Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 262

Some Poincaré–Type Inequalities For Functions Of Bounded Deformation Involving The Deviatoric Part Of The Symmetric Gradient

Martin Fuchs and Sergey Repin

Saarbrücken 2010

Some Poincaré–Type Inequalities For Functions Of Bounded Deformation Involving The Deviatoric Part Of The Symmetric Gradient

Martin Fuchs

Saarland University Dep. of Mathematics P.O. Box 15 11 50 D-66041 Saarbrücken Germany fuchs@math.uni-sb.de

Sergey Repin

V.A. Steklov Math. Inst. St. Petersburg Branch Fontanka 27 191011 St. Petersburg Russia repin@pdmi.ras.ru

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/ Keywords: functions of bounded deformation, Poincaré's inequality.

Abstract

If $\Omega \subset \mathbb{R}^n$ is a bounded Lipschitz domain, we prove the inequality $||u||_1 \leq c(n)\operatorname{diam}(\Omega) \int_{\Omega} |\varepsilon^D(u)|$ being valid for functions of bounded deformation vanishing on $\partial\Omega$. Here $\varepsilon^D(u)$ denotes the deviatoric part of the symmetric gradient and $\int_{\Omega} |\varepsilon^D(u)|$ stands for the total variation of the tensor-valued measure $\varepsilon^D(u)$. Further results concern possible extensions of this Poincaré-type inequality.

A technical ingredient of the fundamental research of G. A. Seregin on the regularity theory for problems from plasticity theory (see, e.g., [Se1–12] and [FuS]) is a collection of Poincaré–type inequalities established by Strauss [Str], Temam and Strang [TS] and by Anzellotti and Giaquinta [AG], in which certain integral norms of the deformation u are estimated in terms of the total variation of the strain tensor $\varepsilon(u)$. The purpose of our note is to show that it is sometimes possible to replace $\varepsilon(u)$ in these inequalities through its deviatoric part. To be precise, suppose that we are given a bounded Lipschitz domain $\Omega \subset \mathbb{R}^n, n \geq 2$, and a field $u: \Omega \to \mathbb{R}^n$. We introduce the symmetric gradient of u

$$\varepsilon(u) := (\varepsilon_{ij}(u))_{1 \le i,j \le n}, \ \varepsilon_{ij}(u) := \frac{1}{2}(\partial_i u^j + \partial_j u^i)$$

and its deviatoric part

$$\varepsilon^{D}(u) := \varepsilon(u) - \frac{1}{n} (\operatorname{div} u) \mathbf{1}, \ \mathbf{1} = (\delta_{ij})_{1 \le i,j \le n},$$

whenever these expressions make sense. We further denote by $W_s^1(\Omega; \mathbb{R}^n)$ the Sobolev space of all fields $u: \Omega \to \mathbb{R}^n$, which together with their first weak partial derivatives are in the Lebesgue class $L^s(\Omega; \mathbb{R}^n)$ for some exponent $s \in [1, \infty)$. Moreover, we consider the subspace $\overset{\circ}{W}_s^1(\Omega; \mathbb{R}^n)$ of $W_s^1(\Omega; \mathbb{R}^n)$ consisting of all functions vanishing on the boundary of Ω . For a more detailed definition and further properties of these spaces the reader is referred to the monograph of Adams [Ad]. Our first result is in some sense an extension of a Sobolev–Poincaré inequality obtained by Strauss (see [Str], Theorem 1):

THEOREM 1. There is a constant c(n) such that

(1)
$$||u||_{L^1(\Omega)} \le c(n) \operatorname{diam}(\Omega) ||\varepsilon^D(u)||_{L^1(\Omega)}$$

holds for any function $u \in \overset{\circ}{W}{}_{1}^{1}(\Omega; \mathbb{R}^{n})$. If p is some number in $[1, \frac{n}{n-1})$, then for a suitable constant c(n, p) we have

(2)
$$\|u\|_{L^p(\Omega)} \le c(n,p) \operatorname{diam}(\Omega)^{1-n+\frac{n}{p}} \|\varepsilon^D(u)\|_{L^1(\Omega)}$$

for all fields $u \in \overset{\circ}{W}{}_{1}^{1}(\Omega; \mathbb{R}^{n})$.

Let us add some comments:

a) In his work Strauss discusses fields from the space $W_{\frac{n}{n-1}}^{\circ}(\Omega; \mathbb{R}^n)$ and proves ([Str], Theorem 1)

$$\|u\|_{L^{\frac{n}{n-1}}(\Omega)} \le C \|\varepsilon(u)\|_{L^{1}(\Omega)},$$

whereas in our case only the deviatoric part of the symmetric gradient occurs on the right-hand side. However, on the left-hand side of inequality (2) our techniques do not allow us to include the limit exponent $p = \frac{n}{n-1}$, and so it remains an interesting open question, if (2) is true for this choice of p.

b) Assume that $n \ge 3$ and fix an exponent $s \in (1, \infty)$. Then, according to Theorem 2 of Reshetnyak's deep paper [Re], we have the Korn-type inequality

(3)
$$\|v - P(v)\|_{W^1_s(\Omega)} \le C \|\varepsilon^D(v)\|_{L^s(\Omega)}$$

valid for all $v \in W^1_s(\Omega; \mathbb{R}^n)$ with a finite constant C depending on n, s and Ω . Here P(v) denotes the projection of v on the kernel of ε^D (space of Killing vectors), which is of finite dimension. If v is smooth having in addition compact support in Ω , then it can be deduced from the representation formula (2.20) in [Re] that P(v) is constant (cf. proof of Theorem 1 for details), and we infer from (3)

(4)
$$\|\nabla v\|_{L^{s}(\Omega)} \leq C \|\varepsilon^{D}(v)\|_{L^{s}(\Omega)}$$

for all $v \in \overset{\circ}{W}{}^{1}_{s}(\Omega; \mathbb{R}^{n})$. Combining (4) with Poincaré's inequality we obtain

$$\|v\|_{L^{s}(\Omega)} \leq C \|\varepsilon^{D}(v)\|_{L^{s}(\Omega)}$$

again for $v \in \overset{\circ}{W}{}^{1}_{s}(\Omega; \mathbb{R}^{n})$, which is the " L^{s} -variant" of (1) for exponents s > 1. We emphasize that it is not possible to derive inequality (1) along these lines, since even $\int_{\Omega} |\varepsilon(u)| dx$ does not dominate each quantity $\int_{\Omega} |\partial u^{i}/\partial x_{j}| dx$ for arbitrary fields from $\overset{\circ}{W}{}^{1}_{1}(\Omega; \mathbb{R}^{n})$. Counterexamples can be traced in the works of Mitjagin [Mi], de Leeuw and Mirkil [DLM] and of Ornstein [Or].

Next we pass to the space $BD(\Omega)$ consisting of all fields $u \in L^1(\Omega; \mathbb{R}^n)$ having bounded deformation introduced by Suquet [Su] and by Matthies, Strang and Christiansen [MSC] and further investigated by e.g. Temam and Strang [TS] and Anzellotti and Giaquinta [AG] in the context of plasticity theory. According to Proposition 1.2 of [AG] it holds

$$\int_{\mathbb{R}^n} |u| \, dx \le c(n) \text{diam}(\operatorname{spt} u) \int_{\mathbb{R}^n} |\varepsilon(u)|$$

for $u \in BD(\mathbb{R}^n)$ having compact support, and we can state:

THEOREM 2. There is a constant c(n) such that

(5)
$$||u||_{L^1(\Omega)} \le c(n) \operatorname{diam}(\Omega) \int_{\Omega} |\varepsilon^D(u)|$$

is satisfied for all fields $u \in BD(\Omega)$ with $u|_{\partial\Omega} = 0$.

Here $u|_{\partial\Omega}$ denotes the trace of the function u in the sense of [TS], Theorem 1.1. The proof of Theorem 2 is easily obtained, if we accept Theorem 1 for the moment and follow the remarks stated in [AG] after the proof of their Theorem 1.3: given u as above, there exists a sequence $u_h \in C^{\infty}(\Omega; \mathbb{R}^n) \cap BD(\Omega)$ such that

i)
$$u_h \to u$$
 in $L^1(\Omega; \mathbb{R}^n)$,

ii)
$$u_h|_{\partial\Omega} = u|_{\partial\Omega} = 0$$
,

iii)
$$\int_{\Omega} |\varepsilon^D(u_h)| \, dx \to \int_{\Omega} |\varepsilon^D(u)| \quad \text{as } h \to \infty.$$

On account of ii) we have inequality (1) for the sequence u_h , and by i), iii) we may pass to the limit $h \to \infty$ in order to obtain our claim (5). Before we present the proof of Theorem 1, we want to mention an additional related result:

THEOREM 3. For a finite constant c(n) we have the inequality $(\kappa = \kappa(u))$

$$||u - \kappa||_{L^1(\Omega)} \le c(n) \operatorname{diam}(\Omega) \int_{\Omega} |\varepsilon^D(u)|$$

valid for all $u \in BD(\Omega)$. In case $n = 2 \kappa$ denotes a suitable holomorphic function, whereas for $n \geq 3 \kappa$ is a Killing vector as explained for example in [Da], p.537. For $p \in [1, \frac{n}{n-1})$ we also have

$$||u - \kappa||_{L^p(\Omega)} \le c(n, p) \operatorname{diam}(\Omega)^{1-n+\frac{n}{p}} \int_{\Omega} |\varepsilon^D(u)|.$$

We wish to remark that the estimates from Theorem 3 correspond to the inequalities obtained in [TS] and [AG], in which the BD–distance of fields u from BD(Ω) to the space of rigid motions is controlled through the total variation of the tensor–valued measure $\varepsilon(u)$. A proof of Theorem 3 for domains $\Omega \subset \mathbb{R}^2$ and functions u from the space $W_1^1(\Omega; \mathbb{R}^2)$ has been given in [Fu], and from this work the BD–variant follows by approximation. The higher dimensional case will be a consequence of the arguments needed for the proof of Theorem 1.

For proving Theorem 1 we first consider the case $u \in C_0^{\infty}(B; \mathbb{R}^n)$, B denoting the open unit ball. From Dain's paper [Da] we quote the identity (i = 1, ..., n)

$$\frac{1}{2}\Delta u^{i} = \sum_{j=1}^{n} \partial_{j} \varepsilon_{ij}^{D}(u) - \left(\frac{1}{2} - \frac{1}{n}\right) \partial_{i}(\operatorname{div} u),$$

which gives in combination with Green's representation formula

(6)
$$u^{i}(x) = \int_{B} \Gamma(y-x) 2 \left\{ \sum_{j=1}^{n} \partial_{j} \varepsilon_{ij}^{D}(u)(y) - \left(\frac{1}{2} - \frac{1}{n}\right) \partial_{i}(\operatorname{div} u)(y) \right\} dy$$

valid for all $x \in B$. Here Γ denotes the normalized fundamental solution of the Laplace equation (see, e.g. [GT], (2.12)). Now, if n = 2, the right-hand side of (6) equals

$$-2\int_{B}\sum_{j=1}^{n}\frac{\partial}{\partial y_{j}}\Gamma(y-x)\varepsilon_{ij}^{D}(u)(y)\ dy\,,$$

and we can apply the theory of Riesz potentials (compare [Ste] or [GT]) to deduce our claims (1) and (2) for $\Omega = B$ and u as above. Unfortunately this argument does not work in case $n \geq 3$, since then the right-hand side of (6) not only consists of terms involving $\varepsilon^{D}(u)$. Instead of (6) we now use a different representation, which is due to Reshetnyak [Re]. According to formula (2.43) of this paper it holds

(7)
$$u(x) = P_2 u(x) + R_2 (Q_2 u)(x), \ x \in B,$$

where the quantities on the right-hand side of (7) have the following meaning: P_2u denotes a suitable Killing vector, i.e. an element of the kernel of ε^D , Q_2u is just the tensor $\varepsilon^D(u)$ and R_2 is the potential operator being defined in (2.41) of [Re]. According to the structure of R_2 and the representation of its kernel stated in (2.42) of [Re], we can apply the theory of Riesz potentials (see, e.g. [Ste] or [GT]) to deduce

(8)
$$\|R_2(Q_2u)\|_{L^1(B)} \le c(n) \|Q_2u\|_{L^1(B)}$$

In order to continue we need more information concerning the projection P_2u . Again we benefit from Reshetnyak's work: we use formula (2.20) and pass to the mean value $f_B \dots dy$ with respect to the variable $y \in B$ on the right-hand side. According to the comment given after (2.22) the *i*th component of $P_2u(x)$ is the remaining expression on the right-hand side, in which no integration with respect to the variable $t \in [0, 1]$ is performed, i.e. we have the identity $(i = 1, \dots, n, x \in B)$

$$(9) (P_2 u)^i(x) = \int_B u^i dy + \int_B \sum_{j=1}^n \frac{1}{2} (\partial_j u^i - \partial_i u^j)(y)(x_j - y_j) dy + \int_B \frac{1}{n} \operatorname{div} u(y)(x_i - y_i) dy + \int_B \sum_{j=1}^n (x_j - y_j) \frac{1}{n} \partial_j \operatorname{div} u(y)(x_i - y_i) dy - \int_B \frac{1}{2} |x - y|^2 \frac{1}{n} \partial_i \operatorname{div} u(y) dy.$$

Since u has compact support in B, we may integrate by parts on the right-hand side of (9) to get

(10)
$$P_2 u \equiv \alpha(n)\overline{u}, \ \overline{u} := \int_B u \ dy, \ \alpha(n) := 1 + \frac{n-1}{2} + \frac{n+1}{n}.$$

With (10) we return to (7) and take $f_B \dots dx$ on both sides with the result

$$\overline{u} = \alpha(n)\overline{u} + \int_{B} R_2(Q_2u) \, dx \, dx$$

hence

$$|\overline{u}| \leq \frac{1}{\alpha(n) - 1} \int_{B} |R_2(Q_2 u)| \, dx \,,$$

and we can apply (8) to get (with another constant c(n))

$$|\overline{u}| \le c(n) \|\varepsilon^D(u)\|_{L^1(B)},$$

which on account of (10) implies

(11)
$$\|P_2 u\|_{L^1(B)} \le c(n) \|\varepsilon^D(u)\|_{L^1(B)}.$$

By combining (7), (8) and (11) we finally arrive at

(12)
$$||u||_{L^{1}(B)} \leq c(n) ||\varepsilon^{D}(u)||_{L^{1}(B)}.$$

Suppose next that $u \in C_0^{\infty}(\Omega; \mathbb{R}^n)$ for a bounded Lipschitz domain Ω . Then we have $u \in C_0^{\infty}(B_R(x_0); \mathbb{R}^n)$ for a suitable ball $B_R(x_0) \supset \Omega$, whose diameter is proportional to diam (Ω), and by using (12) our claim (1) for smooth u just follows by scaling. Finally, if u is from the space $\hat{W}_1^1(\Omega; \mathbb{R}^n)$ we apply (1) to a sequence $u_m \in C_0^{\infty}(\Omega; \mathbb{R}^n)$ such that $\|u_m - u\|_{W_1^1(\Omega)} \to 0$ as $m \to \infty$. In order to verify (2) we only observe that for $1 \le p < \frac{n}{n-1}$ inequality (8) can be replaced by

$$||R_2(Q_2u)||_{L^p(B)} \le c(n,p) ||Q_2u||_{L^1(B)},$$

which is a well-known property of Riesz potentials.

Next we prove Theorem 3 for the case $n \ge 3$: from [Re] we deduce as before (compare (7) and (8))

(13)
$$\|u - \kappa\|_{L^1(\Omega)} \le c(n) \operatorname{diam} (\Omega) \|\varepsilon^D(u)\|_{L^1(\Omega)}$$

at least for smooth fields u with a suitable Killing vector $\kappa = \kappa(u)$. For $u \in BD(\Omega)$ we can use the approximation argument of [AG] stated after Theorem 2 (of course ii) now reads $u_h|_{\partial\Omega} = u|_{\partial\Omega}$) with the result that (13) is valid for the sequence u_h with corresponding Killing vectors κ_h . At the same time it holds (see (7))

$$u_h = \kappa_h + R_2(Q_2 u_h) \,,$$

which gives

$$\|\kappa_h\|_{L^1(\Omega)} \le \|u_h\|_{L^1(\Omega)} + c(n,\Omega)\|\varepsilon^D(u_h)\|_{L^1(\Omega)}$$

hence

$$\sup_h \|\kappa_h\|_{L^1(\Omega)} < \infty \; .$$

Since the vectors κ_h belong to a space of finite dimension, this bound is enough to deduce that $\kappa_h \to \kappa$ in $L^1(\Omega; \mathbb{R}^n)$ at least for a subsequence and a Killing vector κ . This proves our claim.

We finish our discussion by mentioning an open problem: suppose that Γ is a subset of $\partial \Omega$ having positive (n-1)-dimensional measure. Do we have the validity of the inequality

(14)
$$\|u\|_{L^{1}(\Omega)} \leq c(n, \Gamma, \Omega) \int_{\Omega} |\varepsilon^{D}(u)|$$

for all $u \in BD(\Omega)$ such that $u|_{\Gamma} = 0$? A positive answer would provide a stronger result as stated in Corollary 1.11 of [AG], but if we try to prove (14) by contradiction we do not have enough information to use the continuity of the trace operator (cf. the comments given in [AG] after Theorem 1.4) which would lead to the desired contradiction. So this open problem is in some sense related to the question if there is a reasonable concept of a trace for fields $u \in L^1(\Omega; \mathbb{R}^n)$ whose distributional deviator $\varepsilon^D(u)$ is a tensor-valued measure of finite total variation. However, a meaningful definition of boundary values for fields in this class seems to be impossible: let *B* denote the open unit disc centered at the origin and let

$$u: B \to \mathbb{C}, \ u(z) := \frac{1}{z-1}.$$

Then u is in the space $L^1(B; \mathbb{C})$, and $\varepsilon^D(u) = 0$ on B holds, since u is holomorphic on B. If a trace $u|_{\partial B}$ of u in the space $L^1(\partial B; \mathbb{C})$ would exist, then it should hold

$$u(z) = u|_{\partial B}(z) \mathcal{H}^1$$
 – a.e. on ∂B ,

but this contradicts the fact that

$$\int_{\partial B} \frac{1}{|z-1|} d\mathcal{H}^1(z) = +\infty \,.$$

References

- [Ad] Adams, R. A., Sobolev spaces. Academic Press, New York-San Francisco-London (1975).
- [AG] Anzellotti, G., Giaquinta, M., Existence of the displacement field for an elastoplastic body subject to Hencky's law and von Mises yield condition. Manus. Math. 32 (1980), 101–136.
- [Da] Dain, S., Generalized Korn's inequality and conformal Killing vectors. Calc. Var. 25(4) (2006), 535–540.

- [DLM] de Leeuw, K., Mirkil, H., A priori estimates for differential operators in L_{∞} norm. Illinois J. Math. 8 (1964), 112–124.
- [Fu] Fuchs, M., An estimate for the distance of a complex valued Sobolev function defined on the unit disc to the class of holomorphic functions. Preprint 247, Universität des Saarlandes (2009).
- [FuS] Fuchs, M., Seregin G. A., Variational methods for problems from plasticity theory and for generalized Newtonian fluids. Lect. Notes in Mathematics 1749, Springer Verlag Berlin (2000).
- [GT] Gilbarg, D., Trudinger, N. S., Elliptic partial differential equations of second order. Springer Verlag, Berlin–Heidelberg–New York (1998).
- [MSC] Matthies, H., Strang, G., Christiansen, E., The saddle point of a differential program, in "Energy methods in finite element analysis", volume dedicated to Professor Fraeijs de Veubeke; Glowinski, R., Rodin, E., Zienkiewicz, O. C., eds. John Wiley, New York (1979).
- [Mi] Mitjagin, B. S., On the mixed second derivative. Dokl. Akad. Nauk SSR 123 (1958), 606–609.
- [Or] Ornstein, D., A non-inequality for differential operators in the L_1 norm. Arch. Rational Mech. Anal. 11 (1962), 40–49.
- [Re] Reshetnyak, Y. G., Estimates for certain differential operators with finite dimensional kernel. Sibirsk. Mat. Zh. 11 (1970), 414–428.
- [Se1] Seregin, G. A., Variational-difference scheme for problems in the mechanics of ideally elastoplastic media, Zh. Vychisl. Mat. i Mat. Fiz. 25 (1985), 237–352 (in Russian). English translation: U.S.S.R. Comput.Math. and Math.Phys. 25 (1985), 153–165.
- [Se2] Seregin, G. A., Differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory, Mat.Sb. (N.S.) 130 (3), 172 (7) (1986), 291–309 (in Russian). English translation: Math. USSR–Sb. 58 (1987), 289–309.
- [Se3] Seregin, G. A., Differentiability of local extremals of variational problems in the mechanics of perfect elastoplastic media, Differential'nye Uravneniya 23 (11) (1987), 1981–1991; English transl. Differential Equations 23 (1987), 1349–1358.
- [Se4] Seregin, G. A., On differential properties of extremals of variational problems arising in plasticity theory, Differential'nye Uravneniya 26 (1990), 1033–1043 (in Russian). English translation: Differential Equations 26 (1990).
- [Se5] Seregin, G. A., On regularity of weak solutions of variational problems in plasticity theory, Dokl. Acad. Sci. 314 (1990), 1344-1349 (in Russian). English transplation: Soviet Math. Dokl. 42 (1991).

- [Se6] Seregin, G. A., On the regularity of weak solutions of variational problems in plasticity theory, Algebra i Analiz 2 (1990), 121–140 (in Russian). English translation: Leningrad Math. J. 2 (1991).
- [Se7] Seregin, G. A., On regularity of minimizers of certain variational problems in plasticity theory, Algebra i Analiz 4 (1992), 181–218 (in Russian). English translation: St. Petersburg Math. J. 4 (1993), 989–1020.
- [Se8] Seregin, G. A., On differentiability properties of the stress tensor in Coulomb– Mohr plasticity, Algebra i Analiz 4 (1992), 234–252 (in Russian). English translation: St. Petersburg Math. J. 4 (1993), 1257–1272.
- [Se9] Seregin, G. A., Differentiability properties of weak solutions of certain variational problems in the theory of perfect elasticplastic plates, Appl. Math. Optim. 28 (1993), 307–335.
- [Se10] Seregin, G. A., Twodimensional variational problems in plasticity theory, Izv. Russian Academy of Sciences 60 (1996), 175–210 (in Russian). English translation in Izvestiya: Mathematics 60, no. 1 (1996), 179–219.
- [Se11] Seregin, G. A., On the differentiability of local extremals of variational problems in the mechanics of rigidly viscoplastic media, Izv. Vyssh. Uchebn. Zaved Mat. No. 10 (305) (1987), 23–30 (in Russian). English translation: Sov. Math. (Iz. VUZ) 31 (1987).
- [Se12] Seregin, G. A., On differential properties of extremals of variational problems of the mechanics of viscoplastic media, Proc. Stoklov Inst. Math. 3 (1991), 147–157.
- [Ste] Stein, E., Singular integrals and differentiability properties of functions. Princeton University Press, Princeton (1970).
- [Str] Strauss, M. J., Variations of Korn's and Sobolev inequalities. Berkeley symposium on partial differential equations, AMS Symposia Vol 23 (1971).
- [Su] Suquet, P., Existence et régularité des solutions des equations de la plasticité parfaite. Thèse de 3e Cycle, Université de Paris VI (1978). Also: C. R. Acad. Sci. Paris, Ser. D. 286, 1201–1204 (1978).
- [TS] Temam, R., Strang, G., Functions of bounded deformation. Arch. Rat. Mech. Anal. 75 (1981), 7–21.

Martin Fuchs Universität des Saarlandes Fachbereich 6.1 Mathematik Postfach 15 11 50 D–66041 Saarbrücken, Germany e-mail: fuchs@math.uni-sb.de Sergey Repin V.A. Steklov Math. Inst. St. Petersburg Branch Fontanka 27 191011 St. Petersburg Russia e-mail: repin@pdmi.ras.ru