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Abstract

We consider non-autonomous functionals F(u; Ω) =
∫

Ω
f(x, Du) dx, where

the density f : Ω× RnN → R has almost linear growth, i.e.,

f(x, ξ) ≈ |ξ| log(1 + |ξ|).

We prove partial C1,γ-regularity for minimizers u : Rn ⊃ Ω → RN under
the assumption that Dξf(x, ξ) is Hölder continuous with respect to the x-
variable. If the x-dependence is C1 we can improve this to full regularity
provided additional structure conditions are satisfied.

1 Introduction

This paper is concerned with variational functionals of the form

F(u; Ω) :=

∫
Ω

f(x, Du) dx (1.1)

for a mapping u : Ω ⊂ Rn → RN , n ≥ 2, N ≥ 1 and Ω a bounded open
set in Rn. Here the integrand f : (x, ξ) ∈ Ω × Rn×N → [0, +∞) is strictly
convex with respect to the variable ξ ∈ Rn×N and therefore the existence of
minimizers is established by the direct methods of the calculus of variations.
The study of C1,γ-partial regularity for minimizers of the functional (1.1) has
been achieved when the integrand grows as a power function |ξ|p for some
p > 1 (see [21] for an exhaustive treatment) or in case it satisfies the so called
non standard growth conditions, i.e.

c|ξ|p ≤ f(x, ξ) ≤ C(1 + |ξ|q)

for some 1 < p ≤ q < +∞ and positive constants c, C( see [2, 4, 6, 15, 24, 28]
and [25] for a nice survey).
In this paper we will not be concerned with such cases in any essential way.
In fact, we will focus our attention on integrands which are not too far from
being linear in |ξ|, that is

lim
|ξ|→+∞

|f(x, ξ)|
|ξ|

= +∞, lim
|ξ|→+∞

|f(x, ξ)|
|ξ|p

= 0 ∀p > 1. (1.2)

It is worth mentioning that many regularity results have been established
for integrals with nearly linear growth in case they do not depend on the x
variable.
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The earliest paper on this subject is due to Greco, Iwaniec and Sbordone (see
[22]), in which the higher integrability of the minimizers has been proved in
the scale of Orlicz spaces for a large class of autonomous functionals satisfying
(1.2).
After that, Fuchs and Seregin in [20] proved the C1,γ partial regularity for
minimizers of

J(u) =

∫
Ω

|Du| log(1 + |Du|) dx

under the assumption n ≤ 4. Such result has been extended to any dimension
n by Esposito and Mingione in [17] and later on the full C1,γ-regularity has
been established in [18, 27]. All the quoted papers concern the autonomous
case.
Actually, variational functionals whose integrand depend on x arise in prob-
lems of mathematical physics and engineering and they attracted great in-
terest.
Regularity results for minimizers of non-autonomous functionals satisfying
non standard growth conditions have been established in [6, 7, 12, 13, 16].
Note that functionals with nearly linear growth have features in common
with ones satisfying non standard growth since, by virtue of (1.2), we have
that

c|ξ| ≤ f(x, ξ) ≤ C(1 + |ξ|p), ∀p > 1.

The aim of this paper is to establish C1,γ-partial regularity of minimizers of
(1.1) with an integrand f satisfying the assumption

c0A(|ξ|)− c1 ≤ f(x, ξ) ≤ c2A(|ξ|) + c3 (F1)

where ci are positive constants, ξ ∈ RnN and

A(t) = t log(1 + t),

with t ≥ 0.
Here we shall assume that there exist constants c4, c5, ν > 0 and an exponent
α ∈ (0, 1) such that f is a function fulfilling (F1) and whose derivatives
satisfy the following assumptions:

|Dξf(x, ξ)| ≤ c4(1 + log(1 + |ξ|)); (F2)

|Dξf(x1, ξ)−Dξf(x2, ξ)| ≤ c5|x1 − x2|α log(1 + |ξ|); (F3)

ν(1 + |ξ1|+ |ξ2|)−1|ξ1 − ξ2|2 ≤
〈
Dξf(x, ξ1)−Dξf(x, ξ2), ξ1 − ξ2

〉
; (F4)
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for any ξ, ξ1, ξ2 ∈ RnN and for any x, x1, x2 ∈ Ω. Moreover to perform the
blow up procedure we shall need Dξξf ∈ C0(Ω × RnN) and satisfying the
following assumption

ν(1 + |ξ|)−1|ζ|2 ≤
〈
Dξξf(x, ξ)ζ, ζ

〉
≤ c6

log(1 + |ξ|)
|ξ|

|ζ|2, (F5)

with a positive constant c6. Note that (F1) and the convexity assumption
(F4) imply (F2).
The first result of this paper is the following higher integrability property of
minimizers of the functional F . This result will be useful to prove regularity
and it is also of interest by itself. It will be proved under weaker assumptions
than the ones needed to prove C1,γ regularity.

Theorem 1.1 Let u ∈ W 1,A
loc (Ω, RN) be a local minimizer of the functional

F , with an integrand function f satisfying (F1) – (F4). Then we have

Du ∈ Ls
loc(Ω), ∀ s <

n

n− α
,

and

|| (V1(Du))2 ||
L

n
n−2b (Bρ)

≤ c

∫
B2R

|Du| log(1 + |Du|) dx + c

∫
B2R

|V1(Du)|2 dx,

for every pair of concentric balls Bρ ⊂ B2R b Ω and for every b ∈ (0, α
2
). Here

α is the exponent appearing in (F3) and we denoted by V1(ξ) = (1+ |ξ|2)− 1
4 ξ.

Corollary 1.2 Under the same assumptions of Theorem 1.1, if u ∈ W 1,A
loc (Ω, RN)

is a local minimizer of the functional F , then we have

Du ∈ W k,p
loc (Ω, RnN), (1.3)

for every k ∈ (0, α
2
) and for every 1 < p < n

n−α
2
.

The higher integrability of Theorem 1.1 allows us to prove a C1,γ-partial
regularity result which is formulated in the following

Theorem 1.3 Let f be a C2(Ω, RnN)-integrand satisfying the assumptions
(F1) and (F3) – (F5). If u ∈ W 1,A

loc (Ω, RN) is a local minimizer of the
functional F , then there exists an open subset Ω0 of Ω such that

meas(Ω \ Ω0) = 0

and
u ∈ C1,γ

loc (Ω0, RN) for every γ <
α

2
,

where α is the exponent appearing in (F3).
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Our proof is based on a blow up argument aimed to establish a decay estimate
for the excess function of the minimizer. The proof has features in common
with [17], since we use the higher integrability Theorem 1.1 in order to define
the excess function as

E(x, r) =

∫
Br(x)

|Vp(Du)− Vp((Du)r)|2 + rβ

with
Vp(ξ) = (1 + |ξ|2)

p−2
4 ξ.

The main difference with [17] is that, in order to perform the blow up pro-
cedure, we use a Caccioppoli type inequality for minimizers of a suitable
perturbation of the rescaled functional, as done in [12].
The main difficulty in order to prove the Caccioppoli type inequality is the
proof of a uniform higher integrability result for the minimizers of the rescaled
functionals. We have to combine the difference quotient method with prop-
erties of Orlicz-Sobolev classes generated by an Orlicz function which grows
almost linearly. We also use the properties of the function Vp(ξ) which is an
useful tool to deal with subquadratic setting.
In order to improve this to everywhere regularity, additional assumptions are
necessary. The first is the modulus dependence, i.e.,

f(x, ξ) = f̂(x, |ξ|) (F6)

for a function f̂ : Ω × [0,∞) → R which is strictly increasing in the real
variable. According to counterexamples of De Giorgi (see [10]), when dealing
with vectorial minimizers, i.e. N > 1, it is well-known that without this
assumption there is no hope for full regularity. On the other hand we need
a Caccioppoli-type inequality in order to apply De Giorgi arguments, hence
we assume for every s ∈ {1, ..., n}

∂sDξf ∈ C0(Ω× RnN , RnN) and |∂sDξf(x, ξ)| ≤ c(1 + |ξ|)p−1 (F7)

for an exponent 1 < p <
n−α

2

n−α
. Finally we suppose that

|D2
ξξ(x, ξ1)−D2

ξξ(x, ξ2)| ≤ c(1 + |ξ1|+ |ξ2|)p−2−µ|ξ1 − ξ2|µ (F8)

for all x ∈ Ω, ξ1, ξ2 ∈ RnN and for an exponent µ ∈ (0, 1). Of course (F7) and
(F8) are true in the autonomous case for f(x, ξ) = |ξ| logθ(1+ |ξ|), θ > 0, for
every choice of p > 1. The full regularity result of this paper is the following

Theorem 1.4 Let u ∈ W 1,A
loc (Ω, RN) be a local minimizer of the functional

F , with an integrand function f satisfying (F1) and (F3) – (F8). Then we
have

u ∈ C1,γ
loc (Ω, RN), for all γ < 1.
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Thanks to Theorem 1.3 we have a nonempty set of regular points for every
minimizer of the functional F with a general integrand function f . Therefore
Corollary 1.2 allows us to apply Lemma 2.16 (stated in the next section) to
give an estimate of the Hausdorff dimension of the singular set of minimizers
of F .

Corollary 1.5 If f is a C2 function satisfying the assumptions (F1) and
(F3)− (F5) and the function u ∈ W 1,A(Ω; RN) is a local minimizer of F in
Ω, then for the Hausdorff dimension of the singular set Σ of the function u
the following estimate hold

dimH(Σ) ≤ n− α

2
q

where q = n
n−α

2
.

See also [11].

2 Notations and preliminaries

In this section we recall some standard definitions and collect several Lemmas
that we shall need to establish our main results.
We shall indicate with BR(x0) the ball centered at the point x0 ∈ Rn and
having radius R > 0. We shall omit the center of the ball when no confusion
arises. All the balls considered will be concentric unless differently specified.
As usual {es}1≤s≤n is the standard basis in Rn and if u, v ∈ Rk the tensor
product u⊗ v ∈ Rk2

of u and v is defined by (u⊗ v)i,j := viwj.
In the estimates c will denote a constant, depending on the data of the
problem, that may change from line to line.
Now we recall the definition of the Orlicz-Sobolev space (for more details on
this topic we refer to [3])

Definition 2.1 a) A function ϕ : [0,∞) → [0,∞) is called a Young func-
tion, if ϕ is strictly increasing, convex and satisfies

lim
t→0

ϕ(t)

t
= lim

t→∞

t

ϕ(t)
= 0.

b) If ϕ satisfies in addition a global (∆2)-condition, i.e.,

ϕ(2t) ≤ cϕ(t) for all t ≥ 0,
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then we define

Lϕ(Ω, RN) :=

{
u ∈ L1(Ω, RN) :

∫
Ω

ϕ(|u|) dx < ∞
}

,

which is a Banach space endowed with the Luxemburg norm

‖u‖ϕ := inf

{
k ≥ 0 :

∫
Ω

ϕ

(
|u|
k

)
dx ≤ 1

}
.

c) A function u : Ω → RN belongs to the space W 1,ϕ(Ω, RN) if u ∈
Lϕ(Ω, RN) and its distributional gradient Du ∈ Lϕ(Ω, RnN). W 1,ϕ(Ω, RN)
is a Banach-space together with the norm

‖u‖1,ϕ := ‖u‖ϕ + ‖Du‖ϕ.

d) We define W 1,ϕ
0 (Ω, RN) as the closure of C∞

0 (Ω, RN) with respect to the
W 1,ϕ(Ω, RN)-norm.

Now we can give the definition of a local minimizer, that in our case takes
place:

Definition 2.2 A function u ∈ W 1,A
loc (Ω, RN) is a local minimizer of F if∫

supp ϕ

f(x, Du) dx ≤
∫

supp ϕ

f(x, Du + Dϕ) dx,

for any ϕ ∈ W 1,A
loc (Ω, RN) with supp ϕ ⊂ Ω.

As usual, in order to prove the higher integrability of the local minimizers,
we shall need the machinery of fractional order Sobolev spaces. These spaces
are defined as follows.

Definition 2.3 If A is a smooth, bounded open subset of Rn and θ ∈ (0, 1),
1 ≤ p < +∞ a function u belongs to the fractional order Sobolev space
W θ,p(A; Rn) if and only if

||u||W θ,p :=

(∫
A

|u(x)|p dx

) 1
p

+

(∫
A

∫
A

|u(x)− u(y)|p

|x− y|n+pθ
dx dy

) 1
p

< ∞.

This quantity is a norm making W θ,p(A; Rn) a Banach space.

In the context of fractional order Sobolev spaces we have to use fractional
difference quotients. Therefore we recall the finite difference operator.
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Definition 2.4 For every vector valued function F : Rn → RN the finite
difference operator is defined by

τs,hF (x) = F (x + hes)− F (x)

where h ∈ R, es is the unit vector in the xs direction and s ∈ {1, . . . , n}.
The difference quotient is defined for h ∈ R \ {0} as

∆s,hF (x) =
τs,hF (x)

h
.

The following proposition describes some elementary properties of the finite
difference operator and can be found, for example, in [21].

Proposition 2.5 Let F and G be two functions such that F, G ∈ W 1,p(Ω),
with p ≥ 1, and let us consider the set

Ω|h| := {x ∈ Ω : dist(x, ∂Ω) > |h|} .

Then

(d1) τs,hF ∈ W 1,p(Ω|h|) and

Di(τs,hF ) = τs,h(DiF ).

(d2) If at least one of the functions F or G has support contained in Ω|h|
then ∫

Ω

F τs,hG dx = −
∫

Ω

G τs,−hF dx.

(d3) We have

τs,h(FG)(x) = F (x + hes)τs,hG(x) + G(x)τs,hF (x).

Next Lemma was proved in [1] (See Lemma 2.2).

Lemma 2.6 For every γ ∈ (−1/2, 0) and µ ≥ 0 we have

(2γ + 1)|ξ − η| ≤ |(µ2 + |ξ|2)γξ − (µ2 + |η|2)γη|
(µ2 + |ξ|2 + |η|2)γ

≤ c(k)

2γ + 1
|ξ − η|

for every ξ, η ∈ Rk.

The next result about finite difference operator is a kind of integral version
of Lagrange Theorem.
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Lemma 2.7 If 0 < ρ < R, |h| < R−ρ
2

, 1 < p < +∞, s ∈ {1, . . . , n} and
F, DsF ∈ Lp(BR) then∫

Bρ

|τs,hF (x)|p dx ≤ |h|p
∫

BR

|DsF (x)|p dx.

Moreover ∫
Bρ

|F (x + hes)|p dx ≤ c(n, p)

∫
BR

|F (x)|p dx.

Now we recall the fundamental embedding properties for fractional order
Sobolev spaces. (For the proof we refer to [3]).

Lemma 2.8 If F : Rn → RN , F ∈ L2(BR) and for some ρ ∈ (0, R), β ∈
(0, 1], M > 0,

n∑
s=1

∫
Bρ

|τs,hF (x)|2 dx ≤ M2|h|2β

for every h with |h| < R−ρ
2

, then F ∈ W k,2(Bρ; RN)∩L
2n

n−2k (Bρ; RN) for every
k ∈ (0, β) and

||F ||
L

2n
n−2k (Bρ)

≤ c
(
M + ||F ||L2(BR)

)
,

with c ≡ c(n, N, R, ρ, β, k).

Previous Lemma can be reformulated as follows

Lemma 2.9 If F : Rn → RN , F ∈ Lp(BR) with 1 < p < +∞ and for some
ρ ∈ (0, R), β ∈ (0, 1], M > 0,

n∑
s=1

∫
Bρ

|τs,hF (x)|p dx ≤ Mp|h|pβ

for every h with |h| < R−ρ
2

, then F ∈ W k,p(Bρ; RN)∩L
np

n−kp (Bρ; RN) for every
k ∈ (0, β) and

||F ||
L

np
n−kp (Bρ)

≤ c
(
M + ||F ||Lp(BR)

)
,

with c ≡ c(n, N, R, ρ, β, k).

Next Lemma finds an important application in the so called hole-filling
method. Its proof can be found in [21] (See Lemma 6.1).

Lemma 2.10 Let h : [ρ, R0] → R be a non-negative bounded function and
0 < θ < 1, 0 ≤ A, 0 ≤ B and 0 < β. Assume that

h(r) ≤ A

(d− r)β
+ B + θh(d)
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for ρ ≤ r < d ≤ R0. Then

h(ρ) ≤ cA

(R0 − ρ)β
+ B,

where c = c(θ, β) > 0.

We shall need the following Poincaré-Sobolev inequality, whose proof can be
found in [14] (for other versions of this inequality we refer to [8, 9]).

Lemma 2.11 Assume 1 < p < 2 and let u ∈ W 1,p(Ω, RN). Then there
exists a positive constant c ≡ c(n,N, p) such that(∫

Bρ(x0)

∣∣∣∣Vp

(
u− (u)ρ

ρ

)∣∣∣∣ 2n
n−p

dx

)n−p
2n

≤ c

(∫
Bρ(x0)

|V (Du)|2 dx

) 1
2

.

Next result is a simple consequence of the a priori estimates for solutions to
linear elliptic systems with constant coefficients.

Proposition 2.12 Let u ∈ W 1,p(Ω; RN), p ≥ 1 be such that∫
Ω

Aij
αβDαuiDβϕj dx = 0

for every ϕ ∈ C∞
0 (Ω; RN), where Aij

αβ is a constant matrix satisfying the
strong Legendre Hadamard condition

Aij
αβλiλjµαµβ ≥ ν|λ|2|µ|2 ∀λ ∈ RN , µ ∈ Rn.

Then u ∈ C∞ and for any ball BR(x0) b Ω we have

sup
B R

2 (x0)

|Du| ≤ c

Rn

∫
BR

|Du| dx

For the proof see [8].
We shall use the following auxiliary function defined for ξ ∈ Rk

Vβ(ξ) = (1 + |ξ|2)
β−2

4 ξ,

for any exponent β ≥ 1. Recall that for β > 1

|Vβ(ξ)| is a non-decreasing function of |ξ|; (2.1)

|Vβ(ξ + η)| ≤ c(β)(|Vβ(ξ)|+ |Vβ(η)|); (2.2)
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min{t2, tβ}|Vβ(ξ)|2 ≤ |Vβ(tξ)|2 ≤ max{t2, tβ}|Vβ(ξ)|2; (2.3)

|V (ξ)− V (η)| ≤ c(β)|V (ξ − η)| ≤ c(β, |η|)|V (ξ)− V (η)| if 1 < β < 2; (2.4)

(1 + |ξ|2 + |η|2)
β
2 ≤ 1 + (1 + |ξ|2 + |η|2)

β−2
2 (|ξ|2 + |η|2) ifβ ≤ 2; (2.5)

c(β)(|ξ|2 + |ξ|β) ≤ |Vβ(ξ)|2 ≤ C(β)(|ξ|2 + |ξ|β) if β ≥ 2; (2.6)

|Vβ(ξ)|2 is convex if 1 < β < 2. (2.7)

Many of the previous properties of the function Vβ can be easily checked
and they have been successfully employed in the study of the regularity of
minimizers of convex and quasiconvex integrals under subquadratic growth
conditions ([1, 8, 9, 29]). In our context, the following elementary inequality
will also be useful.

Lemma 2.13 Set
Vp(ξ) = (1 + |ξ|2)

p−2
4 ξ.

Then for every ρ > 0 and function v with the suitable integrability degree, we
have ∫

Bρ

|Vp(Dv)|2 dx ≤ c(p)

∫
Bρ

|V1(Dv)|2 dx + c(p)

∫
Bρ

|V1(Dv)|2p dx,

for a constant c depending only on p.

Proof: We start by noting that

(1 + |ξ|2)
1
2 ≤ 2[1 + (1 + |ξ|2)−

1
2 |ξ|2]. (2.8)

Indeed if |ξ| ≤ 1 we have

(1 + |ξ|2)
1
2 ≤

√
2,

while, if |ξ| > 1 we have

(1 + |ξ|2)
1
2 =

1 + |ξ|2

(1 + |ξ|2) 1
2

≤ 2|ξ|2

(1 + |ξ|2) 1
2

.

Hence, recalling that p > 1, we can conclude that∫
Bρ

|Vp(Dv)|2 dx =

∫
Bρ

|Dv|2(1 + |Dv|2)
p−2
2 dx

=

∫
Bρ

|Dv|2(1 + |Dv|2)−
1
2 (1 + |Dv|2)

p−1
2 dx

10



≤ 2

∫
Bρ

|Dv|2(1 + |Dv|2)−
1
2

[
1 + |Dv|2(1 + |Dv|2)−

1
2

]p−1

dx

≤ c(p)

∫
Bρ

|Dv|2(1 + |Dv|2)−
1
2 dx + c(p)

∫
Bρ

(
|Dv|2(1 + |Dv|2)−

1
2

)p

dx,

where we also used (2.8). �

We shall also need the following elementary inequality.

Lemma 2.14 For every x ≥ 0 and 1 < p < 2 we have

log(1 + x) ≤ cx(1 + x2)
p−2
2

for a constant c = c(p).

Proof: The function

ϕ(x) =
log(1 + x)

x
(1 + x2)

2−p
2

is nonnegative for every x > 0 and

lim
x→0+

ϕ(x) = 1.

Moreover, since p < 2, we have

lim
x→+∞

ϕ(x) = 0.

Since ϕ is continuous, there exists c = c(p) ≥ 0 such that ϕ(x) ≤ c for every
x ∈ [0, +∞]. Hence the conclusion follows. �

In the linearization procedure we shall use the rescaled functional of F on
the unit ball B ≡ B1(0)

I(v) :=

∫
B

g(y, Dv) dy

defined by setting

g(y, ξ) = λ−2[f(x0+r0y, A+λξ)−f(x0+r0y, A)−Dξf(x0+r0y, A)λξ], (2.9)

where A is a matrix such that |A| is uniformly bounded by a positive constant
M . Next Lemma contains the growth conditions on g.
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Lemma 2.15 Let f ∈ C2(Ω×Rn×N) be a function satisfying the assumptions
(F1) and (F3)-(F5) and let g(y, ξ) be the function defined by (2.9). Then we
have

ν̃
|ξ|2

1 + |λξ|
≤ |g(y, ξ)| ≤ c

log(1 + |λξ|)
|λξ|

|ξ|2; (I1)

|Dξg(y, ξ)| ≤ c
log(e + |λξ|)

λ
; (I2)

|Dξg(y1, ξ)−Dξg(y2, ξ)| ≤
crα

0

λ
|y1 − y2|α (log(e + |ξ|)); (I3)

ν̃
|ζ|2

1 + |λξ|
≤
〈
Dξξg(y, ξ)ζ, ζ

〉
(I4)

where the constant c depends on M in all statements.

Proof: (I2), (I3) and (I4) can be proven as in [12] (Lemma 2.9) using the
growth conditions of f . The lower bound in (I1) is a consequence of the
representation

g(y, ξ) =

∫ 1

0

∫ t

0

Dξξf(x0 + r0y, A + sλξ)(ξ, ξ) ds dt

since we have by (F4)

Dξξf(x0 + r0y, A + sλξ)(ξ, ξ) ≥ µ
|ξ|2

1 + |A + sλξ|

≥ ν̃
|ζ|2

1 + |λξ|
.

The upper bound is an immediate consequence of (F5). �

Now let us recall that the singular set Σ of a local minimizer u of the func-
tional F is included in the set of non-Lebesgue points of Du. Therefore the
estimate for the Hausdorff dimension of Σ is an immediate corollary of the
regularity Theorem 1.1 through the application of the following proposition
that can be found, for example, in [23] (see also Section 4 in [26] for a simple
proof).
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Lemma 2.16 Let v ∈ W θ,p(Ω, RN) where θ ∈ (0, 1), p > 1 and set

A :=

{
x ∈ Ω : lim sup

ρ→0+

−
∫

B(x,ρ)

|v(y)− (v)x,ρ|p dy > 0

}
,

B :=

{
x ∈ Ω : lim sup

ρ→0+

|(v)x,ρ| = +∞

}
.

Then

dimH(A) ≤ n− θp and dimH(B) ≤ n− θp.

3 Higher integrability

This section is devoted to the proof of the higher integrability result stated
in Theorem 1.1.

Proof of Theorem 1.1:
Let u ∈ W 1,A

loc (Ω, RN) be a local minimizer of the functional F , with an
integrand function f satisfying (F1) – (F4). Then u satysfies the Euler system
related to the functional F :∫

Ω

Dξf(x, Du)Dϕ dx = 0 (3.1)

for every ϕ ∈ W 1,A
0 (Ω) with compact support. Fix a ball B2R b Ω and let

η be a cut-off function in C1
0(B3R/2) with 0 ≤ η ≤ 1, η ≡ 1 on BR and

|Dη| < c/R. Let us consider the function ϕ = τs,−h(η
2(x)τs,hu) with s fixed

in {1, . . . , n} (which from now on we shall omit for the sake of simplicity)
and |h| < R/10. Substituting in (3.1) the function ϕ and using (d2) of
Proposition 2.5 we get∫

B2R

τh(Dξf(x, Du)) D(η2τhu) dx = 0.

This equality can be written as

I =

∫
B2R

η2 [Dξf(x + hes, Du(x + hes))−Dξf(x + hes, Du(x))] τhDu dx

=−
∫

B2R

η2[Dξf(x + hes, Du(x))−Dξf(x, Du(x))] τhDu dx

13



− 2

∫
B2R

η [Dξf(x + hes, Du(x + hes))−Dξf(x, Du)]Dη ⊗ τhu dx

=− II − III (3.2)

where we used (d1) of Proposition 2.5. Assumption (F4) yields that

ν

∫
B2R

η2 (1 + |Du(x + hes)|+ |Du(x)|)−1 |τhDu|2 dx ≤ I. (3.3)

Using assumption (F3) we obtain:

|II| ≤ c|h|α
∫

B3R/2

log(1 + |Du|)|τhDu| dx

and hence, by Young’s Inequality for Young functions and properties of η, it
follows that

|II| ≤c|h|α
(∫

B3R/2

|Du| log(1 + |Du|) dx +

∫
B3R/2

|τhDu| log(1 + |τhDu|) dx

)
≤c|h|α

∫
B2R

|Du| log(1 + |Du|) dx. (3.4)

To estimate III we use assumption (F2) and Young’s Inequality as follows

|III| ≤c|h|
∫

B2R

η|Dη|(1 + log(1 + |Du(x + hes)|))|∆hu| dx

+ c|h|
∫

B2R

η|Dη|(1 + log(1 + |Du(x)|))|∆hu| dx

≤c|h|
∫

B3R/2

log(1 + |Du(x + hes)|)|Du(x + hes)| dx

+ c|h|
∫

B3R/2

log(1 + |∆hu|)|∆hu| dx + c|h|
∫

B2R

log(1 + |Du|)|Du| dx

+ c|h|
∫

B2R

(1 + |Du|) dx

≤c|h|α
∫

B2R

log(1 + |Du|)|Du| dx + c|h|α
∫

B2R

(1 + |Du|) dx. (3.5)

In order to estimate the ∆hu integral in the last step, we used the following
inequality which is valid for each convex function ϕ according to Jensen’s
Inequality:∫

B3R/2

ϕ(|∆hu|) dx =

∫
B3R/2

ϕ

(∣∣∣∣∫ 1

0

du

ds
(x + thes) dt

∣∣∣∣) dx

14



≤
∫

B3R/2

∫ 1

0

ϕ

(∣∣∣∣du

ds
(x + thes)

∣∣∣∣) dt dx

≤
∫

2R

ϕ (|Du|) dx. (3.6)

Inserting estimates (3.3), (3.4) and (3.5) into (3.2) we get

ν

∫
B2R

η2 (1 + |Du(x + hes)|+ |Du(x)|)−1 |τhDu|2 dx

≤ c|h|α
∫

B2R

log(1 + |Du|)|Du| dx + c|h|α
∫

B2R

(1 + |Du|) dx. (3.7)

The left hand side of (3.7) can be controlled from below as follows

ν

∫
B2R

η2 |τhDu|2

1 + |Du(x + hes)|+ |Du(x)|
dx ≥ c

∫
B2R

η2 |τhDu|2

(1 + |Du(x + hes)|2 + |Du(x)|2) 1
2

dx

= c

∫
B2R

η2

(
|Du(x + hes)−Du(x)|

(1 + |Du(x + hes)|2 + |Du(x)|2)
1
4

)2

dx.

Lemma 2.6 applied for γ = −1
4

implies that

|Du(x + hes)−Du(x)|
(1 + |Du(x + hes)|2 + |Du(x)|2) 1

4

≥ c|(1 + |Du(x + hes)|2)−
1
4 Du(x + hes)− (1 + |Du(x)|2)−

1
4 Du(x)|

= c|τs,hV1(Du(x))|.

Hence

ν

∫
B2R

η2 |τhDu|2

1 + |Du(x + hes)|+ |Du(x)|
dx ≥ c

∫
B2R

η2|τs,h(V1(Du))|2 dx.

Plugging this estimate in (3.7) we get∫
B2R

η2|τs,h(V1(Du))|2 dx ≤ c|h|α
∫

B2R

(1 + |Du| log(1 + |Du|)) dx. (3.8)

Lemma 2.8 implies that

V1(Du) ∈ W b,2 ∩ L
2n

n−2b ∀ b ∈
(
0,

α

2

)
,

and

||V1(Du)||
L

2n
n−2b (Bρ)

≤ c

(∫
B2R

(1 + |Du| log(1 + |Du|)) dx

) 1
2

+c

(∫
B2R

|V1(Du)|2 dx

) 1
2

,
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for every ρ < 2R. Hence we get the claim and the final estimate:

|| (V1(Du))2 ||
L

n
n−2b (Bρ)

≤ c

∫
B2R

(1+|Du| log(1+|Du|)) dx+c

∫
B2R

|V1(Du)|2 dx,

for every ρ < 2R. �

The proof of Corollary 1.3 can be immediately obtained by applying Young’s
inequality with exponents 2/p and 2/(2 − p) to the right hand side of the
following equality∫

Ω

ηp|τh,sDu|p dx

=

∫
Ω

[h−χηp(1 + |Du(x + hes)|+ |Du(x)|)−
p
2 |τh,sDu|p

· hχ(1 + |Du(x + hes)|+ |Du(x)|)
p
2 ] dx,

where η is a suitable cut-off function and

χ =

(
2

2− p
+

2

p

)−1

α =
p(2− p)

4
α.

It follows∫
Ω

ηp|τh,sDu|p dx

= |h|−χ 2
p

∫
Ω

η2(1 + |Du(x + hes)|+ |Du(x)|)−1|τh,sDu|2 dx

+ |h|χ
2

2−p

∫
Ω

η
p

2−p (1 + |Du(x + hes)|+ |Du(x)|)
p

2−p dx

≤ c|h|α−χ 2
p + c|h|χ

2
2−p = c|h|p

α
2 ,

by (3.8), the choice of χ and Theorem 1.1 provided p
2−p

< n
n−α

which is
equivalent to p < n

n−α
2
. Hence we obtain the claim by Lemma 2.9.

4 Decay estimate

Define the excess function in accordance to [17] as

E(x, r) =

∫
Br(x)

|Vp(Du)− Vp((Du)r)|2 + rβ (4.1)
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with β < α and p < n
n−α

. We remark that the higher integrability stated
in Theorem 1.1 together with Lemma 2.13 allows us to give sense to E(x, r)
when p < n

n−α
and therefore we may use a blow-up technique similar to the

one used for functionals with p-growth, when p < 2.
The blow-up argument needed to prove Theorem 1.3 is contained in the
following

Proposition 4.1 Fix M > 0. There exists a constant C(M) > 0 such that,
for every 0 < τ < 1

4
, there exists ε = ε(τ,M) such that, if

|(Du)x0,r| ≤ M and E(x0, r) ≤ ε,

then
E(x0, τr) ≤ C(M) τβ E(x0, r),

where β is the exponent appearing in (4.1).

Proof:

Step 1. Blow up

Fix M > 0. Assume by contradiction that there exists a sequence of balls
Brj

(xj) b Ω such that

|(Du)xj ,rj
| ≤ M and λ2

j = E(xj, rj) → 0 (4.2)

but
E(xj, τrj)

λ2
j

> C̃(M)τβ (4.3)

where C̃(M) will be determined later. Setting Aj = (Du)xj ,rj
, aj = (u)xj ,rj

and

vj(y) =
u(xj + rjy)− aj − rjAjy

λjrj

(4.4)

for all y ∈ B1(0), one can easily check that (Dvj)0,1 = 0 and (vj)0,1 = 0. By
the definition of λj it follows that∫

B1(0)

|Vp(λjDuj)|2

λ2
j

dy +
rβ
j

λ2
j

= 1. (4.5)

Therefore passing possibly to not relabeled sequences (note that we obtain
by (4.5) uniform Lp-bounds on Duj)

vj ⇀ v weakly in W 1,p(B1(0); RN)
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λjvj → 0 strongly in W 1,p(B1(0); RN)

vj → v strongly in Lp(B1(0); RN)

Aj → A

rj → 0
rϑ
j

λ2
j

→ 0, ϑ > β. (4.6)

Step 2. Minimality of vj

We normalize f around Aj as follows

fj(y, ξ) =
f(xj + rjy, Aj + λjξ)− f(xj + rjy, Aj)−Dξf(xj + rjy, Aj)λjξ

λ2
j

(4.7)
and we consider the corresponding rescaled functionals

Ij(w) =

∫
B1(0)

[fj(y, Dw)]dy. (4.8)

The minimality of u and a simple change of variable yield that∫
B1(0)

f(xj+rjy, Du(xj+rjy)) dy ≤
∫

B1(0)

f(xj+rjy, Du(xj+rjy)+Dϕ(y)) dy

for every ϕ ∈ W 1,h
0 (B1(0); RN), that is∫

B1(0)

f(xj+rjy, Aj+λjDvj(y)) dy ≤
∫

B1(0)

f(xj+rjy, Aj+λjDvj(y)+Dϕ(xj+rjy)) dy,

for every ϕ ∈ W 1,h
0 (Brj

(xj); RN). Thus, by the definition of the rescaled
functionals, we have

Ij(vj) ≤ Ij(vj + ϕ) +

∫
B1(0)

Dξf(xj + rjy, Aj)Dϕ

λj

dy. (4.9)

Using (F3) we conclude that

Ij(vj) ≤ Ij(vj + ϕ) +

∫
B1(0)

[Dξf(xj + rjy, Aj)−Dξf(xj, Aj)]Dϕ

λj

dy

≤ Ij(vj + ϕ) + c(M)
rα
j

λj

∫
B1(0)

|Dϕ| dy. (4.10)
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Step 3. v solves a linear system

Using that vj satisfies inequality (4.10), we have that

0 ≤ Ij(vj + sϕ)− Ij(vj) + c(M)
rα
j

λj

∫
B1(0)

|sDϕ| dy, (4.11)

for every ϕ ∈ C1
0(B) and for every s ∈ (0, 1). Now, using again the definition

of the rescaled functionals, we observe that

Ij(vj + sϕ)− Ij(vj) =

∫
B1(0)

∫ 1

0

[Dξfj(xj + rjy, Aj + λj(Dvj + tsDϕ))]sDϕ dt dy

=
1

λj

∫
B1(0)

∫ 1

0

[Dξf(xj + rjy, Aj + λj(Dvj + tsDϕ))−Dξf(xj + rjy, Aj)]sDϕ dt dy.

(4.12)

Inserting (4.12) in (4.11), dividing by s and taking the limit as s → 0, we
conclude that

0 ≤ 1

λj

∫
B1(0)

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy, Aj)]Dϕ dy

+
c(M)rα

j

λj

∫
B1(0)

|Dϕ| dy. (4.13)

Let us split

B1(0) = E+
j ∪ E−

j = {y ∈ B1 : λj|Dvj| > 1} ∪ {y ∈ B1 : λj|Dvj| ≤ 1}.

Using (4.5) we get

|E+
j | ≤

∫
E+

j

λp
j |Dvj|p dy ≤ λp

j

∫
E+

j

|Dvj|p dy ≤ cλp
j . (4.14)

Using (F2), the elementary inequality log(1 + t) ≤ ctp and (4.5), we obtain

1

λj

∣∣∣∣∣
∫

E+
j

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy, Aj)]Dϕ dy

∣∣∣∣∣ (4.15)

≤ 1

λj

∫
E+

j

(1 + log(1 + |Aj + λjDvj|) + log(1 + |Aj|)) dy (4.16)

≤ c(M)
|E+

j |
λj

+
1

λj

∫
E+

j

|λjDvj|p dy (4.17)
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≤ c(M)λp−1
j . (4.18)

Hence, we infer that

lim
j→∞

c

λj

∣∣∣∣∣
∫

E+
j

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy, Aj)]Dϕ dy

∣∣∣∣∣ = 0.

(4.19)
On E−

j we have

1

λj

∫
E−

j

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy, Aj)]Dϕ dy

=

∫
E−

j

∫ 1

0

Dξξf(xj + rjy, Aj + tλjDvj) dtDvjDϕ dy. (4.20)

Note that (4.14) yields that χ
E−

j

→ χ
B1

in Lr, for every r < ∞. Moreover

by (4.6) we have, at least for subsequences, that

λjDvj → 0 a.e. in B1

rj → 0

and
xj → x0.

Hence the uniform continuity of Dξξf on bounded sets implies

lim
j

1

λj

∫
E−

j

[Dξf(xj + rjy, Aj + λjDvj)−Dξf(xj + rjy, Aj)]Dϕ dy

=

∫
B1

Dξξf(x0, A)DvDϕ dy. (4.21)

Since β < α, by (4.6) we deduce that

lim
j

rα
j

λ2
j

= 0. (4.22)

By estimates (4.19), (4.21) and (4.22), passing to the limit as j → ∞ in
(4.13) yields

0 ≤
∫

B1

Dξξf(x0, A)DvDϕ dy

Changing ϕ in −ϕ we finally get∫
B1

Dξξf(x0, A)DvDϕ dy = 0
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that is v solves a linear system which is uniformly elliptic thanks to the
uniform convexity of f . The regularity result stated in Proposition 2.12
implies that v ∈ C∞(B1) and for any 0 < τ < 1∫

Bτ

|Dv − (Dv)τ |2 dy ≤ cτ 2

∫
B1

|Dv − (Dv)1|2 dy ≤ cτ 2, (4.23)

for a constant c depending on M .

Step 4. Higher integrability of vj

In this step we will prove a higher integrability result for Dvj which is uni-
form with respect to the rescaling procedure. We will drop the index j for
simplicity.

Lemma 4.2 Let g be a function satisfying (I1)-(I4) and v ∈ W 1,A(B; RN)
a solution of

I(v) ≤ I(v + ϕ) + c(M)
rα
0

λ

∫
B1(0)

Dξf(x0 + r0y, A)Dϕ dy

for every ϕ ∈ W 1,A
0 (B1(0); RN). Then we have(∫

B ρ
2

∣∣λ−1V1(λDv)
∣∣ 2n

n−2k dy

)n−2k
2n

≤ c

λ

(∫
Bρ

|Vp(λDv)|2 dy

) 1
2

+ c
r

α
2
0

λ

(∫
Bρ

{1 + |λDv|+ log(1 + |λDv|)|λDv|} dy

) 1
2

+

(∫
Bρ

∣∣λ−1V1(λDv)
∣∣2 dy

) 1
2

for every k < α
2

and for every ball Bρ b B1. Here c does not depend on r0, λ
and v.

Proof: Let us fix two radii ρ
2

< r < s < ρ and a cut-off function η ∈ C∞
0 (Bs)

such that 0 ≤ η ≤ 1, η ≡ 1 on Br and |∇η| ≤ c
s−r

. As in [12], using
ϕ = τs,−h(η

2τs,hv), we obtain∫
Bρ

∫ 1

0

η2Dξξg(y, Dv + tτhDv)(τhDv, τhDv) dt dy

≤ −
∫

Bρ

η2[Dξg(y + hes, Dv(y + hes))−Dξg(y, Dv(y + hes))]τhDv dy

− 2

∫
Bρ

ητh {Dξg(y, Dv)}Dη ⊗ τhv dy + c
rα
0

λ
|h|α

∫
B

|D(η2τhv)| dy. (4.24)
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By the definition of g, we can write the second integral in previous inequality
as follows

−2

∫
Bρ

ητh {Dξg(y, Dv)}Dη ⊗ τhv dy =

= −2

λ

∫
Bρ

ητh {Dξf(x0 + r0y, A + λDv(y))−Dξf(x0 + r0y, A)}Dη ⊗ τhv dy

= −2

λ

∫
Bρ

η{Dξf(x0 + r0(y + hes), A + λDv(y + hes))−Dξf(x0 + r0(y + hes), A)

−Dξf(x0 + r0y, A + λDv(y)) + Dξf(x0 + r0y, A)}Dη ⊗ τhv dy

= −2

λ

∫
Bρ

η
{

Dξf(x0 + r0(y + hes), A + λDv(y + hes))−

−Dξf(x0 + r0y, A + λDv(y + hes))

+Dξf(x0 + r0y, A + λDv(y + hes))−Dξf(x0 + r0y, A + λDv(y))

−Dξf(x0 + r0(y + hes), A) + Dξf(x0 + r0y, A)
}

Dη ⊗ τhv dy. (4.25)

By (I4) and the argumentation at the end of the previous section the l.h.s.
in (4.24) is bounded from below by

c

∫
Bρ

η2(1 + |λDv|+ |λDv(y + hes)|)−1|τhDv|2 dy ≥ c

∫
Bρ

η2
∣∣τh

{
λ−1V1(λDv)

}∣∣2 dy.

(4.26)

Whereas on the r.h.s. of (4.24), taking into account (4.25), using (I3) and
(F3) we are led to

T1 = c
rα
0

λ
|h|α

∫
Bρ

η2(1 + log(1 + |λDv(y + hes)|))|τhDv| dy;

T2 = c
rα
0

λ
|h|α

∫
Bρ

η|Dη| log(1 + |A|+ |λDv(y + hes)|)|τhv| dy

+
c

λ

∫
Bρ

η|Dη|
∣∣∣∣∫ 1

0

Dξξf(x0 + r0y, A + sλτh(Dv)))ds

∣∣∣∣ |λτh(Dv)||τhv| dy;

= T2,1 + T2,2

T3 = c
rα
0

λ
|h|α

∫
Bρ

|D(η2τhv)| dy.

Using Young’s inequality for A(t) = t log(1 + t) and choosing h � 1 we get

T1 ≤ c
rα
0

λ2
|h|α

∫
Bρ

{1 + |λDv|+ log(1 + |λDv|)|λDv|} dy;
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T2,1 ≤ c
rα
0

λ2
|h|α

∫
Bρ

{1 + |λDv|+ log(1 + |λDv|)|λDv|} dy;

T3 ≤ c
rα
0

λ2
|h|α

∫
Bρ

|λDv| dy,

In order to estimate the integral T2,2 we use (F5) and Young’s Inequality as
follows∣∣∣∣∫ 1

0

Dξξf(x0 + r0y, A + sλτh(Dv)))ds

∣∣∣∣ ≤ c

∫ 1

0

log(1 + |A + sλτh(Dv)|)
|A + sλτh(Dv)|

ds

≤ c

∫ 1

0

(1 + |A + sλτh(Dv)|2)
p−2
2 ds

≤ c(1 + |λτh(Dv)|2)
p−2
2 ,

where we used Lemma 2.14 and Lemma 2.1 of [1]. Hence

T2,2 ≤
c

λ

∫
Bs

(1 + |λτh(Dv)|2)
p−2
2 |λτh(Dv)||τhv|

=
c|h|
λ2

∫
Bs

(1 + |λτh(Dv)|2)
p−2
2 |λτh(Dv)||λ∆hv|.

We observe that for the Young function ϕ(t) := (1 + t2)
p−2
2 t2 we have

ϕ′(t) ≈ (1 + t2)
p−2
2 t; ϕ∗(ϕ′(t)) ≈ ϕ(t). (4.27)

Here ϕ∗ denotes the conjugate Young function. The second statement in
(4.27) is a consequence of

ϕ∗(ϕ′(t)) =

∫ ϕ′(t)

0

(ϕ′)−1(s) ds =

∫ t

0

sϕ′′(s) ds ≈
∫ t

0

ϕ′(s) ds = ϕ(t).

Hence we obtain with the help of Young’s Inequality for Young functions,
(3.6) and Lemma 2.14

T2,2 ≤
c|h|
λ2

{∫
Bs

ϕ∗
(
(1 + |λτh(Dv)|2)

p−2
2 |λτh(Dv)|

)
dy +

∫
Bs

ϕ(|λ∆hv|) dy

}
≤ c|h|

λ2

{∫
Bs

ϕ (|λτh(Dv)|)) dy +

∫
Bs

ϕ(|λ∆hv|) dy

}
≤ c

c|h|
λ2

∫
Bρ

|Vp(λDv)|2 dy.
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Inserting the estimates for Ti in (4.24) and using (4.26), we finally get∫
Bρ

η2
∣∣τh

{
λ−1V1(λDv)

}∣∣2 dy

≤ c
rα
0

λ2
|h|α

∫
Bρ

{1 + |λDv|+ log(1 + |λDv|)|λDv|} dy

+
c|h|
λ2

∫
Bρ

|Vp(λDv)|2 dy (4.28)

The conclusion follows applying Lemma 2.8. �

Step 5. A Caccioppoli type inequality

The higher integrability of the previous step allows us to prove a Caccioppoli
type inequality for minimizers of the rescaled functional, which is contained
in the following

Proposition 4.3 Let g be a function satisfying (I1)-(I4) and v ∈ W 1,h(B; RN)
a solution of

I(v) ≤ I(v + ϕ) + c(M)
rα
0

λ

∫
B1(0)

|Dϕ| dy (4.29)

for every ϕ ∈ W 1,h
0 (B1(0); RN). Then we have∫

B τ
2

∣∣∣∣V1(λDv)

λ

∣∣∣∣2 ≤ c

λ2

∫
Bτ

∣∣∣∣Vp

(
λ
|v − vτ |

τ

)∣∣∣∣2 dy

+cλ2p−2

(∫
B2τ

|Vp(λDv)|2

λ2
dy

)p

+ cλ2p−2

(∫
B2τ

|V1(λDv)|2

λ2
dy

)p

+c
rαp
0

λ2

(∫
B2τ

1 + |λDv| dy

)p

+c
rα
0

λ2

∫
Bτ

λ|Dv| dy. (4.30)

Proof: Let us fix two radii τ
2

< r < s < τ and a cut-off function η ∈ C∞
0 (Bs)

such that 0 ≤ η ≤ 1, η ≡ 1 on Br and |∇η| ≤ c
s−r

. Using ϕ = η(vτ − v) as a
test function in (4.29), by virtue of the left inequality at (I1), we get∫

Br

∣∣∣∣V1(λDv)

λ

∣∣∣∣2 ≤
∫

B1

g(y, Dv) dy
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≤
∫

B1

g(y, Dv + Dϕ) + c(M)
rα
0

λ

∫
B1(0)

|Dϕ|

=

∫
Bs\Br

g(y, Dv + D(η(vτ − v))) + c(M)
rα
0

λ

∫
Bs

|D(η(vτ − v))|

=

∫
Bs\Br

g(y, (1− η)Dv + Dη(vτ − v)) + c(M)
rα
0

λ

∫
Bs

|Dv|

+ c(M)
rα
0

λ(s− r)

∫
Bs

|v − vτ |. (4.31)

The first integral in the right hand side of (4.31) can be estimated by the
right inequality at (I1) and the properties of η as follows∫

Bs\Br

g(y, (1− η)Dv + Dη(vτ − v))

≤ c

λ

∫
Bs\Br

log(1 + λ|Dv|+ λ|Dη||v − vτ |)(|Dv|+ |Dη||v − vτ |)

≤ c

λ

∫
Bs\Br

log

(
1 + λ|Dv|+ λ

|v − vτ |
s− r

)(
|Dv|+ |v − vτ |

s− r

)
. (4.32)

By (I1), Lemma 2.14 and Lemma 2.13 we obtain∫
Bs\Br

g(y, (1− η)Dv + Dη(vτ − v))

≤ c

λ2

∫
Bs\Br

∣∣∣∣Vp

(
λ|Dv|+ λ

|v − vτ |
s− r

)∣∣∣∣2 dy

≤ c

λ2

∫
Bs\Br

|Vp (λ|Dv|) |2 dy +
c

λ2

∫
Bs\Br

∣∣∣∣Vp

(
λ
|v − vτ |
s− r

)∣∣∣∣2 dy

≤ c

λ2

∫
Bs\Br

|V1 (λ|Dv|) |2 dy +
c

λ2

∫
Bs\Br

|V1 (λ|Dv|) |2p dy

+
c

λ2

∫
Bs\Br

∣∣∣∣Vp

(
λ
|v − vτ |
s− r

)∣∣∣∣2 dy. (4.33)

Inserting (4.33) in (4.31), we get

c

∫
Br

∣∣∣∣V1(λDv)

λ

∣∣∣∣2 ≤ c

λ2

∫
Bs\Br

|V1 (λ|Dv|) |2 dy

+
c

λ2

∫
Bs\Br

|V1 (λ|Dv|) |2p dy

+
c

λ2

∫
Bs\Br

∣∣∣∣Vp

(
λ
|v − vτ |
s− r

)∣∣∣∣2 dy
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+ c
rα
0

λ

∫
Bs

|Dv|

+ c
rα
0 τ

λ(s− r)

∫
Bτ

|Dv|, (4.34)

where we also used Poincaré’s Inequality. Now we fill the hole by adding to
both sides of (4.34) the quantity∫

Br

∣∣∣∣V1(λDv)

λ

∣∣∣∣2
and use the iteration Lemma 2.10 to obtain∫

B τ
2

∣∣∣∣V1(λDv)

λ

∣∣∣∣2 ≤ c

λ2

∫
Bτ

|V1 (λ|Dv|) |2p dy

+
c

λ2

∫
Bτ

∣∣∣∣Vp

(
λ
|v − vτ |

τ

)∣∣∣∣2 dy + c
rα
0

λ

∫
Bτ

|Dv|. (4.35)

Now we apply to the first integral in the right hand side of (4.35) the estimate
of Lemma 4.2 with p = n

n−2k
, thus having∫

Bτ

|V1(λDv)|2p dy ≤ c

(∫
B2τ

|Vp(λDv)|2 dy

)p

+ crαp
0

(∫
B2τ

{1 + |λDv|+ log(1 + |λDv|)|λDv|} dy

)p

+

(∫
B2τ

|V1(λDv)|2 dy

)p

.

(4.36)

Inserting (4.36) in (4.35) and using again Lemma 2.14, we have∫
B τ

2

∣∣∣∣V1(λDv)

λ

∣∣∣∣2 ≤ c

λ2

∫
Bτ

∣∣∣∣Vp

(
λ
|v − vτ |

τ

)∣∣∣∣2 dy

+
c

λ2

(∫
B2τ

|Vp(λDv)|2 dy

)p

+ c
rαp
0

λ2

(∫
B2τ

{1 + |λDv|+ log(1 + |λDv|)|λDv|} dy

)p

+
c

λ2

(∫
B2τ

|V1(λDv)|2 dy

)p

+ c
rα
0

λ2

∫
Bτ

λ|Dv|

≤ c

λ2

∫
Bτ

∣∣∣∣Vp

(
λ
|v − vτ |

τ

)∣∣∣∣2 dy + cλ2p−2

(∫
B2τ

|Vp(λDv)|2

λ2
dy

)p

+ cλ2p−2

(∫
B2τ

|V1(λDv)|2

λ2
dy

)p

+ c
rαp
0

λ2

(∫
B2τ

(1 + |λDv|) dy

)p
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+ c
rα
0

λ2

∫
Bτ

λ|Dv| dy (4.37)

which is the conclusion. �

Step 6. Conclusion

Fix τ ∈ (0, 1
4
), set bj = (vj)B2τ , Bj = (Dvj)Bτ and define

wj(y) = vj(y)− bj −Bjy.

After rescaling, we note that λjwj satisfies the following integral inequality∫
B1(0)

gj(y, λjDwj) dy ≤
∫

B1(0)

gj(y, λjDwj + Dϕ) dy + c
rα
j

λj

∫
B1(0)

|Dϕ| dy,

for every ϕ ∈ W 1,h
0 (B1(0)) where (zj := xj + rjy)

gj(y, ξ)=
f(zj, Aj + λjBj + ξ)− f(zj, Aj + λjBj)−Dξf(zj, Aj + λjBj)ξ

λ2
j

.

It is easy to check that Lemma 2.15 applies to each gj, for some constants
that could depend on τ through |λjBj|. But, given τ , we may always choose

j large enough to have |λjBj| ≤ c
λj

τ
n
p

< 1 (remember (4.6)). Hence we can

apply Proposition 4.3 to each λjwj obtaining for (compare Lemma 2.13 and
(2.4))

lim
j

E(xj, τrj)

λ2
j

≤ lim
j

c

λ2
j

∫
Bτrj (x)

|Vp(Du− (Du)τrj
)|2 dy + lim

j

τβrβ
j

λ2
j

≤ lim
j

c

λ2
j

∫
Bτ

|Vp(λjDwj)|2 dy + τβ

≤ lim
j

c

λ2
j

∫
Bτ

|Vp(λjDwj)|2 dy + τβ

≤ lim
j

c

λ2
j

∫
Bτ

|V1(λjDwj)|2 dy + lim
j

c

λ2
j

∫
Bτ

|V1(λjDwj)|2p dy + τβ

the estimation (note that the second term on the r.h.s. can also be estimated
by the r.h.s. of Proposition 4.3, see the calculations after (4.36))

lim
j

E(xj, τrj)

λ2
j

≤ c lim
j

∫
B2τ

1

λ2
j

∣∣∣∣Vp

(
λj(wj − (wj)2τ )

τ

)∣∣∣∣2 dy
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+ c lim
j

λ2p−2
j

(∫
B2τ

|Vp(λjDwj)|2

λ2
j

dy

)p

+ c lim
j

λ2p−2
j

(∫
B2τ

|V1(λjDwj)|2

λ2
j

dy

)p

+ c lim
j

rαp
j

λ2
j

(∫
Bτ

λj|Dwj| dy

)p

+ c lim
j

rα
j

λ2
j

(∫
Bτ

(1 + λj|Dwj|) dy

)
+ τβ

≤ c lim
j

∫
B2τ

1

λ2
j

∣∣∣∣Vp

(
λj(wj − (wj)2τ )

τ

)∣∣∣∣2 dy + τβ,

since limj λ2p−2
j = 0, limj

rα
j

λ2
j

= 0, limj
rαp
j

λ2
j

= 0 and the integrals appearing

as their factors are bounded as j → ∞. Now, since vj → v strongly in
Lp(B1(0)), using the Sobolev-Poincaré inequality stated in Lemma 2.11, one
can easily check that

lim
j→+∞

∫
B 1

2

|Vp(λj(vj − v))|2

λ2
j

dy = 0. (4.38)

In fact, for every ϑ ∈ (0, p
2
) we can use Hölder’s inequality of exponents p

2ϑ

and p
p−2ϑ

as follows∫
B 1

2

|Vp(λj(vj − v))|2

λ2
j

dy =

∫
B 1

2

|vj − v|2(1 + λ2
j |vj − v|2)

p−2
2 dy

≤

∫
B 1

2

|vj − v|p(1 + λ2
j |vj − v|2)

p(p−2)
4 dy

 2ϑ
p

×

∫
B 1

2

|vj − v|
2p(1−ϑ)

p−2ϑ (1 + λ2
j |vj − v|2)

p(p−2)(1−ϑ)
2(p−2ϑ) dy


p−2ϑ

p

≤

∫
B 1

2

|vj − v|p dy

 2ϑ
p
∫

B 1
2

(
|Vp(λj(vj − v))|2

λ2
j

) p(1−ϑ)
p−2ϑ

dy


p−2ϑ

p

≤

∫
B 1

2

|vj − v|p dy

 2ϑ
p
∫

B 1
2

|Vp(λj(Dvj −Dv))|2

λ2
j

dy

1−ϑ

.

Last inequality is obtained applying Lemma 2.11 to the second integral,
choosing ϑ ∈ (0, p

2
) such that p(1−ϑ)

p−2ϑ
= n

n−p
. Hence (4.38) follows noticing
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that the first integral vanishes as j goes to infinity and second one stays
bounded thanks to (4.5), since v ∈ C∞(B1(0)).
Since bj → (v)2τ and Bj → (Dv)τ , using (4.38) and the definition of wj we
get

lim
j

E(xj, τrj)

λ2
j

≤ c lim
j

∫
B2τ

1

λ2
j

∣∣∣∣Vp

(
λj(wj − v + v)

τ

)∣∣∣∣2 dy + τβ

= c lim
j

∫
B2τ

1

λ2
j

∣∣∣∣Vp

(
λj(vj − v + v − bj −Bjy)

τ

)∣∣∣∣2 dy + τβ

≤ c

∫
B2τ

|v − (v)2τ − (Dv)τy|2

τ 2
dy + τβ

≤ c

∫
B2τ

|v − (v)2τ − (Dv)2τy|2

τ 2
dy + c

∫
B2τ

|(Dv)τy − (Dv)2τy|2

τ 2
dy + τβ

≤ c

∫
B2τ

|Dv − (Dv)2τ |2 dy + c|(Dv)τ − (Dv)2τ |2 + τβ

≤ cτ 2 + cτβ ≤ c?
Mτβ.

The contradiction follows by choosing c?
M > C̃(M). �

5 Full regularity

In this section we will prove that the minimizer u belongs to the space
C1,γ(Ω, RN) for every γ < 1 if we assume (F1) and (F3)-(F8). We follow
the lines of [7] (section 4) and use the fact that the range of anisotropy in
the almost linear growth situation is arbitrary small. Note that in [7] Breit
studies (p,q)-elliptic integrands. We just clarify the main differences. The
first step is to regularize the problem. Here we consider the standard regular-
ization (compare, for example, [5] and the references therein): uδ is defined
as the unique minimizer of

Fδ(u, B) :=

∫
B

{
f(x, Du) + δ(1 + |Du|2)

q
2

}
dx

in (u)ε + W 1,q
0 (B) for B b Ω and 1 < p < q <

n−α
2

n−α
(p is defined in (F7)).

Thereby (u)ε is the mollification of u with parameter ε and

δ = δ(ε) :=
1

1 + ε−1 + ‖D(u)ε‖2q
Lq(B)

.

For uδ we obtain:
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Lemma 5.1 • As ε → 0 we have: uδ ⇁ u in W 1,1(B, RN),

δ

∫
B

(
1 + |Duδ|2

) q
2 dx → 0;

∫
B

F (Duδ)dx →
∫

B

F (∇u)dx;

• Duδ ∈ W 1,2
loc ∩ L∞loc(Ω, RnN).

For the last statement we can refer to [6] (Lemma 2.7), since uδ is the
minimizer of a isotropic problem and the second derivatives Dξξfδ fulfills
a Hölder-condition by (F8) (fδ(x, ξ) := f(x, ξ) + δ(1 + |ξ|2) q

2 ). The rest
can be quoted from [6], Lemma 2.1. Only the week convergence needs a
comment: Following the ideas of [6] one easily sees that Duδ in bounded
in Lh(B). According to the Poincaré-inequality in Orlicz spaces (see [19])
and the uniform boundedness of uε in W 1,h

loc (Ω) (remember u ∈ W 1,h(Ω)) we
obtain supδ ‖uδ‖W 1,h(B) < ∞. By the De La Valée Poussin Lemma we can
select a subsequence such that

uδ ⇁: v ∈ W 1,1(B), v = u on ∂B

and v minimizes F(·, B) with respect to boundary data u which means v = u.

Next we prove higher integrability with respect to the parameter δ, i.e.,

Duδ ∈ Lt
loc(B) uniformly in δ for all t <

n

n− α
. (5.1)

Here we proceed exactly as in section 3, observing that our bounds are now
independent of δ. We only have to calculate the additional integral (F(Z) :=

(1 + |Z|2) q
2 )

δ

∫
B

DξF0(Duδ)Dτ−h(η
2τhuδ) dx = −δ

∫
B

τhDξF0(Duδ)D(η2τhuδ) dx

= −δ

∫
B

η2

∫ 1

0

DξξF0(Duδ + tτhDuδ)(τhDuδ, τhDuδ) dx

− 2δ

∫
B

ητhDξF0(Duδ)Dη ⊗ τhuδ dx

on the r.h.s. Here the first integral on the last calculation is nonnegative, so
we can drop it. The last one can be estimated by (using Lemma 5.1)

c(η)h

∫
B

(
1 + |Duδ|2

) q
2 dx ≤ c(η)h.

Hence we obtain (5.1) if we apply the arguments of section 3 (remember the
uniform W 1,h(B)-bounds on uδ).
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In order to prove Lipschitz-regularity of the solution u we have to show a
growth condition for the function

τ(k, r) :=

∫
A(k,r)

Γ
q− 1

2
δ (ωδ − k)2 dx

where we abbreviated Γδ := 1 + |Duδ|2, ωδ := log Γδ and A(k, r) := Br ∩
[|Duδ| > k]. We want to show

τ(h, r) ≤ c

(r̂ − r)κ(h− k)Θ
τ(k, r̂)µ (5.2)

for 0 < h < k, 0 < r < r̂ < R0 with exponents κ, Θ > 0 and µ > 1. From
(5.2) we arrive at uniform L∞loc-bounds on Duδ using Stampacchia’s Lemma
([30], Lemma 5.1, p. 219), details are given in [4]. Note that uniform bounds
for τ (which are necessary) follows from (5.1) and

q <
n− α

2

n− α
.

Hence we have uδ ∈ W 1,∞
loc (B) uniformly in δ (remember Lemma 5.1). It

follows with the help of Arzela -Ascoli’s Theorem that u ∈ W 1,∞
loc (B) and

since B is arbitrary u ∈ W 1,∞
loc (Ω). This means that∫

f(x, Du) dx −→ min

is a problem with quadratic growth (at least locally, compare (F5)) and the
claim follows from [6], Lemma 2.7.
In order to prove (5.2) we have to notice that the integrand satisfies the
growth conditions

ν(1 + |ξ|2)−
1
2 |Z|2 ≤ D2

ξξf(x, ξ)(Z,Z) ≤Λ(1 + |ξ|2)
q−2
2 |Z|2,

|∂sDξf(x, ξ)| ≤Λ(1 + |ξ|2)
q−1
2 .

Since the exponent from above (p = 1) and below are close enough, we can
exactly argue as in [7] (section 4) and obtain (5.2). Note that in this part of
[7] the condition p > 1 is not used.
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