apply shaking on the CPU, and upload the
new position list back to the device.

6 Experiments

6.1 Visual Evaluation
As a first quality criterion, we investigate the perceptual quality of our algo-
rithm. To this extent, we compare both the normal and the ‘jittered’ variant of our
space-continuous version against the results by Balzer et al. (with 1024 points
per site and a Euclidean metric) [BSD09]. Moreover, the results of our space-
discrete dithering approach are compared to those of the popular Floyd-Steinberg
method [FS76], the techniques of Ostromoukhov [Ost01], Zhou et al. [ZF03], and
Purgathofer et al. [PTG94] (using a matrix spanning the whole image), as well as
to the neural network based method of Geist et al. [GRS93], and the structure-
aware halftoning approach of Pang et al. (which is always initialised with Os-
tromoukhov’s method) [PQW∗08]. While it only required small modifications to
integrate the freely available source code of Ostromoukhov and Balzer et al. into
our evaluation framework, the remaining methods had to be implemented from
scratch. In addition, we also evaluated against a modern commercial stochastic
screening technique, for which sample images have generously been provided by
a company that preferred to remain anonymous. In contrast to all other observed
methods, this technique is optimised for printing purposes.
In our first experiment, we evaluate the behaviour of the proposed method for dif-
ferent grey values. To this end, we created a synthetic grey ramp covering 256
grey values, and halftoned it with different methods. As one can see in Figure 2,
our pure continuous approach offers a better tone preservation than the method of
Balzer et al., while the latter technique suffers less from regularity artefacts. Our
‘jittered’ approach combines the advantages of both methods, and thus outper-
forms the other techniques. Among the discrete methods, the proposed approach
performs best as well: Our method neither creates clustered artefacts in areas
close to 50%, as is visible for the methods of Floyd-Steinberg, Ostromoukhov,
and Purgathofer et al., nor does it circumvent this problem at the cost of a higher
graniness, as is done by the method of Zhou et al. or stochastic screening. Also the
techniques of Pang et al. and Geist et al. do not reach the quality of our discrete

13



Original Proposed Proposed Balzer et al.
(continuous) (jittered)

Proposed Floyd- Ostromoukhov Zhou et al.
(discrete) Steinberg

Purgathofer Stochastic Geist et al. Pang et al.
et al. Screening

Figure 2: Visual quality of halftoning results for grey ramp (100×256).
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approach. While the first one suffers from line artefacts instead of problems with
clustering, the second one fails to represent bright and dark regions sufficiently
well, since it considers only a limited neighbourhood.
Next, we compare halftoning results for the real-world colour image statue shown
in Figure 3 using the CMY colour model. All observed continuous methods ap-
proximate the original very well, and are qualitatively similar to each other. How-
ever, in the comparison of discrete approaches, our method has less artefacts than
the other algorithms. This can be seen particularly well at the top of the image,
and at the chest of the statue. In contrast, the method of Pang et al. creates
artificially-looking results by pronouncing edges too strongly, while the method
of Geist et al. cannot reproduce the colour of the sky, as two channels are close to
zero. Finally, one can observe that the stochastic screening results appear a little
more grainy than others and the colours are represented differently. However, this
characteristic might be intended as an optimisation to real printing devices.
As a third experiment, we evaluated a colour image containing large white areas,
skin tones and bright, saturated colours, as it is depicted in Figure 4. This im-
age is quite challenging due to two reasons: Human observers are very good at
recognising errors in the representation of skin colour, as well as spotting single
points in uniform areas. For the continuous methods, the visual quality is very
similar at first glance. However, the method of Balzer et al. suffers from two
minor problems visible when zooming into the image. Dark colours are not rep-
resented accurately and stray dots are visible in white regions. The latter problem
occurs when colour information is distributed along the boundary of a Voronoi
cell but represented by a dot in the centre. Such artefacts can for instance be ob-
served between the middle and the ring finger of the left hand. Our continuous
methods, in contrast, are not affected by these problems: They provide an ac-
curate colour reproduction and artefact-free results. These nice properties carry
over to the discrete case: Our approach outperforms the other dithering methods
by a good preservation of tone, as well as by an artefact-free rendering of both
coloured and empty regions. In the results of Ostromoukhov and Zhang et al., one
finds many stray particles in the white regions. Stochastic screening fills the entire
white region with cyan dots, but we are again this property might be intentional.
The effect of our optional edge enhancement step (cf. Section 3.2) can be seen in
the fourth experiment, which is depicted in Figure 5. Here we used the unsharp
masking implemented in the GNU Image Manipulation Program (GIMP, version
2.2) [Pec06] as a preprocessing step. Note that small structures, like braids or
curls, are much more emphasised and clearly visible. In some applications, such
results are preferable to the outcome without preprocessing.
In our fifth experiment, we investigate the influence of the chosen dot size. As
one can see in Figure 6, even for a dot radius of 2.0 and accordingly few blobs,
lines are still perfectly preserved. Note that in all other experiments, the radius
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Original Proposed Proposed Balzer et al.
(continuous) (jittered)

Proposed Floyd- Ostromoukhov Zhou et al.
(discrete) Steinberg

Purgathofer Stochastic Geist et al. Pang et al.
et al. Screening

Figure 3: Visual quality of stippling and dithering results for a photograph of a
statue of Charles XIV, in Norrköping (229×229). Original image licenced as CC-
BY-SA 2.0 by User:Thuresson, published on Wikimedia Commons. The continu-
ous results are visualised with dots, the remaining images have been upsampled.
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Original Proposed Proposed Balzer et al.
(continuous) (jittered)

Proposed Floyd- Ostromoukhov Zhou et al.
(discrete) Steinberg

Purgathofer Stochastic Geist et al. Pang et al.
et al. Screening

Figure 4: Visual quality of stippling and dithering results for the Rubik’s cube
colour test image (256×256). The continuous results are visualised with dots, the
remaining images have been upsampled.

17



Figure 5: Leonardo da Vinci: Study for the Head of Leda (256×256). From left
to right: Original, continuous result, ditto with little unsharp masking (radius 5,
factor 0.5), and with more unsharp masking applied (radius 10, factor 1.0).

Figure 6: Leonardo da Vinci: The skull bisected and sectioned (200×300). Ren-
dering of different blob sizes. From left to right: Original, continuous method
with blob radius 0.5, 1.0, 1.5, 2.0.

has been chosen in such a way that the area of a dot is equal to the area of one
pixel.
Taking these experiments together, we can conclude that our continuous methods
yield accurate results of high quality. Also the discrete variant performs better than
existing dithering approaches from the literature, which often suffer from ’worm’-
like artefacts. In the following paragraphs, we will underline these qualitative
findings by a quantitative evaluation based on different error measures.

6.2 Evaluation in Gaussian Scale Space
In this section, we evaluate the similarity of halftoning results to the original im-
age. Motivated from the fact that human observers at a certain distance to the
screen should not be able to distinguish an ideal result from the original image,
we blur both the original and the halftoned image by a convolution with a Gaus-
sian. This is meant to approximate the impulse response of the human visual
system.
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Original Proposed Proposed Balzer et al. Geist et al. Pang et al.
(continuous) (jittered)

Proposed Floyd- Ostro- Zhou et al. Purgathofer Stochastic
(discrete) Steinberg moukhov et al. Screening

Figure 7: Zoom into the trui test image. From top to bottom: Dithering/Stippling
result, ditto blurred with σ = 1, scaled difference image. Error-free regions ap-
pear as 50% grey in the difference image. The apparent different dot sizes in the
proposed continuous result are an optical illusion that disappears when zooming
into the image.
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Figure 7 shows excerpts from this experiment on the trui test image. The halftoned
results presented in the top row are convolved with a Gaussian of standard devi-
ation 1.0 to obtain the images shown in the second row. Finally, the difference
image of the blurred original and this blurred result is scaled by a factor of ten to
increase visibility. This error map is visualised in the bottom row. We expect a
good halftoning method to approximate the initial image well. That is, its error
should be globally small, and no image structures should occur in the error image.
Among the continuous methods, our approach performs best. Thanks to a good
localisation of halftoning points, most regions are already well reconstructed by
convolution with this very small Gaussian. This is clearly visible in the error im-
age. Note that the artefacts visible in sparsely sampled regions are theoretically
justified, since larger Gaussians are required to fill in the area properly. A related
problem is present for all discrete methods, where point distances induced by the
fixed grid spacing can also generate high errors. As a sign of its superior qual-
ity, though, our discrete approach neither reveals structural information, nor any
regular patterns such as stripe artefacts. In this context, one can also observe the
poor performance of the halftoning method of Pang et al., or the neural network
based approach by Geist et al.. While their structure-enhancing properties are of-
ten considered as a strength, they fail to approximate the input image well. This
is clearly visible in the error map.
The standard deviation σ of the Gaussian used for blurring immediately corre-
sponds to the simulated distance of a viewer to the image or, equivalently, the
printing resolution. Thus, we compare the image quality of the image trui for a
large range of standard deviations to stippling and screening methods in Figure 8,
as well as to dithering methods in Figure 9. Plotted are the standard deviation of
the Gaussian against the Peak-Signal-to-Noise-Ratio (PSNR).
In this experiment, our methods are again clearly superior to current state-of-the-
art techniques. In particular, this holds for larger σ which attests a good approxi-
mation of the original image under arbitrary observation distances, or printing res-
olutions. This performance is mainly due to the global optimisation of all point lo-
cations within our particle system. If we perturb the force field to reduce artefacts,
the quality of our methods still remains excellent. In Figure 8, we can observe that
even our discrete dithering technique outperforms the method of Balzer et al. for
sufficiently large σ, though continuous approaches should be able to achieve more
accurate results than discrete ones. As a consequence, our discrete approach also
outperforms the other dithering methods. Figure 9 further confirms the high errors
for the structure-enhancing methods we observed before: While structure preser-
vation is often considered an important property, this advantage is bought with
a tradeoff in tone preservation. Indeed, if we only consider the tone similarity
term of the model by Pang et al. as for the PSNR experiments in [PQW∗08], this
method goes head to head with many other dithering techniques. However, there
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is no similar way to improve the method of Geist et al..

6.3 Evaluation of Blue Noise Behaviour
Our third way to evaluate our results concentrates on the primary aim of our
method: To distribute black pixels equally within regions of constant grey value.
To check this property, we perform a frequency analysis in the Fourier domain.
For this purpose, we halftone constant images, and compute the difference be-
tween result and original. This power spectrum of the difference image is then
radially averaged to obtain statistical information about contained frequencies.
Since high frequencies are in the nature of the problem, they cannot be eliminated.
Low frequencies, however, should not be in the difference image at all. This so-
called Blue Noise behaviour analysis has first been proposed by Ulichney [Uli88]
and is widely used for evaluating dithering and screening methods.
Figure 10 depicts our measurements. In order to make them more robust against
outliers and noise, we average the power spectra of ten randomly selected patches
of the obtained results [Bar78]. Since error diffusion algorithms can suffer from
boundary artefacts, we only consider patches with a sufficient distance to the im-
age boundary.
Ulichney identifies a well-formed dithering method from a specific shape of the
radially averaged power spectrum of difference images [Uli88]. Depending on the
observed grey value, he first computes the principal frequency by

fg =
√

0.5−|g−0.5| (18)

where g is the grey value normalised to the range [0,1]. At this principal fre-
quency, Ulichney expects a low-frequency cutoff, characterised by a sharp transi-
tion region below fg and a potential overshoot. Above this frequency, he allows
a flat blue noise behaviour much lower than the peak. A corresponding sketch is
shown in Figure 10 (top left).
Note that all continuous solutions have an additional higher principal frequency
depicted in their graphs. Here, the higher one refers to the principal frequency of
a hypothetical hexagonal grid described by the energetically optimal hexagonal
arrangement of points within uniform regions. However, since the points still
depend on the underlying rectangular input image, we expect the characteristic
peak to occur somewhere in between these two frequencies. This property is
indeed confirmed by our experiments.
Observing the graphs in Figure 10, we see that our continuous approaches outper-
form the method of Balzer et al. due to their steeper transition region. In the dis-
crete case, we achieve a similar performance than the method of Floyd-Steinberg,
and a slightly better one than the method of Zhou et al.. Again, we observe a much
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Figure 11: Time required by the proposed algorithm for initialisation (left), and
for particle evolution (right).

higher graininess of stochastic screening compared to other methods, which is re-
flected in a less pronounced blue noise behaviour.
Additionally, we investigate the anisotropy of the (averaged) power spectra, i.e. the
variance on concentric circles around the lowest frequency. From a perfect halfton-
ing method, we expect rotational invariance, which expresses in a high isotropy
of the power spectrum. Since we considered ten patches per method, we expect
stochastic background noise at a level of -10dB. We denote this theoretical limit
by a dashed line. Most observed approaches perform equally well with an average
anisotropy of about -5dB. The only exception is the method of Floyd-Steinberg,
which offered a good blue noise behaviour, but performs noticeably worse here.
This confirms our observation that in contrast to early error diffusion algorithms,
these methods do not reveal striking directional artefacts on any scale.

6.4 Runtime
Figure 11 illustrates the runtime required by the proposed (continuous) algorithm.
Note that the initialisation of the force field only depends on the number of pix-
els, while the particle evolution depends on the number of particles. Thus, both
initialisation and evolution times are shown. The jumps in both benchmarks are
due to CUDA specifics, and can best be explained by means of the right graph:
On the GTX 285, we use 128 blocks, each consisting of 512 threads. This ex-
plains the discontinuity for 128 ·512 = 65536 particles. All further discontinuities
are due to the number of 30 streaming multiprocessors, which cause jumps at
n ·65536 + m ·30 ·512 particles whenever the number of blocks exceeds a multi-
ple of 30. For the initialisation depicted in the left graph, the same behaviour can
be observed with respect to the pixels.
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This first implementation of our algorithm has a quadratic complexity in the num-
ber of particles, and a linear dependence on the number of iterations. A good
initialisation like the randomised approach described above positively affects the
runtime, and reasonable results can already be obtained after several hundred it-
erations: 300 iterations on 256×256 pixels with 16384 particles (25%) take about
6.5 seconds. Furthermore, we are currently investigating the quality of fast ap-
proximations to the proposed model, and are confident to obtain a linear complex-
ity without a noticeable deterioration of the results in the near future.

7 Summary
We have proposed a novel and physically justified technique for image dither-
ing, sampling, and stippling. Our flexible model can easily be adopted to many
different fields of application, and outperforms the best algorithms known from
the literature. It can be applied on and discretised to any scale depending on
the printer resolution, allows arbitrary edge enhancement, and works equally well
on greyscale and colour images. In applications in which visual artefacts must be
avoided, a second parameter can be used as a tradeoff between quality and preven-
tion of artefacts. Due to the global optimisation process involved in our approach,
it yields excellent results, independent of the viewing distance or resolution. Fu-
ture work includes the development of fast numerical schemes as well as specific
models for other colour spaces, such as CMYK.
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