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Abstract

If Ω ⊂ R
n is a bounded Lipschitz domain, we prove the inequality ‖u‖1 ≤

c(n)diam(Ω)
∫

Ω |εD(u)| being valid for functions of bounded deformation vanishing
on ∂Ω. Here εD(u) denotes the deviatoric part of the symmetric gradient and
∫

Ω |εD(u)| stands for the total variation of the tensor-valued measure εD(u). Further
results concern possible extensions of this Poincaré–type inequality.

A technical ingredient of the fundamental research of G. A. Seregin on the regularity
theory for problems from plasticity theory (see, e.g., [Se1–12] and [FuS]) is a collection of
Poincaré–type inequalities established by Strauss [Str], Temam and Strang [TS] and by
Anzellotti and Giaquinta [AG], in which certain integral norms of the deformation u are
estimated in terms of the total variation of the strain tensor ε(u). The purpose of our
note is to show that it is sometimes possible to replace ε(u) in these inequalities through
its deviatoric part. To be precise, suppose that we are given a bounded Lipschitz domain
Ω ⊂ Rn, n ≥ 2, and a field u : Ω → Rn. We introduce the symmetric gradient of u

ε(u) := (εij(u))1≤i,j≤n
, εij(u) :=

1

2
(∂iu

j + ∂ju
i) ,

and its deviatoric part

εD(u) := ε(u) −
1

n
(div u)1, 1 = (δij)1≤i,j≤n ,

whenever these expressions make sense. We further denote by W 1
s (Ω; Rn) the Sobolev

space of all fields u : Ω → Rn, which together with their first weak partial derivatives are
in the Lebesgue class Ls(Ω; Rn) for some exponent s ∈ [1,∞). Moreover, we consider the

subspace
◦

W 1
s(Ω; Rn) of W 1

s (Ω; Rn) consisting of all functions vanishing on the boundary
of Ω. For a more detailed definition and further properties of these spaces the reader is
referred to the monograph of Adams [Ad]. Our first result is in some sense an extension
of a Sobolev–Poincaré inequality obtained by Strauss (see [Str], Theorem 1):

THEOREM 1. There is a constant c(n) such that

(1) ‖u‖L1(Ω) ≤ c(n)diam(Ω)‖εD(u)‖L1(Ω)

holds for any function u ∈
◦

W1
1(Ω; Rn). If p is some number in [1, n

n−1
), then for a suitable

constant c(n, p) we have

(2) ‖u‖Lp(Ω) ≤ c(n, p)diam(Ω)1−n+ n

p ‖εD(u)‖L1(Ω)

for all fields u ∈
◦

W1
1(Ω; Rn).
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Let us add some comments:

a) In his work Strauss discusses fields from the space
◦

W 1
n

n−1

(Ω; Rn) and proves ([Str],

Theorem 1)
‖u‖

L
n

n−1 (Ω)
≤ C‖ε(u)‖L1(Ω) ,

whereas in our case only the deviatoric part of the symmetric gradient occurs on the
right-hand side. However, on the left-hand side of inequality (2) our techniques do
not allow us to include the limit exponent p = n

n−1
, and so it remains an interesting

open question, if (2) is true for this choice of p.

b) Assume that n ≥ 3 and fix an exponent s ∈ (1,∞). Then, according to Theorem 2
of Reshetnyak’s deep paper [Re], we have the Korn–type inequality

(3) ‖v − P (v)‖W 1
s
(Ω) ≤ C‖εD(v)‖Ls(Ω)

valid for all v ∈ W 1
s (Ω; Rn) with a finite constant C depending on n, s and Ω.

Here P (v) denotes the projection of v on the kernel of εD (space of Killing vectors),
which is of finite dimension. If v is smooth having in addition compact support in
Ω, then it can be deduced from the representation formula (2.20) in [Re] that P (v)
is constant (cf. proof of Theorem 1 for details), and we infer from (3)

(4) ‖∇v‖Ls(Ω) ≤ C‖εD(v)‖Ls(Ω)

for all v ∈
◦

W1
s(Ω; Rn). Combining (4) with Poincaré’s inequality we obtain

‖v‖Ls(Ω) ≤ C‖εD(v)‖Ls(Ω)

again for v ∈
◦

W 1
s(Ω; Rn), which is the “Ls–variant” of (1) for exponents s > 1. We

emphasize that it is not possible to derive inequality (1) along these lines, since even
∫

Ω
|ε(u)| dx does not dominate each quantity

∫

Ω
|∂ui/∂xj | dx for arbitrary fields from

◦

W1
1(Ω; Rn). Counterexamples can be traced in the works of Mitjagin [Mi], de Leeuw

and Mirkil [DLM] and of Ornstein [Or].

Next we pass to the space BD(Ω) consisting of all fields u ∈ L1(Ω; Rn) having bounded
deformation introduced by Suquet [Su] and by Matthies, Strang and Christiansen [MSC]
and further investigated by e.g. Temam and Strang [TS] and Anzellotti and Giaquinta
[AG] in the context of plasticity theory. According to Proposition 1.2 of [AG] it holds

∫

Rn

|u| dx ≤ c(n)diam(spt u)

∫

Rn

|ε(u)|

for u ∈ BD(Rn) having compact support, and we can state:

THEOREM 2. There is a constant c(n) such that

(5) ‖u‖L1(Ω) ≤ c(n)diam(Ω)

∫

Ω

|εD(u)|

is satisfied for all fields u ∈ BD(Ω) with u|∂Ω = 0.
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Here u|∂Ω denotes the trace of the function u in the sense of [TS], Theorem 1.1. The
proof of Theorem 2 is easily obtained, if we accept Theorem 1 for the moment and follow
the remarks stated in [AG] after the proof of their Theorem 1.3: given u as above, there
exists a sequence uh ∈ C∞(Ω; Rn) ∩ BD(Ω) such that

i) uh → u in L1(Ω; Rn),

ii) uh|∂Ω = u|∂Ω = 0,

iii)
∫

Ω

|εD(uh)| dx →
∫

Ω

|εD(u)| as h → ∞.

On account of ii) we have inequality (1) for the sequence uh, and by i), iii) we may pass to
the limit h → ∞ in order to obtain our claim (5). Before we present the proof of Theorem
1, we want to mention an additional related result:

THEOREM 3. For a finite constant c(n) we have the inequality (κ = κ(u))

‖u − κ‖L1(Ω) ≤ c(n) diam(Ω)

∫

Ω

|εD(u)|

valid for all u ∈ BD(Ω). In case n = 2 κ denotes a suitable holomorphic function, whereas
for n ≥ 3 κ is a Killing vector as explained for example in [Da], p.537. For p ∈ [1, n

n−1
)

we also have

‖u − κ‖Lp(Ω) ≤ c(n, p)diam(Ω)1−n+ n

p

∫

Ω

|εD(u)| .

We wish to remark that the estimates from Theorem 3 correspond to the inequalities
obtained in [TS] and [AG], in which the BD–distance of fields u from BD(Ω) to the space
of rigid motions is controlled through the total variation of the tensor–valued measure ε(u).
A proof of Theorem 3 for domains Ω ⊂ R2 and functions u from the space W 1

1 (Ω; R2) has
been given in [Fu], and from this work the BD–variant follows by approximation. The
higher dimensional case will be a consequence of the arguments needed for the proof of
Theorem 1.
For proving Theorem 1 we first consider the case u ∈ C∞

0 (B; Rn), B denoting the open
unit ball. From Dain’s paper [Da] we quote the identity (i = 1, . . . , n)

1

2
∆ui =

n
∑

j=1

∂jε
D
ij (u) −

(

1

2
−

1

n

)

∂i(div u) ,

which gives in combination with Green’s representation formula

(6) ui(x) =

∫

B

Γ(y − x)2

{

n
∑

j=1

∂jε
D
ij (u)(y)−

(

1

2
−

1

n

)

∂i(div u)(y)

}

dy
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valid for all x ∈ B. Here Γ denotes the normalized fundamental solution of the Laplace
equation (see, e.g. [GT], (2.12)). Now, if n = 2, the right-hand side of (6) equals

−2

∫

B

n
∑

j=1

∂

∂yj

Γ(y − x)εD
ij (u)(y) dy ,

and we can apply the theory of Riesz potentials (compare [Ste] or [GT]) to deduce our
claims (1) and (2) for Ω = B and u as above. Unfortunately this argument does not work
in case n ≥ 3, since then the right-hand side of (6) not only consists of terms involving
εD(u). Instead of (6) we now use a different representation, which is due to Reshetnyak
[Re]. According to formula (2.43) of this paper it holds

(7) u(x) = P2u(x) + R2(Q2u)(x), x ∈ B ,

where the quantities on the right-hand side of (7) have the following meaning: P2u denotes
a suitable Killing vector, i.e. an element of the kernel of εD, Q2u is just the tensor εD(u)
and R2 is the potential operator being defined in (2.41) of [Re]. According to the structure
of R2 and the representation of its kernel stated in (2.42) of [Re], we can apply the theory
of Riesz potentials (see, e.g. [Ste] or [GT]) to deduce

(8) ‖R2(Q2u)‖L1(B) ≤ c(n)‖Q2u‖L1(B) .

In order to continue we need more information concerning the projection P2u. Again
we benefit from Reshetnyak’s work: we use formula (2.20) and pass to the mean value
∫

−
B

. . . dy with respect to the variable y ∈ B on the right-hand side. According to the

comment given after (2.22) the ith component of P2u(x) is the remaining expression on
the right-hand side, in which no integration with respect to the variable t ∈ [0, 1] is
performed, i.e. we have the identity (i = 1, . . . , n, x ∈ B)

(P2u)i(x) =

∫

−

B

uidy +

∫

−

B

n
∑

j=1

1

2
(∂ju

i − ∂iu
j)(y)(xj − yj) dy(9)

+

∫

−

B

1

n
div u(y)(xi − yi) dy

+

∫

−

B

n
∑

j=1

(xj − yj)
1

n
∂j div u(y)(xi − yi) dy

−

∫

−

B

1

2
|x − y|2

1

n
∂i div u(y) dy .

Since u has compact support in B, we may integrate by parts on the right-hand side of
(9) to get

(10) P2u ≡ α(n)u, u :=

∫

−

B

u dy , α(n) := 1 +
n − 1

2
+

n + 1

n
.
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With (10) we return to (7) and take
∫

−
B

. . . dx on both sides with the result

u = α(n)u +

∫

−

B

R2(Q2u) dx ,

hence

|u| ≤
1

α(n) − 1

∫

−

B

|R2(Q2u)| dx ,

and we can apply (8) to get (with another constant c(n))

|u| ≤ c(n)‖εD(u)‖L1(B) ,

which on account of (10) implies

(11) ‖P2u‖L1(B) ≤ c(n)‖εD(u)‖L1(B) .

By combining (7), (8) and (11) we finally arrive at

(12) ‖u‖L1(B) ≤ c(n)‖εD(u)‖L1(B) .

Suppose next that u ∈ C∞
0 (Ω; Rn) for a bounded Lipschitz domain Ω. Then we have

u ∈ C∞
0 (BR(x0); R

n) for a suitable ball BR(x0) ⊃ Ω, whose diameter is proportional to
diam (Ω), and by using (12) our claim (1) for smooth u just follows by scaling. Finally,

if u is from the space
◦

W 1
1(Ω; Rn) we apply (1) to a sequence um ∈ C∞

0 (Ω; Rn) such that
‖um−u‖W 1

1
(Ω) → 0 as m → ∞. In order to verify (2) we only observe that for 1 ≤ p < n

n−1

inequality (8) can be replaced by

‖R2(Q2u)‖Lp(B) ≤ c(n, p)‖Q2u‖L1(B) ,

which is a well–known property of Riesz potentials. �

Next we prove Theorem 3 for the case n ≥ 3: from [Re] we deduce as before (compare
(7) and (8))

(13) ‖u − κ‖L1(Ω) ≤ c(n) diam (Ω)‖εD(u)‖L1(Ω)

at least for smooth fields u with a suitable Killing vector κ = κ(u). For u ∈ BD(Ω) we can
use the approximation argument of [AG] stated after Theorem 2 (of course ii) now reads
uh|∂Ω = u|∂Ω) with the result that (13) is valid for the sequence uh with corresponding
Killing vectors κh. At the same time it holds (see (7))

uh = κh + R2(Q2uh) ,

which gives
‖κh‖L1(Ω) ≤ ‖uh‖L1(Ω) + c(n, Ω)‖εD(uh)‖L1(Ω) ,
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hence
sup

h

‖κh‖L1(Ω) < ∞ .

Since the vectors κh belong to a space of finite dimension, this bound is enough to deduce
that κh →: κ in L1(Ω; Rn) at least for a subsequence and a Killing vector κ. This proves
our claim. �

We finish our discussion by mentioning an open problem: suppose that Γ is a subset of ∂Ω
having positive (n − 1)–dimensional measure. Do we have the validity of the inequality

(14) ‖u‖L1(Ω) ≤ c(n, Γ, Ω)

∫

Ω

|εD(u)|

for all u ∈ BD(Ω) such that u|Γ = 0? A positive answer would provide a stronger result
as stated in Corollary 1.11 of [AG], but if we try to prove (14) by contradiction we do not
have enough information to use the continuity of the trace operator (cf. the comments
given in [AG] after Theorem 1.4) which would lead to the desired contradiction. So this
open problem is in some sense related to the question if there is a reasonable concept of
a trace for fields u ∈ L1(Ω; Rn) whose distributional deviator εD(u) is a tensor–valued
measure of finite total variation. However, a meaningful definition of boundary values for
fields in this class seems to be impossible: let B denote the open unit disc centered at the
origin and let

u : B → C, u(z) :=
1

z − 1
.

Then u is in the space L1(B; C), and εD(u) = 0 on B holds, since u is holomorphic on B.
If a trace u|∂B of u in the space L1(∂B; C) would exist, then it should hold

u(z) = u|∂B(z) H1 − a.e. on ∂B ,

but this contradicts the fact that
∫

∂B

1

|z − 1|
dH1(z) = +∞ .
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