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Robust Variational Approaches to

Positivity-Constrained Image Deconvolution

Martin Welk

Abstract

Two approaches to the combination of robust variational deconvolution
with positivity constraints are considered. The first approach modifies a
standard robust variational deconvolution method by carrying out a gra-
dient descent with respect to a multiplicative perturbation, which can also
be considered as gradient descent in a hyperbolic metric. The second ap-
proach is based on the representation of the well-known Richardson-Lucy
iterative deconvolution as fixed-point iteration for the minimisation of an
information divergence functional, again under a multiplicative perturba-
tion model. The asymmetric penaliser function contained in this functional
is then varied into a robust penaliser, and complemented with a regu-
lariser. The resulting functional gives rise to a fixed point iteration that
we call robust and regularised Richardson-Lucy deconvolution. It achieves
an image restoration quality comparable to state-of-the-art variational de-
convolution with a computational efficiency similar to that of the original
Richardson-Lucy method. Experiments on synthetic and real-world image
data demonstrate the performance of the proposed methods.

1 Introduction

The sharpening of blurred images is a standard problem in many imaging appli-
cations. A large variety of different approaches to this severely ill-posed inverse
problem have been developped over time which differ in the assumptions they
make, and in their suitability for different application contexts.

Blur of an image is described by a point-spread function (PSF) which describes
the redistribution of light energy in the image domain Ω ⊂ R2. When blurring
acts equally at all locations, one has a space-invariant PSF h : R2 → R+ which
acts by convolution. Accounting also for the impact of noise n, a typical blur
model then reads

f = h ∗ g + n , (1)

where f is the observed image, and g the unknown sharp image.
In the more general case of a space-variant blur one needs a point-spread

function with two arguments, H : Ω × Ω → R+, and h ∗ g is replaced with the
integral operator

(H ⊛ g)(x) :=

∫

Ω

H(x, y)g(y) dy (2)
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such that
f = H ⊛ g + n . (3)

Note that this includes the space-invariant case by setting H(x, y) = h(x − y).
Conservation of energy implies that H ⊛ 1 = 1, however, this condition may

be violated near image boundaries due to blurring across the boundary.
In deblurring, we want to obtain a restored image u that approximates g, from

the degraded image f and the PSF H . This is the case of non-blind deconvolution
(as opposed to blind deconvolution which would aim at inferring the sharp image
and the PSF simultaneously from the degraded image).

Let us recall shortly some approaches to this problem. Linear filters offer
efficient deblurring when noise is moderate and a sufficiently accurate blur model
is available. The Wiener filter [33] is a prominent representative; it is optimal if
the noise is Gaussian. As it makes use of Fourier representations, it is often used
in conjunction with fast Fourier transform. Other linear methods are formulated
using a matrix-algebraic framework [20]; they can also be adapted to spatially
variant blurs [19]. The strength of linear filters lies in their efficiency and their
equal suitability across a wide range of deconvolution problems. A broad variety
of fast numerical algorithms has been developped for them.

Another class of approaches is based on statistical models [13, 35]. Their
advantages include easy and precise adaptation to noise models, and the ability
to make precise assertions about conservation of expectation values.

Richardson-Lucy (RL) deconvolution [17, 24] is an early representative of a
nonlinear deconvolution procedure whose motivation comes from statistical con-
siderations. It still enjoys popularity due to its simplicity and efficiency. As-
suming that the degraded and sharp images, and the point-spread function are
smooth functions over R2 with positive real values, one uses the iteration

uk+1 =

(

H∗
⊛

f

H ⊛ uk

)

· uk (4)

to generate a sequence of successively sharpened images u1, u2, . . . from the initial
image u0 := f . Here, H∗ denotes the adjoint of the point-spread function H given
by H∗(x, y) = H(y, x).

In the absence of noise the sharp image g is a fixed point of (4), as in this
case the multiplier H∗

⊛
f

H⊛g
equals the constant function 1.

The single parameter of the procedure is the number of iterations. While
with increasing number of iterations greater sharpness is achieved, the degree
of regularisation is reduced at the same time, which in the long run leads to
amplification of artifacts that after a while dominate the filtered image.

Variational methods [22, 34] tackle the deconvolution task by minimising a
functional that consists of two parts: a data term that enforces the match between
the sought image and the observed image via the blur model, and a smoothness
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term or regulariser that brings in regularity assumptions about the unknown
sharp image. A general model for variational deconvolution of a grey-value im-
age u with known point-spread function H is based on minimising the energy
functional

E[u] =

∫

Ω

(

Φ
(

(f − H ⊛ u)2
)

+ αΨ
(

|∇u|2
))

dx (5)

in which the data term Φ
(

(f−H⊛u)2
)

penalises the reconstruction error or resid-
ual f −H ⊛ u to suppress deviations from the blur model, while the smoothness
term Ψ

(

|∇u|2
)

penalises roughness of the reconstructed image. The regularisa-
tion weight α balances the influences of both terms. Φ, Ψ : R+

0 → R+
0 are increas-

ing penalty functions. A popular representative is total variation deconvolution
[8, 22, 28] in which Φ is the identity, and Ψ(s2) = |s|.

Recent advances include the introduction of robust data terms with less-than-
quadratic growth of Φ, e.g., the L1 penaliser Φ(s) = |s|, see [4], studies on various
edge-preserving and edge-enhancing regularisers [3, 30], and spatially variant blur
models [5, 31]. Variational deconvolution with nonlocal regularisation was studied
in [15, 16].

In [29] an approach to perform variational deconvolution under inequality
constraints was presented. This includes positivity of grey-values or an interval
constraint for grey-value image deconvolution. The essential idea of this approach
was to retain the same energy functional as for an unconstrained deconvolution
but reparametrise the image in a way that enforces the desired constraint, e.g.
u = exp(z) with a new image z to enforce positivity of u. Taking a differential
geometric viewpoint, the resulting method could then be interpreted as gradient
descent for u but with a new underlying metric in the space of image functions.
In this form, the idea could immediately be adapted to design a variational de-
convolution method for positive definite symmetric matrix-valued images that
combines a linear blur model with guaranteed preservation of positive definite-
ness.

The strength of variational approaches lies in their great flexibility, and in the
explicit way of expressing the assumptions made. They achieve often an excellent
reconstruction quality, but their computational cost tends to be rather high.

Considering the relation between the before-mentioned approaches, it has
been noted [26] that Richardson-Lucy deconvolution can be interpreted as a
fixed point iteration for an optimisation problem. Here, Csiszár’s information
divergence [10] acts as an asymmetric penaliser function. By formulating the op-
timisation problem on a continuous spatial scale, Richardson-Lucy deconvolution
is embedded into the context of variational deconvolution. This view permits to
modify Richardson-Lucy deconvolution in the same flexible manner as standard
variational approaches by introducing robust data terms and edge-preserving, or
even edge-enhancing regularisers. While an edge-preserving regulariser in combi-
nation with Richardson-Lucy deconvolution has been used by Dey et al. [11, 12]
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(in a space-invariant setting), the possibility of a robust data term has not been
studied so far.

Our contribution. This paper focusses on deconvolution methods for grey-
value and colour images subject to the positivity constraint that are derived or
motivated from variational ideas. To this end, we first revisit the variational
approach to inequality-constrained deconvolution from [29]. For the case of
positivity-constrained deconvolution, we will rewrite this approach slightly us-
ing a multiplicative gradient descent.

Secondly, we modify the variational Richardson-Lucy approach by introducing
robust data terms. To do this, we change the asymmetric penaliser function in
the data term in such a way that larger residual errors are penalised less than
with the standard Csiszár divergence term.

Using robust data terms together with a regulariser similar to [11, 12] we
obtain a robust and regularised Richardson-Lucy variant that unites the high
restoration quality of variational deconvolution methods with high efficiency that
is not far from the original Richardson-Lucy iteration. This method has already
been used for experiments on recovering information from diffuse reflections in
[1]. We demonstrate that both robust data terms and regularisers contribute
substantially to its performance.

Related work. The omnipresence of deblurring problems has made computer
vision researchers address this problem since the beginnings of the discipline [33].

From the abundant literature on this topic, the most relevant work in our
present context includes Richardson-Lucy deconvolution [17, 24], variational meth-
ods [8, 22, 25, 34], and their interplay [11, 12, 26], see also [7] for another approach
to combine Richardson-Lucy deconvolution with regularisation.

Fundamental theoretical results on existence and uniqueness of solutions of
deconvolution problems can be found in the work of Bertero et al. [6].

Robust data terms in deconvolution go back to Zervakis et al. [35] in statistical
models, and have recently been used intensively in the variational context by Bar
et al. [4, 5] and Welk et al. [29, 31]. Positivity constraints were studied in discrete
iterative deconvolution by Nagy and Strakoš [21] and in a variational framework
by Welk and Nagy [29]. The extension of variational approaches to multi-channel
images has been studied in [14] and more specifically in deconvolution in [2, 29].

Structure of the paper. In Section 2 we revisit the constrained gradient descent
from [29], focussing on the positivity case and reformulating it in terms of multi-
plicative gradient descent for this case. Section 3 is devoted to put Richardson-
Lucy deconvolution into a variational context. Exploiting this connection, the RL
algorithm can be modified in order to increase restoration quality and robustness
with respect to noise and perturbations. An experimental comparison of the
deconvolution techniques under consideration is provided in Section 4 based on
both synthetic and real-world data. Conclusions in Section 5 end the paper.
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2 Positivity-Constrained Gradient Descent, Re-

visited

In this section, we review the variational gradient descent approach to deconvo-
lution under inequality constraints that has been introduced in [29], studying it
in more detail and reformulating it in part.

2.1 Penalisers

We start with a short discussion of the penalisation functions in the energy func-
tional (5). For the data term penaliser Φ, the most common choice is the least-
squares penaliser Φ(s2) = s2. With Φ growing slower than Φ(s2) = s2, one has
a robust data term [4] which reduces the influence of large residuals (outliers) on
the energy compared to a least-squares term. The standard choice here is the
regularised L1-norm Φ(s2) =

√

s2 + β2 with some small β > 0. Robust data
terms significantly improve the performance of variational deconvolution in the
presence of noise [4] or data which fulfil model assumptions imperfectly, such as
imprecise PSF estimates [31].

In the smoothness term, one could in principle use a simple Whittaker–
Tikhonov regularisation [27, 32] given by Ψ(s2) = s2. Since this leads to un-
favourable blurring effects, image processing literature mostly prefers non-quadratic
terms like (regularised) total variation Ψ(s2) =

√
s2 + ε2 (with small ε > 0)

[4, 8, 18, 22, 25] or even non-convex ones like the Perona–Malik function Ψ(s2) =
λ2 ln(1+s2/λ2) [23, 30]. The reason is the edge-preserving or even edge-enhancing
behaviour of these regularisers.

2.2 Minimisation

One approach to compute a minimiser of (5) is based on gradient descent. To this
end, one computes by the usual Euler-Lagrange formalism δvE := d

dε
E[u + εv]

∣

∣

ε=0

for a small additive perturbation v. Requiring this to equal
〈

δE
δu

, v
〉

for all test
functions v, one derives the variational gradient (Gateaux derivative) δE/δu and
from this the integrodifferential equation

∂tu = −δE

δu
= H∗

⊛
(

Φ′((f − H ⊛ u)2
)

· (f − H ⊛ u)
)

(6)

+ α div
(

Ψ′(|∇u|2
)

∇u
)

as the gradient descent for E. Complementing this equation with e.g. the blurred
image f as initial condition and suitable boundary conditions, one has an initial-
boundary value problem which is then approximated numerically until a steady
state is reached. This can be done in the simplest case via an explicit Euler
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scheme. More sophisticated approaches like semi-implicit schemes with conju-
gate gradients for (6) are possible; alternatively one can directly work with the
elliptic problem. In terms of computational expense, the difference between these
approaches is surprisingly small: The number of iterations up to convergence, be
it explicit time steps or CG iterations, depends primarily on the extent and struc-
ture of the PSF. As each iteration contains two ⊛ operations, the minimisation
of (5) remains expensive by any strategy.

With respect to gradient descent, one might also object to its use in minimis-
ing (5) in the case of non-convex regularisers because of the existence of multiple
minima. One has to be aware, however, that non-uniqueness of minimisers is
inherent to the deconvolution problem itself and can even occur with convex
regularisers, depending on the PSF. Considering, for instance, a space-invariant
PSF h whose Fourier transform possesses zeros, one sees that the corresponding
frequencies vanish completely under convolution with h. As a consequence, the
functional cannot distinguish between functions u and ũ if ũ − u is composed of
these frequencies. In reality, the same holds true even for all frequencies whose
coefficients in the Fourier transform of h are below a positive threshold that de-
pends on the noise level. This insensitivity forms the root of the typical ringing
artifacts in various deconvolution methods. Non-uniqueness of minimisers can
therefore hardly be avoided, and is an issue for any other minimisation method,
too. Practically, one is interested in a sufficiently good local minimum. Contin-
uation strategies for the regularisation weight [30] are sometimes useful to steer
the process into a favourable local minimum.

2.3 Constraints

From modelling considerations one can often infer additional information that
helps to mitigate the ill-posedness of the deconvolution problem. An important
type of such information are inequality constraints. For instance, in a scalar-
valued image with grey-values proportional to radiance, negative values would
correspond to unphysical negative radiance and can therefore be ruled out. Some-
times also an upper bound can be derived from image acquisition parameters.

To introduce an inequality constraint, like the positivity requirement for grey-
values, into the variational framework, an obvious idea would be to add a penalty
for negative values. In a straightforward realisation, however, this does not
strictly enforce the desired inequality. Although more involved optimisation pro-
cedures like Bregman iterations might be considered to cure this, we follow a
different approach here which has been introduced for variational deconvolution
in [29], and which has been known before in the context of discrete deconvolution
[21]. To this end, the grey-values are reparametrised via u = exp(z) with a new
image function z whose values are unconstrained in R.

As pointed out in [29], this idea can be put slightly more general using u =
ϕ(z) with a smooth invertible function ϕ : R → R. By substituting this into (5),
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the energy is expressed as a functional depending on z as

Ẽ[z] =

∫

Ω

(

Φ
(

(

f − H ⊛ ϕ(z)
)2

)

+ αΨ
(

(

ϕ′(z) |∇z|
)2

)

)

dx . (7)

Calculating now the gradient descent for Ẽ, and eliminating z by the inverse
function z = ϕ−1(u) leads to the new gradient descent

∂tu = −ϕ′(ϕ−1(u)
)δE

δu
. (8)

It is important to note firstly that this is still a gradient descent for the same
energy as (5) but with the underlying varying function z instead of u. Secondly, it
differs from the unconstrained gradient descent (6) only by the factor ϕ′(ϕ−1(u)

)

.
For the case of the positivity constraint ϕ(z) = exp(z) one has ϕ′(ϕ−1(u)

)

= u.
Similarly, to impose an interval constraint a < u < b one can choose a sigmoid-
shaped function like ϕ(z) = a exp(−z)+b

exp(−z)+1
, which implies ϕ′(ϕ−1(u)

)

= (u − a)(b −
u)/(b − a).

2.4 Reinterpretations

The reparametrisation approach can be rephrased in several ways, each of which
is fruitful for further generalisations. Geometrically, performing the gradient
descent based on the variation of the function z comes down to a function
space transformation. Note that the derivation of (6) relied on the condition
δvE =

〈

δE
δu

, v
〉

in which 〈 · , · 〉 denotes the standard inner product 〈δu1, δu2〉 =
∫

Ω

δu1(x)δu2(x) dx of perturbation functions which itself comes from the Eu-

clidean metric du on the range of u, i.e. the grey-values. Supposing positive values
for u, one can easily replace this metric by a hyperbolic one, dhu := du/u, which
entails a new inner product 〈δu1, δu2〉h. Requiring δvE = 〈g, v〉h immediately
leads to the gradient g = u · δE

δu
in accordance with (8) for ϕ ≡ exp.

Thus, the positivity-constrained gradient descent turns out to be the gra-
dient descent in a hyperbolic metric. From this viewpoint, zero and negative
grey-values are avoided because they are put at infinite distance from any pos-
itive values. This reinterpretation can immediately be transferred to interval
constraints with a suitable metric on (a, b).

Restricting to the positivity case, another reinterpretation is obtained by us-
ing a multiplicative gradient descent. To this end, one considers a multiplica-
tive perturbation with a test function v and computes the variation δ∗vE :=
d
dε

E[u(1 + εv)]
∣

∣

ε=0
. The requirement δ∗vE = 〈g, v〉 again leads to g = u · δE

δu
.

2.5 Multi-Channel Images

Assume now that the blurred image is a multi-channel image f = (fi)i∈Γ with
a channel index set Γ, e.g. an RGB colour image, whose channels are uniformly
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blurred, i.e. the PSF H is equal for all channels. Denoting by Γ an index set for
the channels, the energy functional (5) has to be slightly adapted by summing
over Γ in the arguments of both penalisers,

E[u] =

∫

Ω

(

Φ
(

∑

i∈Γ

(fi − H ⊛ ui)
2
)

+ αΨ
(

∑

i∈Γ

|∇ui|2
)

)

dx . (9)

In the unconstrained gradient the sum over channels is found in the nonlinearities
while linear operations are applied channelwise [14]:

−δE

δui
= H∗

⊛

(

Φ′
(

∑

i∈Γ

(fi − H ⊛ ui)
2
)

· (fi − H ⊛ ui)

)

(10)

+ α div

(

Ψ′
(

∑

i∈Γ

|∇ui|2
)

∇ui

)

.

Positivity or interval constraints on the individual channels can be handled in a
straightforward way by assuming channel-wise reparametrisation functions ϕi or
channel-wise multiplicative perturbation.

Based on the geometric reinterpretation of the constrained gradient descent,
even more complicated inequality constraints can be handled. In [29] this was
demonstrated for images with positive definite symmetric matrices (diffusion ten-
sors) as values.

3 Variational View on Richardson-Lucy Decon-

volution

Let us now return to the Richardson–Lucy iteration (4). For given f , H , equation
(4) can be understood as a fixed point iteration associated to the minimisation
of the functional

Ef,H [u] :=

∫

Ω

(

H ⊛ u − f − f ln
H ⊛ u

f

)

dx (11)

compare [26]. This is the so-called information divergence introduced by Csiszár
[10]. The asymmetric penaliser function rf(w) = w − f − f ln(w/f) is strictly
convex for all w > 0 and takes its minimum at w = f .

As a necessary condition for u to be a minimiser of (11), one can compute
an Euler-Lagrange equation which in this case becomes particularly simple as no
derivatives of u are present in the integrand. In view of the positivity requirement
for u we base our derivation again on a multiplicative perturbation with a test
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function v,

d

dε
Ef,H [u(1 + εv)]

∣

∣

∣

∣

ε=0

=

∫

Ω

(

1 − f

H ⊛ u

)

(H ⊛ (uv)) dx (12)

=

∫

Ω

(

H∗
⊛

(

1 − f

H ⊛ u

))

uv dx .

Requiring that this expression vanishes for all test functions v yields the mini-
mality condition

(

H∗
⊛

(

1 − f

H ⊛ u

))

u = 0 . (13)

Because of the energy conservation property H ⊛ 1 = 1 one sees that (4) is a
fixed point iteration for (13).

3.1 Regularisation

In the presence of noise the functional (11) is not minimised by a smooth function
u; in fact, the fixed-point iteration diverges for k → ∞. From the variational
viewpoint, the functional (11) needs to be regularised. In standard Richardson-
Lucy deconvolution, this regularisation is provided implicitly by stopping the
iteration after finitely many steps. The earlier the iteration is stopped, the higher
is the degree of regularisation.

Although the functional (11) does not incorporate this sort of regularisation,
the variational picture is advantageous because it allows to modify (11) in the
same flexible way as standard variational approaches. The structure of the iter-
ative minimisation procedure is preserved throughout these modifications, which
leads to good computational efficiency.

Let us first note that by limiting the growth of high-frequency signal compo-
nents, regularisation has a smoothing effect that in deconvolution problems acts
contrary to the intended image sharpening. It is desirable to steer this effect in
such a way that it interferes as little as possible with the enhancement of salient
image structures, such as edges.

Implicit regularisation by stopping, however, is not easy to control. For this
reason, it makes sense to introduce a variational regularisation term into the
objective functional. This yields the functional

Ef,H [u] =

∫

Ω

(

H ⊛ u − f − f ln
H ⊛ u

f
+ αΨ(|∇u|2)

)

dx (14)

in which the Richardson-Lucy data term is complemented by a regulariser whose
influence is weighted by the regularisation weight α > 0. Concerning the pe-
nalisation function Ψ( · ) in the regulariser, our discussion from Section 2 applies
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analogously. With the total variation regulariser given by Ψ(z2) = |z|, the energy
functional (14) corresponds to the method proposed (in space-invariant formula-
tion) by Dey et al. [11, 12].

The Euler-Lagrange equation for (14) is given by

0 =

(

H∗
⊛

(

1 − f

H ⊛ u

)

− α div
(

Ψ′(|∇u|2)∇u
)

)

· u . (15)

In converting this into a fixed point iteration, we evaluate the divergence expres-
sion with u = uk, yielding Dk := α div

(

Ψ′(|∇uk|2)∇uk
)

. Dependent on whether
the factor u with which the divergence term in (15) is multiplied is chosen as uk

or uk+1, the right-hand side of (4) receives either the additional summand Dk, or
is divided by (1 − Dk). However, Dk can have either sign, and a negative value
in the numerator or denominator will always lead to a violation of the positivity
requirement.1 For this reason, we choose the outer factor for Dk as uk if Dk > 0,
or uk+1 if Dk < 0. Using the abbreviations [z]± := 1

2
(z ± |z|) we can therefore

write our final fixed point iteration as

uk+1 =
H∗

⊛

(

f
H⊛uk

)

+ α
[

div
(

Ψ′(|∇uk|2)∇uk
)]

+

1 − α [div (Ψ′(|∇uk|2)∇uk)]−
uk . (16)

We will refer to this method as regularised RL.

3.2 Robust Data Terms

Up to scaling and shifting, the asymmetric penaliser function rf (w) equals the
logarithmic density of a Gamma distribution. Minimisation of the integral (11)
therefore corresponds to a Bayesian estimation of the sharp image assuming a
Poisson distribution for the image values whose conjugate prior is the Gamma
distribution.

In the context of variational deconvolution, it has turned out useful to replace
quadratic data terms that fit a Gaussian noise model by robust data terms that
mirror noise distributions with “heavy tails”. Not only can the resulting model
handle extreme noise but it can also cope with imprecisions in the blur model.
Following this idea, we will now replace the data term of (14) by one that is
adapted to a broader distribution on R+. In order to preserve the structure of
the fixed point iterations (4) and (16), we hold on to using rf(H ⊛u) in the data
term, but apply a penaliser function Φ that grows less than linear.

Our modified functional therefore reads

Ef,H [u] =

∫

Ω

(

Φ

(

H ⊛ u − f − f ln
H ⊛ u

f

)

+ αΨ(|∇u|2)
)

dx . (17)

1In [12], D
k is placed entirely into the denominator, implying an upper bound on the regu-

larisation weight.
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Our particular choice for the data term penaliser will be Φ(z) = 2
√

z. This
choice resembles the function Φ that leads to L1 robust data terms in conventional
variational approaches. One difference, however, needs to be noted: Unlike its L1

counterpart, the penaliser function (Φ ◦ rf)(w) is non-convex, which in principle
can induce additional local minima of the functional E.

By an analogous derivation as before, one obtains for (17) the minimality
condition

0 =

(

H∗
⊛

(

Φ′(rf(H ⊛ u))

(

1 − f

H ⊛ u

))

(18)

− α div
(

Ψ′(|∇u|2)∇u
)

)

· u

that leads to the new fixed point iteration

uk+1 =
H∗

⊛

(

Φ′(rf(H ⊛ u)) f
H⊛uk

)

+ α
[

div
(

Ψ′(|∇uk|2)∇uk
)]

+

H∗ ⊛ Φ′(rf (H ⊛ u)) − α [div (Ψ′(|∇uk|2)∇uk)]−
uk (19)

which we will call robust and regularised RL deconvolution (RRRL). Comparing
to (16), the computational effort is increased by one more convolution and the
evaluation of Φ′. With our particular choice Φ(z) = 2

√
z we have Φ′(z) =

1√
z
. In the computation, this expression with its singularity at 0 is replaced for

stabilisation with (z2 + β)−1/4 with a small β > 0.
Of course, (19) contains the regularised RL method (16) as special case (Φ′ ≡

1). On the other hand, α = 0 gives a non-regularised method which we will call
robust RL deconvolution.

3.3 Multi-Channel Images

Replacing as in Section 2.5 the expressions rf(H ⊛u) and |∇u|2 in the arguments
of Φ and Ψ with their sums over the image channels, R =

∑

i∈Γ

rfi
(H ⊛ ui) and

G =
∑

i∈Γ

|∇ui|2, we obtain as multi-channel analog of (19) the functional

Ef ,H[u] =

∫

Ω

(Φ(R) + αΨ(G)) dx . (20)

This leads to the following multi-channel version of robust and regularised RL
deconvolution

uk+1
j =

H∗
⊛

(

Φ′(R)
fj

H⊛uk
j

)

+ α
[

div
(

Ψ′(G)∇uk
j

)]

+

H∗ ⊛ Φ′(R) − α
[

div
(

Ψ′(G)∇uk
j

)]

−

uk
j . (21)

The same procedure works for the non-robust and/or non-regularised RL variants.
Note that in the case of standard RL this boils down to channel-wise application.
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Figure 1: (a) Cameraman image, 256× 256 pixels. (b) Moderately blurred, and
15 % of all pixels replaced by uniform noise, signal-to-noise ratio: 3.66 dB. Insert
shows point-spread function (four times enlarged).

4 Experiments

Let us first evaluate the performance of our newly developped deconvolution
methods on synthetic grey-value data. Since in this case the correct sharp image
is known, we can also assess processed images by their signal-to-noise ratio

SNR(u, g) = 10 log10

var(g)

var(g − u)
dB . (22)

Here, g and u are the original sharp image processed image, respectively. By
var(v) we denote the variance of the image v. It should, however, be noted
that SNR measurements do often not capture visual quality of deblurred images
very well. The parameters in our experiments are optimised primarily for visual
quality, not for SNR.

We remark also that in synthetically blurring images, we use convolution via
the Fourier domain, which involves treating the image domain as periodic. In
the deconvolution procedures, in contrast, the convolution operations are carried
out in the spatial domain, extending the image where necessary constant along
boundary normals. This discrepancy in the convolution procedure and boundary
treatment is by purpose: it helps to prevent “inverse crimes” [9] that could unduly
embellish results.

In our first series of experiments (Figures 1–4), we blur the cameraman image,
Figure 1(a), by an irregularly shaped point-spread function of moderate size and
apply impulsive (uniform) noise (b). The so degraded image can be deblurred to
some extent by standard RL, Figure 2(a), but the noise is severely amplified, and
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c d

Figure 2: (a) Image from Figure 1(b) deblurred by 10 iterations of standard
Richardson-Lucy deconvolution (4), SNR: 2.28 dB. (b) 30 iterations of RL decon-
volution (4), SNR: −0.38 dB. (c) 100 iterations of regularised Richardson-Lucy
deconvolution (16), α = 0.1, SNR: 6.40 dB. (d) 100 iterations of regularised
Richardson-Lucy deconvolution, α = 0.05, SNR: 5.95 dB.

dominates the result when the iteration count is increased for further sharpening
(b). Regularised RL (compare [11, 12]) visibly reduces the noise effect, see (c)
and (d) for slightly different regularisation weights α.

Robust variational deconvolution achieves a significantly better restoration,
see Figure 3(a) where the method from [31] without positivity constraint is used,
and Figure 3(b) with positivity constraint as in [29] and Section 3. Visually, both
variational approaches lead to a comparable restoration quality. It is, however,
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Figure 3: (a) Image from Figure 1(b) deblurred by robust variational deconvo-
lution without constraints [31] using L1 data term and Perona-Malik regulariser
(λ = 0.15), regularisation weight α = 0.06; SNR: 16.03 dB. (b) Same but with
positivity constraint, see [29] and Section 3, regularisation weight α = 0.06; SNR:
15.42 dB.

evident that in this example the positivity constraint bears no improvement. This
is due to the fact that artifact suppression by the positivity constraint takes place
mainly in dark image regions. In the cameraman image, however,

understandable given that dark regions play a minor role in the present test
image, and the image degradation by blur and noise is only moderate.

Using robust RL without regularisation as in Figure 4 reduces the noise to
an extent comparable to the regularised method in Figure 2(c, d). With more
iterations, Figure 4(b), however, the noise still becomes dominant, thus limiting
the possible deconvolution quality. Robust and regularised RL allows fairly good
deblurring while only small rudiments of noise remain, see Figure 4(c). Even if
the iteration count is drastically increased, such that the implicit regularisation
by stopping takes only little effect, the explicit regularisation remains effective
(d) and keeps the noise level low. Indeed, the reconstruction quality comes close,
both visually and in terms of SNR, to that achieved by state-of-the-art robust
variational deconvolution as shown before in Figure 3.

Encouraged by these findings, we increase blur and noise in our second series of
experiments (Figures 5–6). Under the influence of a drastically larger simulated
motion blur and doubled noise intensity, see Figure 5(b), classic RL gives no
longer usable results (c). Regularised RL and robust RL can again cope better
with the noise but their outcomes are far from satisfactory, see Figure 5(d) and
6(a). A significant improvement is obtained with robust and regularised RL,
Figure 6(b), as well as with robust variational deconvolution without constraints

14
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c d

Figure 4: (a) Image from Figure 1(b) deblurred by 50 iterations of robust RL,
SNR: 6.42 dB. (b) 200 iterations of robust RL, SNR: 4.00 dB. (c) 200 iterations
of robust and regularised RL (19) with regularisation weight α = 0.005; SNR:
14.41 dB. (d) Same but 2000 iterations; SNR: 14.21 dB.

(c) or with positivity constraint (d). Although the restoration quality is still
imperfect, the three last mentioned methods are eye to eye in terms of visual
quality and SNR.

In both synthetic experiments, the run times of the robust and regularised
RL experiments had to exceed that of standard RL largely in order to achieve
this high restoration quality, but remained by a factor 3 . . . 5 below those for the
robust variational model from literature. The reason for this lies in the favourable
structure of the minimality condition and the fixed point iteration obtained from
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Figure 5: (a) Cameraman image, 256 × 256 pixels. (b) Severely blurred, and
30 % of all pixels replaced by uniform noise, signal-to-noise ratio: 0.26 dB. In-
sert shows point-spread function (true size). (c) Deblurred by 10 iterations of
standard Richardson-Lucy deconvolution (4), SNR: 0.09 dB. (d) 100 iterations
of regularised RL deconvolution (16) with regularisation weight α = 0.05; SNR:
2.32 dB.

it. In contrast, the minimisation of the classical variational model becomes very
slow when getting close to the optimum, thus requiring much more iterations.

Our last experiment (Figures 7–9) is based on real-world data. The colour
photograph shown in Figure 7(a) was blurred during acquisition with an un-
known point-spread function that can be inferred approximately from the shape
of a point light source. For restoration, we use the multi-channel versions of all
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Figure 6: (a) Image from Figure 5(b) deblurred by 100 iterations of robust RL,
SNR: 1.84 dB. (b) 400 iterations of robust and regularised RL (19) with regu-
larisation weight α = 0.003; SNR: 7.42 dB. (c) Robust variational deconvolution
without constraint, α = 0.06; SNR: 7.52 dB. (d) Robust variational deconvolu-
tion with positivity constraint, α = 0.09; SNR: 7.60 dB.

methods.
Restoration by standard RL as in Figure 7(b) achieves a decent acuity at mod-

erate computational cost, as also demonstrated in the detail view, Figure 9(a).
Increasing the number of iterations quickly leads to ringing artifacts that are
visible as shadows in the vicinity of all high-contrast image structures, see Fig-
ure 9(b).

Variational deconvolution with a robust L1 data term and Perona-Malik reg-
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Figure 7: (a) Colour photograph (Paris from Eiffel Tower) blurred during acqui-
sition, 480×480 pixels. Insert shows approximate point-spread function used for
deconvolution (same as in Figure 1, eight times enlarged). (b) Richardson-Lucy
deconvolution, 20 iterations.

ulariser allows a visible improvement in acuity over RL deconvolution while re-
ducing artifacts, see Figure 8(a) and the detail view in Figure 9(c). Using the
positivity-constrained gradient descent (8) brings about a further significant im-
provement, see Figure 8(b) and 9(f). Due to the better suppression of ringing
artifacts the regularisation weight α could be reduced by half here – in contrast,
unconstrained variational deconvolution with the same reduced α creates much
stronger artifacts, see Figure 9(d). Imposing the constraint but retaining the
larger weight α, see Figure 9(e), already improves acuity but still smoothes out
more fine details than in Figure 9(f).

The excellent restoration quality of variational deconvolution, however, comes
at the cost of significantly increased computation time needed in order to approx-

Table 1: Approximate computational expense for deconvolution results shown in
Figure 8. Absolute computation times (referring to single-threaded calculation
on a Core2Duo at 1.86 GHz) are given for rough orientation.

Method Iterations Computation Cost factor
time (s) w.r.t. standard RL

Standard RL 20 20.9 1.0
Variational 1500 1735.5 83.0
RRRL (TV) 80 124.3 5.9
RRRL (PM) 300 448.4 21.5
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Figure 8: (a) Robust variational deconvolution of the image from Figure 7(a)
using Perona-Malik regulariser (λ = 26) without constraints [31], regularisation
weight α = 0.06. (b) Same with positivity constraint [29], α = 0.03. (c) Robust
and regularised RL deconvolution, 80 iterations with TV regulariser, α = 0.002.
(d) RRRL, 300 iterations with Perona-Malik regulariser (λ = 26) and α = 0.18.
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Figure 9: Detail from deconvolution results for the image from Figure 8(a).
(a) Richardson-Lucy, 20 iterations, see Figure 8(b). (b) Same but 30 iterations.
(c) Robust variational deconvolution using Perona-Malik regulariser (λ = 26)
without constraints, regularisation weight α = 0.06, see Figure 8(c). (d) Same
but α = 0.03. (e) Robust variational deconvolution using Perona-Malik reg-
ulariser (λ = 26) with positivity constraint, regularisation weight α = 0.06.
(f) Same but α = 0.03, see Figure 8(d). (g) Robust and regularised RL deconvo-
lution, 80 iterations with TV regulariser, α = 0.002, see Figure 8(e). (h) RRRL,
300 iterations with Perona-Malik regulariser (λ = 26) and α = 0.18, see Fig-
ure 8(f).
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imate the steady state. Robust and regularised Richardson-Lucy deconvolution
as shown in the last rows of Figures 8 and 9 provides an attractive compromise
between standard RL and the variational gradient descent. Figures 8(c) and
9(g) show a RRRL result with TV regulariser which can be computed fairly fast.
When the Perona-Malik regulariser is used instead, see Figures 8(d) and 9(h), a
higher number of iterations is required in order for the edge-enhancing properties
of the regulariser to pay off, but still the computation time is lower than with
the gradient descent algorithm, compare also Table 1. In terms of restoration
quality, both RRRL results range between the variational deconvolution without
and with constraints. In assessing this finding, it has to be taken into account
that the test image consisting of large dark regions with few highlights makes the
positivity constraint particularly valuable.

5 Conclusions

In this paper, we have demonstrated firstly how a positivity constraint for grey- or
colour-values can be accommodated in a robust variational deconvolution frame-
work. Building on previous work [29] about a modified gradient descent for
inequality constraints, we have presented this approach in a general formulation
with a space-variant point-spread function and rewritten it in terms of a multi-
plicative gradient descent.

Secondly we have investigated Richardson-Lucy deconvolution from the vari-
ational viewpoint. Based on the observation [26] that the RL method can be
understood as a fixed point iteration for the minimisation of the information
divergence [10] in the role of an energy functional, it is embedded into the frame-
work of variational methods. This allows in turn to apply to it the modifications
that have made variational deconvolution the flexible and high-quality deconvo-
lution tool that it is. As a result, we have obtained a novel robust and regularised
Richardson-Lucy deconvolution method that competes in quality with state-of-
the-art variational methods while preserving to a great extent the numerical
efficiency of Richardson-Lucy deconvolution.

The asymmetric penaliser function rf (w) underlying the information diver-
gence functional has played a little role in variational image analysis so far. We
believe that this type of penaliser function can be applied advantageously in a
variety of other variational approaches in image processing that handle positivity-
constrained image data.
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