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Abstract

Many natural or texture images contain structures that appear sev-
eral times in the image. One of the denoising filters that successfully
take advantage of such repetitive regions is the nonlocal means filter.
It is simple and yields very good denoising results. Unfortunately, the
block matching within the standard nonlocal means filter is not able
to handle rotation or mirroring. Rotated or mirrored instances are
not detected as variations of the corresponding original structures.
In this paper, we analyse two natural approaches for a rotationally
invariant similarity measure that will be used as an alternative to, re-
spectively a modification of the well-known block matching algorithm
in nonlocal means denoising. The first approach is based on similarity
distances computed with the help of moment invariants whereas the
second one estimates the rotation angle, rotates the block via inter-
polation and then uses a standard block matching. In contrast to the
standard method, the presented algorithms can find similar regions or
patches in an image even if they appear in several rotated or mirrored
instances. With this modification, the nonlocal means filter is able to
find more suitable regions for its weighted average.

1 Introduction and Motivation

One of the most often applied ideas in correspondence problems such as
motion analysis [2, 4, 9] are block matching strategies. They are simple
and thus still play an important role in many algorithms, for instance in the
MPEG video compression standard. In addition to their application to image
sequences, they can also be used to detect repeating structures or regions
inside an image. Hence, the basic idea of block matching algorithms has also
been applied for image processing methods such as inpainting. Exemplar-
based algorithms, e.g. [13], fill in missing image data or remove certain
image objects by searching for similar regions or structures in the image and
completing the missing data or overwriting the data to be removed according
to the information found there. A very popular denoising approach that is
motivated by the inpainting method of Efros and Leung [15] is the so-called
nonlocal means (NL means) algorithm for image denoising that has been
proposed by Buades et al. [7, 8]. This denoising filter looks for similar
regions and uses them in a weighted average, where the weights depend on
the amount of similarity. It belongs to the class of adaptive averaging filters,
like the Yaroslavsky [41] or the bilateral filter [3, 35, 38]. In this context,
Mrázek et al. [32] and Pizarro et al. [33] have presented unified frameworks
that include many denoising methods like bilateral filtering or M-smoothers
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[10, 39] as special cases. The difference between NL means and previous
approaches is the way of calculating the weights for the averaging process
with the consideration of neighbourhood information. Although it is simple,
NL means is able to yield high-quality denoising results. Thus, there is an
extensive scientific activity in this field: For example, the methodology has
been formalised with the help of variational approaches by Kindermann et
al. [26] as well as Gilboa and Osher [19, 20, 21]. Tschumperlé and Brun [40]
have shown that the patch-based Tikhonov regularisation [37], where they
have used an energy formulation in the so-called patch space, is similar to
the NL means filter. An interpretation and analysis in the statistical context
has been given by Kervrann and Boulanger [25]. Katkovnik et al. [24] have
analysed the evolution of the nonparametric regression modelling from local
kernel estimate to non-local means and BM3D by Dabov et al. [14]. In
order to further improve the quality, Brox and Cremers have proposed an
iterative nonlocal means filter and they have suggested not to average over
all pixels but only over a certain number of best matches [5]. A similar
idea was used by, for example, both Mahmoudi et al. [31] and Coupé et
al. [11, 12]. They have proposed some simple and fast preselection criteria
in order to exclude pixels which are not necessary for the filtering process.
These methods can decrease the run time of the filtering process as well as
yield improvement of the denoising quality at the same time. In the context
of speed-up techniques, Brox et al. have presented a fast method that uses
cluster trees [6]. Another speed-up approach has been introduced by Liu et
al. [28]. They have presented a strategy that integrates both NL means and
the Laplacian pyramid, where they show that their method is about fifty
times faster than the classical NL means algorithm and can outperform it
with respect to numerical results.
However, all the mentioned models do not take into account the invariance
under rotations and mirroring. In the context of nonlocal means, it makes
sense also to involve pixels in the averaging process which belong to a neigh-
bourhood that differs from the reference patch only by rotation or mirroring.
Some models that consider invariances have been presented for example by
Alexander et al. [1], Kleinschmidt et al. [27] and Lou et al. [29]. Alexander
et al. have proposed a general model for the affine self-similarity of images,
whereas the classical NL means algorithm only considers self-similarity in
the translational sense. With the help of this general model one could incor-
porate invariance under affine greyscale transformations within the patch-
similarity measure. Kleinschmidt et al. have analysed different types of
invariances such as brightness, rotation and scale invariance. In order to in-
corporate rotational invariance, they have proposed to consider not only the
original neighbourhoods but also some rotated versions (e.g. by 90◦, 180◦
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and 270◦) in the patch comparison. Lou et al. have suggested to use a
similarity-invariant descriptor that is similar to SIFT (scale-invariant fea-
ture transform) [30] for the matching procedure. Furthermore, Ji et al. [23]
have introduced a moment-based approach that only uses low-order Zernike
invariants [36].
The goal of this paper is to present and analyse two different similarity
measures that are invariant under arbitrary rotations and mirroring. Our
first approach uses a nonlocal means filter whose similarity measure is based
on moment invariants. The second rotationally invariant method relies on
the rotationally invariant block matching (RIBM), which has already been
presented in our conference paper [42]. In addition to this, we present a novel
modification of RIBM, which uses the structure tensor for the orientation
estimation and can further improve the denoising results.
Our paper is organised as follows: In the next section, we will give a short
introduction to NL means and some possible improvements concerning the
implementation. Section 3 contains a short overview of moment invariants
and explains the corresponding modified NL means filter using these invari-
ants. After this, we will present the RIBM approach and show how the struc-
ture tensor can be used in order to further improve this approach. Section
5 examines the performance of NL means using the rotationally invariant
similarity measures and the influence of the parameters. In Section 6, we
conclude the paper with a summary and discuss some proposals for future
work.

2 Nonlocal Means

In this section, we give a short introduction to the nonlocal means filter [7, 8].
Let f : Ω → R be a (noisy) greyscale image defined on a bounded domain
Ω ⊂ R

2 and let x ∈ Ω. The filtered image u : Ω → R at the point x is then
computed by

u(x) =
1

C(x)

∫

Ω

e−
(Ga∗|f(x+·)−f(y+·)|2)(0)

λ2 f(y) dy , (1)

where Ga(x) = exp
(

−|x|2

2a2

)

is a Gaussian with standard deviation a, λ a

smoothing parameter and

C(x) =

∫

Ω

e−
(Ga∗|f(x+·)−f(y+·)|2)(0)

λ2 dy (2)
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the normalisation factor. The filter parameter λ steers the decay of the
weights. If it is too large, almost every pixel of the input image f will get a
weight close too (C(x))−1. Hence, the filter works approximately as a mean
filter and the filtered image will be too smooth. For a very small parameter
λ almost all weights are close too zero and there is basically no smoothing.
Buades et al. have suggested that λ should be dependent on the amount of
the noise and should be selected from the interval

[√
10σn,

√
15σn

]

, where
σn is the (estimated) standard deviation of the Gaussian noise contained in
the image f .
One can easily see that the similarity or distance measure of the filter is given
by

distf(x, y) =
(

Ga ∗ |f(x + ·) − f(y + ·)|2
)

(0)

=

∫

R2

Ga(t) · |f(x + t) − f(y + t)|2 dt , (3)

with the corresponding weights

w(x, y) := exp

(

−distf (x, y)

λ2

)

. (4)

In practical applications, Ga is in fact a truncated Gaussian

G̃a(t) :=

{

L−1 · Ga(t) , |t| ≤ r
0 , |t| > r

(5)

where r > 0 is the radius of the circular patch and L :=
∫

|t|≤r
Ga(t) dt the

normalisation constant.

For a → 0 we get distf(x, y) = |f(x)− f(y)|2. Thus, nonlocal means can be
seen as a generalisation of the Yaroslavsky neighbourhood filter [41]. Instead
of comparing only two grey values, it uses a weighted distance measure in
order to find similar regions in the image. The idea behind this approach is
that if two patches are similar, then their central pixel should have a similar
meaning for the image and thus similar grey values. Therefore it makes sense
to average them. The Gaussian weighting in the distance measuring excludes
high influence of noisy pixels that are farther away from the centre pixel of
the patch. For example, an approach by Coupé et al. [12] does not use this
weighting and there is just a division by the number of pixels within the
current processed patch. We will later use this idea for our moment distance
measure.

If we consider the distance measure in (3), we see that it has a severe draw-
back: It is not invariant under any transformation such as rotations or mir-
roring. There is no reason why patches that are rotated around their centre
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or mirrored should have a larger distance than the ones that are not rotated
or mirrored. A distance measure taking into account some invariances can
find more pixels in the image with a similar neighbourhood structure. In-
stead of a similarity measure based on Euclidean distances we could use, for
instance, a comparison of moment invariants. In this case, we do not need to
access each pixel of a patch everytime we compute a distance of two blocks.
Hence, the use of moment invariants can save a lot of computational effort.

2.1 Search Window

Since the complexity of the algorithm is O(|P | ·N2), where |P | is the number
of pixels within a patch P and N is the total number of pixels, one replaces Ω
by a so-called search window around the pixel x, SW (x), in Eq. (1). Then the
algorithm should search for similar regions only within this search window.
This lowers the complexity to O(|P | · N · |SW |). Besides the advantage of
a reduced running time, the use of a search window can actually improve
the denoising results: It excludes some pixels which could have a negative
influence on the averaging process and thus degrade the image quality. We
call them bad pixels. If one considers an edge for example, then by doubling
the radius, the new search window is four times larger (thus the computation
lasts longer) and hence the number of bad pixels is quadrupled, whereas the
number of good matches according to the edge is only twice as large. While
a search window is usually a square around the pixel to be denoised, we use
a disc to make the whole algorithm rotationally invariant.

2.2 Image Boundary Condition

At the image boundaries we use reflecting boundary conditions, in order to
have full circular patches around those pixels near the boundaries. This ap-
proach avoids implementation problems regarding the comparison of patches
around pixels close to the image boundary. Pixels within a boundary patch
that are located outside the image are not used in the weighted average, i.e.
search windows which are crossing the image boundaries will be reduced, so
that they only contain pixels within the image.

2.3 Weighting of the Centre Patch

Considering Equation (1), it is obvious that the grey value f(x) always gets
the highest weight w(x, x) = exp(0) = 1. If the search window or the
whole image only contains patches P (y) that are not similar to P (x), the
corresponding weights of the values f(y) will be near zero. Thus, there is
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basically no filtering. In this case, one has to increase the filter parameter λ
in order to see some smoothing effect. However, for λ ≫ 0 all grey values get
almost the same weight, which means that the similarity measure is more
or less useless. It has been suggested to set the centre weight w(x, x) :=
max
y 6=x

w(x, y) to overcome the problem. We will also use this solution in our

implementation of the moment-based approach. For the block matching, we
introduce a different solution: As the total distance between two blocks can
be decomposed into the distance of the (noise free) structure plus the noise
itself, it is obvious that even blocks with the exact same structure will have
an expected distance of 2 · σ2

n, where σn is the standard deviation of the
additive white Gaussian noise (for a more detailed analysis of the effect of
noise on patch-based similarities, we refer to [1]). A block that is compared
to itself will not just match the structure, but also the noise, and thus, it
will have a distance of zero. In order to compensate for the resulting high
weight of the central patch, we replace its distance for the weighting with
the expected error of the noise, i.e. 2 · σ2

n. As there might be patches with a
distance less than this value, i.e. with a weight that is larger than the weight
of the central patch, we will also replace their distances by the same value.
With this modification, we are not only able to achieve better PSNR results
than with the previously mentioned modification, but we even achieve these
results at significantly smaller block sizes and search windows, resulting in a
reduced running time (see Sec. 5).

3 Nonlocal Means with Moment Invariants

As we mentioned in the last section, we use moment invariants to find simi-
lar patches in the image f . Moment invariants are a classical statistical tool
for object or pattern recognition. They have been introduced by Hu using
the theory of algebraic invariants [22]. Hu has derived his famous seven mo-
ment invariants that are invariant under translation, rotation and scaling.
Six of these moments are also invariant under mirroring, while the seventh
moment switches its sign under mirroring, i.e. its absolute value is also in-
variant. About twenty years later, Teague used moments based on sets of
orthogonal basis functions such as Zernike polynomials [36]. They are invari-
ant under translation, rotation, mirroring and scaling, too. Because of their
orthogonality, these invariants do not contain any redundant information,
which is better for image reconstruction. Furthermore, Teague has shown
that Zernike moments of second and third orders are equivalent to the ones
of Hu, but can be constructed to arbitrarily high order. Here, equivalence
means that there is an algebraical coherence between them, but they are not
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equal, since Zernike moments are computed in a different way (see [36] for
more details). In this paper, we use Zernike moments up to order six, which
means a total number of 24. Another type of moments, which are invariant
under affine transformations, has been introduced by Flusser and Suk [17].
They have computed four moments explicitly. Besides, Flusser has analysed
the independence of rotation moment invariants in another publication [16].
He has shown that the invariants derived by Hu as well as Teague are depen-
dent and has presented two bases for both third- and fourth-order invariants
(total number: 11) that we use in this paper. There are also rotation mo-
ment invariants that switch their sign under mirroring and thus we have to
take the absolute values in the corresponding cases. A lot more publications
concerning this important area are of course available, but they are not be
used in this paper.

All the above mentioned moments have in common that they can be ex-
pressed in terms of usual central moments

νp,q =

∫

R

∫

R

(x − xc)
p(y − yc)

qf(x, y) dx dy , (6)

where (xc, yc) are the coordinates of the centroid of f and p + q ≥ 0 the
order with p, q ≥ 0. The centroid can be computed via

(

xc

yc

)

=
1

m0,0

(

m1,0

m0,1

)

(7)

with

mk,l =

∫

R

∫

R

xkylf(x, y) dx dy . (8)

Setting

µp,q :=
νp,q

ν
1+

p+q

2
0,0

(9)

yields scaling invariance. In this paper, we use the following notation: Φp

describes a Hu, Sp a Zernike, Ip an affine and Ψj a rotation moment invari-
ant. Whenever we talk about the maximum number of moments or moment
orders, this refers to the numbers mentioned above. For further details we
recommend the respective cited references.

3.1 Modification of the Filter

Now we want to modify the NL-Means filter using a rotationally invariant
moment distance measure instead of the standard block matching. Let M =

7



{Mi | i = 1, ..., K} be a set of moments that are invariant under mirroring
as well as rotation, and x, y ∈ Ω. We denote the patches inside the image
f with the centres x and y by P (x) and P (y) respectively. The moment
distance measure is then defined via

distM,f(x, y) := K−1 ·
K

∑

i=1

[

Mi(P (x)) − Mi(P (y))
]2

, (10)

where only the grey values inside the corresponding patch P (·) are used in
order to compute Mi. It is also necessary to compute the coordinates of
the patch’s centroid, since we use central moments. For this computation,
we only have to change the domain of integration and replace it by the
patch P (·) in (8). The pixels within a patch are addressed with a coordinate
system that has its origin at the patch’s centre. Note that we do not use
any weighting inside the moment comparison but a division by the number
of moment invariants. The corresponding filter is then given by

u(x) =
1

D(x)

∫

Ω

e−
distM,f (x,y)

λ2 f(y) dy , (11)

with

D(x) =

∫

Ω

e−
distM,f (x,y)

λ2 dy . (12)

Because of the computational effort, Ω will be replaced by a search window
SW (x) around the point x, as before in the usual framework.

3.2 Normalisation of the Moment Invariants

The first problem that arises with this definition are the different magni-
tudes of the invariants. Because of that, it is very difficult to find a good
filter parameter λ, and the moments with larger magnitudes are more im-
portant within the similarity measure. One solution to this is to perform a
normalisation of the values. For example, Ji et al. [23] have suggested a nor-
malisation technique for Zernike invariants. Unfortunately, this technique is
not applicable for other invariants. Hence, we propose a normalisation tech-
nique that is suitable for all types of invariants. If we consider each moment
of the set M as a random variable, we can use a normalisation such that the
mean of the corresponding normalised random variable is 0 and the standard
deviation is equal to 1. Thus, we have to compute the mean values

δi =
1

|Ω|

∫

Ω

Mi(P (x)) dx (13)
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and variances

σ2
i =

1

|Ω|

∫

Ω

(Mi(P (x)) − δi)
2 dx (14)

for i = 1, ..., K.
Setting

M̃i(P (x)) :=
Mi(P (x)) − δi

σi

(15)

yields the required normalisation. However, even in this case it is not so easy
to find a suitable global filter parameter λ as we will see in the experimental
section.

4 Rotationally Invariant Block Matching

In this section, we want to discuss another modification of the block matching
algorithm that is invariant under rotation and mirroring. First, we present
the basic idea of the algorithm in a generic way, followed by a specific de-
scription of our implementation. Then we discuss stability issues for some
special cases. Finally, we present a novel second implementation, addressing
these issues using the so-called structure tensor.

4.1 Basic Idea

The main problem is the estimation of the rotation angle between two cor-
responding patches. Once this angle is determined, the rest is easy: If we
identify all pixels of a block as vectors from the block’s centre, all these vec-
tors are rotated by the same angle, thus the pixel coordinates of one block
can easily be transformed into pixel coordinates of another block. If one
block is a mirrored version of the other one (we have seen a feature capable
of detecting this in Section 3, namely Φ7), we simply mirror one of the blocks
at an arbitrary axis before the estimation of the rotation angle. The choice
of the mirroring axis introduces another rotation, but as a series of rotations
can be described as one single rotation and we estimate the angle of that
rotation after we have mirrored the block, the axis of rotation can be chosen
arbitrarily.
Adding these steps to the traditional block matching algorithm, we can de-
scribe the rotationally invariant block matching (RIBM) algorithm as follows:

1. If the second patch is a mirrored version of the first patch, mirror the
second patch at an arbitrary axis.

9



2. Estimate the angle of rotation between the patches.

3. For each pixel in the first patch: Find the position of the corresponding
pixel in the second patch by rotating by this estimated angle.

4. Compute the grey value distance between these two pixels.

The summed distances represent the total distance of the two patches. Note
that for rotations that are not multiples of 90◦, the rotated pixel coordinates
might not be integers, thus one would have to apply interpolation.

4.2 Implementation Details

Let two blocks B and B′ in the image be given such that B′ is a noisy,
rotated around the centre (and possibly mirrored) version of B. In our
sample implementation, we use centroids, which are commonly used for the
computation of shift-invariant moments, to estimate the angle of rotation.
To define the centroid, we assume that pixels within a block are addressed
with a coordinate system that has its origin at the block’s centre:

cB :=















R

B

x·f(x,y) dx dy

R

B

f(x,y) dx dy

R

B

y·f(x,y) dx dy

R

B

f(x,y) dx dy















. (16)

The calculations of the angles can be done without expensive trigonometric
functions by using rotation matrices. Let ~cB denote the normalised vector
corresponding to the centroid of B and let mB,B′(v) be a function that flips
the sign of the first component of the vector v (i.e. mirrors the vector at the
y-axis) if block B′ is a mirrored version of block B. In our implementation
we use the seventh moment of Hu (Φ7, see Section 3) to compute m. Φ7

is known to be invariant under many transformations such as rotation, but
changes its sign under mirroring. While the numerical value of Φ7 suffers a
lot from discretisation and noise, its sign remains quite stable. Our strategy
to compensate for mirroring is then given as:

mB,B′(v) :=











(−v1, v2)
⊤, Φ7(B

′) · Φ7(B) < 0

(v1, v2)
⊤, else .

(17)
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We can write the rotation matrix that describes the estimated rotation be-
tween the blocks as:

RB,B′ := R−1
~cB
· RmB,B′ ( ~cB′ ) with (18)

Rv :=

(

v1 −v2

v2 v1

)

. (19)

The normalisation in the Euclidean norm guarantees that RB,B′ is a rotation
matrix. If the block’s centre and centroid coincide, this approach can not
be used to estimate a rotation matrix, since cB = 0: We then simply use
classical block matching by setting pB′ to pB in (20).
If, however, we can compute a rotation matrix, finding the corresponding
coordinates of a point pB in another block B′ is a simple matter of matrix-
vector multiplication:

pB′ := mB,B′(RB,B′ · pB) . (20)

Again, we compensate for mirroring using our function m. Now pB′ represents
the corresponding coordinates of point p in block B′ relative to the centre of
B′. To simplify the notation of the final formulation we denote the grey value
of f at the coordinates that are given by adding the relative coordinates pB

to the centre of block B with fB(pB). Now we can finally define our new
similarity measure as

d(B, B′) :=

∫

B

(fB(pB) − fB′(pB′))2 dpB . (21)

To transfer this to the discrete case we replace this integral by a sum. Since
we work on a rectangular pixel grid, the rotation of a patch will only map
pixels on the grid if the angle is a multiple of 90◦. In all other cases, we need
some kind of interpolation. For a discrete image and rotations that are not
multiples of 90◦ one will of course not achieve perfect invariance, but even
with simple interpolation methods one can get good results. The similarity
measure then looks as follows:

d(B, B′) :=
∑

pB∈B

(fB(pB) − I(fB′ , pB′))2 , (22)

where I denotes an interpolation function. For our implementation we used
bilinear interpolation. Both formulations can of course be combined with an
inner Gaussian weighting, as in (3).
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4.3 RIBM with Structure Tensor

In our previous implementation of the RIBM algorithm, we used the cen-
troid of the blocks to estimate their orientation. While this approach works
well for edges, where the centroid is far away from the centre of the block,
and homogeneous areas, where a correct estimation of the orientation is not
needed, fine structures in an image can cause problems for the algorithm:
If the centroid is close to the centre of the block, noise has a strong influ-
ence on the estimated orientation of the block. This can lead to incorrect
estimations of the rotation angle between two blocks. Especially for parallel
lines, this RIBM implementation can lead to higher distances than tradi-
tional block matching and thus causing problems when denoising images like
the Barbara test image. This motivates a modification of the RIBM imple-
mentation, using the so-called structure tensor for a more stable estimation
of the orientation of the blocks.

The Structure Tensor

Let uσ := Gσ ∗ u be a Gaussian filtered image with the standard deviation
σ > 0. The matrix J0 resulting from the dyadic product

J0 (∇uσ) := ∇uσ ⊗∇uσ := ∇uσ∇uσ
T (23)

is symmetric and hence has an orthonormal basis of eigenvectors v1, v2 with
v1 ‖ ∇uσ and v2 ⊥ ∇uσ. The corresponding eigenvalues |∇uσ|2 and 0
then indicate the contrast in the eigendirections. If we convolve J0 (∇uσ)
component-wise with a Gaussian Gρ (ρ ≥ 0), we achieve the so-called struc-
ture tensor [18]

Jρ (∇uσ) := Gρ ∗ (∇uσ ⊗∇uσ) . (24)

With the help of the structure tensor one can identify image features such as
edges and corners or measure the local coherence of structures. This tensor
notation enables an averaging for robustness while avoiding the cancella-
tion effect that can be observed on directive derivatives on thin lines. As
a drawback, structure tensors only reveal the orientation of these averaged
derivatives, not their direction. This means that all orientation information
extracted solely from structure tensors will always be limited to the interval
[0◦, 180◦). While this is fine for analysing lines, for a rotationally invariant
block matching algorithm one needs the complete 360◦ spectrum. To achieve
this, we combine the structure tensor with the centroid from (16).
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Estimating Orientation and Direction

Let vσ,ρ,B be the dominant eigenvector (i.e. the one that corresponds to the
larger eigenvalue) of the structure tensor Jρ (∇uσ) at the centre of block B.
The modified centroid cσ,ρ,B is then defined as

cσ,ρ,B :=

{

vσ,ρ,B, vσ,ρ,B · cB ≥ 0

−vσ,ρ,B , else
, (25)

where cB is the centroid from (16). Our new centroid will point into the same
direction as the dominant eigenvector of the structure tensor, unless the old
centroid points into an opposing direction, in which case our new centroid will
switch its direction to the opposite direction. This is our only modification
of the previously presented implementation, all other implementation details
remain the same. As this modification only affects the estimation of the
blocks’ orientation, only the precomputation step needs to be modified. The
actual computation of the distances remains unaffected. We will refer to this
implementation as RIBM+ST.

5 Experiments and Discussion

Now we want to analyse both modified nonlocal means filters. First, we will
study the properties of the two different similarity measures, in particular the
robustness with respect to noise and quantisation. After this, we take a look
at the dependency of the denoising quality using moment invariants on the
different filter parameters like for instance the patch radius or the smoothing
parameter λ. Finally we present some results with different well-known test
images and compare them to the performance of the classical filter.

5.1 Analysis of the Similarity Measures

Our test image is synthetic and consists of several concentric circles (see Fig.
1). We have picked four points that are on the same line and computed their
corresponding invariant values. It is obvious that the circular block around
point 3 corresponds to point 1, which is simply rotated by 90◦. Points 1
and 2 are rotated by 55◦ respectively 305◦, and the rotation angle between
2 and 4 is exactly 180◦. These four pixels have the same distance to the
centre of the ring and the same grey value, but the grey values of the other
pixels in the corresponding blocks are partially affected by discretisation (see
histograms).
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Figure 1: Ring image (256×256) with chosen patches of radius 5 (top: 1 and
2, bottom: 3 and 4) and corresponding histograms (top: 1 and 3, bottom: 2
and 4).

Table 1: Values of some invariants for the chosen four patches of the Ring
image (see Fig. 1).

without noise with Gaussian Noise (σn = 20)
moment P1 P2 P3 P4 P1 P2 P3 P4

Φ1 (10−3) 1.312 1.317 1.312 1.317 1.328 1.321 1.291 1.299

|Φ7| (10−22) 0.102 3.806 0.102 3.806 15.069 7.942 4.085 9.659

S7 (10−3) 0.986 9.661 0.986 9.661 0.184 9.484 2.173 8.243

S14 (10−1) 1.840 1.824 1.840 1.824 2.608 1.815 1.607 2.127

I1 (10−7) 4.306 4.333 4.306 4.333 4.408 4.360 4.157 4.219

I2 (10−23) 0.369 2.123 0.369 2.123 4.557 2.261 2.781 3.943

|Ψ4| (10−16) 0.112 2.254 0.112 2.254 3.717 1.688 14.600 4.172

Ψ7 (10−6) 2.430 2.442 2.430 2.442 2.554 2.472 2.363 2.386

Rotational Invariance

For our first experiment, we compute some moment values of the four blocks,
to examine their behaviour under rotation and their robustness against noise.
The corresponding results are given in Table 1. At first one can state that the
magnitude of the invariant values varies strongly. For example, the values
concerning the seven Hu moments vary from 10−23 to 10−3. This shows
that a normalisation of the values is necessary. Otherwise the Hu invariant
with the largest magnitude, i.e. Φ1, would affect the similarity measure
too much. Considering the rotations in the Ring image, we notice that
the rotations with an angle which is a multiple of 90◦ do not change the
values of the moment invariants in contrast to the rotation from point 1
to point 2, which is not a multiple of 90◦. The different results can be
explained because of the quantisation: The moment invariants suffer a lot
from discretisation when used on small blocks and therefore fail to correctly
determine similar blocks that are not rotated by a multiple of 90◦. One
can realise this by taking a look at the corresponding histograms in Fig.
1. There are clear differences between the histograms of the patches around
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point 1 and 2 respectively, whereas the ones of the 90◦ or 180◦ rotated patches
(see point 3 as well as 4) are the same like the original ones. The different
distributions of the grey values cause varying invariant values. Moments
with large differences regarding the four points are probably not suitable for
replacing the traditional block matching algorithm as a similarity measure,
because they are too sensitive with respect to grey value changes.
Another property that the moment invariants should have is the robustness
against noise. As one can see in the table, there are some moments that
seem to be robust against noise, for instance Φ1, I1 and Ψ7. Furthermore,
these moments are more robust w.r.t. discretisation like some other ones.
But then the question arises whether this kind of moments can distinguish
between different structures or these positive properties only appear due to a
small range of values. This is a general problem, since we map a patch with
its grey values to a certain small set of moment invariants. Thus, we want
to conduct another experiment with the Ring image, where we analyse the
question about the distinction quality of the invariants.

Distinction Quality

For a certain pixel xi, we compute its distance to the centre of the Ring
image xct, ‖xi − xct‖2, determine all other pixels xj with the same distance
‖xj−xct‖2 = ‖xi−xct‖2 and put them into the set Di, which can be described
formally as

Di = D(xi) := {xj ∈ Ω : ‖xj − xct‖2 = ‖xi − xct‖2} , (26)

where Ω is now the discrete image domain. Thus, all pixels that are contained
in Di lie on the same circular line. In the Ring image, this means that
Di contains only pixels whose patches have the same (rotated) structure.
Therefore, the invariant values of these patches should be close to each other,
whereas the values of the patches with centre pixels in Ω\Di should differ from
the ones corresponding to Di. Moment invariants which fulfil this criterion
are supposed to be more suitable for block matching than those not fulfilling
it. In order to measure whether this criterion is satisfied or not, we compute
the errors corresponding to a certain moment invariant M , errDi

(M) and
errΩ\Di

(M), which are defined as follows:

errDi
(M) :=

∑

xj∈Di

|M(P (xi)) − M(P (xj))|2
|Di| · ‖M‖2

2

, (27)

errΩ\Di
(M) :=

∑

xj∈Ω\Di

|M(P (xi)) − M(P (xj))|2
|Ω \ Di| · ‖M‖2

2

. (28)
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Table 2: Errors for the moment invariants without tolerance (ǫ = 0)

without noise with noise (σn = 20)
moment errD errΩ\D ratio errD errΩ\D ratio

Φ1 0.000767 1.071771 1397.1 0.004455 0.623925 140.1
Φ2 0.001595 1.993607 1249.7 0.132561 1.990833 15.0
Φ3 0.006581 1.992047 302.7 0.402197 1.993152 5.0
Φ4 0.008366 1.992066 238.1 0.252834 1.988379 7.9
Φ5 0.026097 1.995035 76.4 0.699715 1.997657 2.9
Φ6 0.013739 1.994172 145.1 0.427508 1.994175 4.7
|Φ7| 0.005239 1.996823 381.2 0.845450 1.997832 2.4
S1 0.001577 1.956041 1240.5 0.032198 1.869204 58.1
S2 0.006543 1.946672 297.5 0.075690 1.823775 24.1
S3 0.022882 1.975499 86.3 0.235632 1.838179 7.8
S4 0.018737 1.970727 105.2 0.082933 1.881217 22.7
S5 0.050776 1.993239 39.3 0.321234 1.986130 6.2
S6 0.030365 1.992604 65.6 0.202782 1.989394 9.8
S7 0.037918 1.949748 51.4 0.262653 1.424564 5.4
S8 0.011277 1.988116 176.3 0.189972 1.953793 10.3
S9 0.003688 1.617448 438.6 0.036999 1.182605 32.0
S10 0.041024 1.992125 48.6 0.420063 1.985427 4.7
S11 0.032620 1.993632 61.1 0.148535 1.995452 13.4
S12 0.046101 1.990330 43.2 0.375246 1.965343 5.2
S13 0.023402 1.990611 85.1 0.289389 1.981010 6.8
S14 0.000234 1.791076 7643.0 0.003250 1.774528 545.9
S15 0.001596 1.692187 1060.6 0.015294 1.680024 109.8
S16 0.025135 1.989600 79.2 0.270997 1.974686 7.3
S17 0.111277 1.995003 17.9 0.527136 1.995643 3.8
S18 0.059881 1.992490 33.3 0.368404 1.979815 5.4
S19 0.024127 1.991486 82.5 0.346992 1.981832 5.7
S20 0.010333 1.991126 192.7 0.260280 1.978523 7.6
S21 0.002863 1.920790 670.9 0.073390 1.666896 22.7
S22 0.087258 1.993547 22.8 0.426938 1.995113 4.7
S23 0.029268 1.988618 67.9 0.347652 1.935488 5.6
S24 0.047659 1.991790 41.8 0.189565 1.990915 10.5
I1 0.014401 1.948644 135.3 0.040183 1.876575 46.7
I2 0.003120 2.000065 641.1 0.900546 1.996928 2.2
I3 0.006243 1.998401 320.1 0.440133 1.996002 4.5
I4 0.014013 1.996543 142.5 0.346886 1.998093 5.8

|Ψ4| 0.011161 1.994103 178.7 0.648539 1.994031 3.1
Ψ7 0.003351 1.973931 589.0 0.041258 1.906581 46.2
Ψ8 0.018651 1.993722 106.9 0.525741 1.994946 3.8

|Ψ9| 0.025580 1.994893 78.0 0.862040 1.995477 2.3
Ψ10 0.035747 1.995526 55.8 0.881787 1.998914 2.3
|Ψ11| 0.141864 1.996207 14.1 0.867091 1.998207 2.3

In (27) and (28) respectively, |S| denotes the number of elements of an arbi-
trary set S. ‖M‖2

2 is the averaged squared L2-norm of the invariant M and
is computed by

‖M‖2
2 = |Ω|−1 ·

∑

xk∈Ω

|M(P (xk))|2 . (29)

It acts like a normalisation factor for the errors. We evaluate both (27) and
(28) for all xi ∈ Ω and compute the average errors errD as well as errΩ\D,

errD(M) := |Ω|−1
∑

xi∈Ω

errDi
(M) , (30)

errΩ\D(M) := |Ω|−1
∑

xi∈Ω

errΩ\Di
(M) . (31)

Since we work in a discrete setting, the set Di does not contain many elements
(8 on average). An alternative would be to incorporate a tolerance ǫ ≥ 0 and
define

Dǫ
i := {xj ∈ Ω : ‖xi − xct‖2 + ǫ ≥ ‖xj − xct‖2 ≥ ‖xi − xct‖2 − ǫ} . (32)
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Table 3: Errors for the moment invariants with tolerance ǫ = 0.5
without noise with noise (σn = 20)

moment errD errΩ\D ratio errD errΩ\D ratio

Φ1 0.082402 1.077236 13.1 0.026619 0.627183 23.6
Φ2 0.376665 2.003054 5.3 0.472403 2.000015 4.2
Φ3 0.711698 2.000514 2.8 1.150339 2.000319 1.7
Φ4 0.712459 2.000525 2.8 0.731308 1.996787 2.7
Φ5 1.153363 2.002163 1.7 1.648489 2.003359 1.2
Φ6 0.877332 2.002140 2.3 1.153767 2.001349 1.7
|Φ7| 1.394602 2.003184 1.4 1.688530 2.003423 1.2
S1 0.087500 1.966765 22.5 0.104921 1.879651 17.9
S2 0.330235 1.956114 5.9 0.280004 1.833045 6.5
S3 0.601691 1.984219 3.3 0.687189 1.846133 2.7
S4 0.573631 1.979541 3.5 0.293239 1.890712 6.4
S5 0.928122 2.001026 2.2 0.934425 1.993916 2.1
S6 0.773505 2.000878 2.6 0.706833 1.997904 2.8
S7 0.529373 1.958518 3.7 0.760855 1.429623 1.9
S8 0.553450 1.997011 3.6 0.494497 1.962813 4.0
S9 0.230662 1.625486 7.0 0.106059 1.188821 11.2
S10 0.775116 2.000350 2.6 1.103330 1.992710 1.8
S11 0.482551 2.002795 4.2 0.439852 2.004811 4.6
S12 0.733169 1.998694 2.7 1.081507 1.972594 1.8
S13 0.646837 1.999228 3.1 0.852967 1.989028 2.3
S14 0.015304 1.801236 117.7 0.022166 1.784637 80.5
S15 0.059598 1.702540 28.6 0.055950 1.690010 30.2
S16 0.617065 1.998313 3.2 0.802092 1.982849 2.5
S17 1.157300 2.002095 1.7 1.421186 2.001984 1.4
S18 0.880753 2.000414 2.3 1.121688 1.987016 1.8
S19 0.731901 1.999844 2.7 1.034297 1.989300 1.9
S20 0.676662 1.999643 3.0 0.731378 1.986904 2.7
S21 0.378349 1.929922 5.1 0.219844 1.675382 7.6
S22 0.949811 2.001256 2.1 1.429254 2.001422 1.4
S23 0.675596 1.997138 3.0 1.028239 1.942719 1.9
S24 0.732722 2.000167 2.7 0.654839 1.999577 3.1
I1 0.278169 1.958195 7.0 0.189803 1.886024 9.9
I2 1.964911 2.004696 1.0 1.588055 2.002818 1.3
I3 1.439082 2.004661 1.4 1.428229 2.002323 1.4
I4 1.264295 2.003337 1.6 1.628869 2.003814 1.2

|Ψ4| 1.016542 2.001624 2.0 1.228530 2.001006 1.6
Ψ7 0.157738 1.983988 12.6 0.153560 1.916310 12.5
Ψ8 0.897197 2.001628 2.2 1.291680 2.001709 1.5

|Ψ9| 0.993382 2.002470 2.0 1.361751 2.002061 1.5
Ψ10 1.239383 2.002397 1.6 1.826050 2.004101 1.1
|Ψ11| 1.340237 2.002763 1.5 1.714281 2.003714 1.2

The results with ǫ ∈ {0, 0.5} are listed in both Table 2 and 3. We have
computed the errors for the original image and with additive Gaussian noise
(σn = 20) in order to see how the noise influences the errors. A comparison
between the results with ǫ = 0 and ǫ = 0.5 gives us some information about
the effect of the discretisation. The average number of elements contained in
D0.5

i is about 504 which is 63 times the number without any tolerance. The
most interesting case is then of course the error with noise and ǫ = 0.5.
At first we analyse the seven moments of Hu. Regarding the error errD, the
first Hu moment Φ1 seems to work very well. On the other hand the error
errΩ\D is very low compared to the other invariants, which means that Φ1 is
stable but can not well distinguish between different structures. However, it
has also the largest ratios, which are computed by errΩ\D/errD. Introducing
a tolerance can increase errD with a factor up to about 100. Only the
increase concerning Φ2 and Φ7 is significantly larger (about 250). Adding
Gaussian noise creates an interesting observation in the case of ǫ = 0.5: errD

is decreasing with a factor about three, i.e. the distribution of invariant
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values of the pixels with the same distance to the image centre seems to be
more dense. Also the ratio becomes better.
Concerning the Zernike moments, the best ratios appear for the fifth order
moment S14 and they are also the best among all moments within Table 2
and 3. S14 is for instance better than the first Hu moment Φ1 regarding
both errD and errΩ\D. Besides this, it is more robust under noise and less
sensitive with respect to the quantisation. The second best regarding all
depicted invariants is S15. It also has good values for the ratio and seems
to be less sensitive with respect to noise and discretisation compared to S14.
Regarding the case with tolerance ǫ = 0.5 and additive Gaussian noise, there
are two further moments with a ratio larger than 10, namely the first order
moment S1 and the fourth order moment S9.
If we take a look at the errors of the affine moment invariants, we can see
that I1 has the best overall performance among them. Without any noise and
tolerance, the other three moments yield better results, but are very sensitive
with respect to noise and quantisation. In the case of tolerance ǫ = 0.5, I1

has a similar behaviour as Φ1: errD also decreases with a factor about two
and the ratio becomes better, when noise is added.
Finally we consider the independent rotation moment invariants, except for
the ones that are equal to the Hu moments. Ψ7 is the best moment concerning
the error ratios and seems to be very robust under noise and discretisation
compared to its related invariants that do not yield convincing results, since
the ratios decrease enormously.

We also conduct this experiment with RIBM. In this case, the errors are
computed by

errDi
:=

∑

xj∈Di

d
(

P (xi), P (xj)
)

|Di|
, (33)

errΩ\Di
:=

∑

xj∈Ω\Di

d
(

P (xi), P (xj)
)

|Ω \ Di|
, (34)

where d(· , ·) is the corresponding rotationally invariant block distance mea-
sure. The average errors errD and errΩ\D as well as the ratio are similarly
defined as above. Our parameter setting contains a patch radius of size five,
the standard deviation a = 3/

√
2 of the inner Gaussian and for the struc-

ture tensor we use σ = 0.5 as well as ρ = 2. The results are illustrated
in Table 4. We can see that the RIBM strategy outperforms the weighted
L2-distance with respect to this experiment. If we employ RIBM together
with the structure tensor, the results are even better, which is due to the
appearance of fine structures in the Ring image. The corresponding similar-
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Table 4: Errors for RIBM.

(a) without tolerance
without noise with noise (σn = 20)

method errD errΩ\D ratio errD errΩ\D ratio

NL means 561.17 3364.78 6.0 904.04 3908.13 4.3
RIBM 49.71 3125.22 62.9 376.08 3526.44 9.4

RIBM with ST 35.54 3131.61 88.1 315.12 3467.62 11.0

(b) with tolerance ǫ = 0.5
without noise with noise (σn = 20)

method errD errΩ\D ratio errD errΩ\D ratio

NL means 1128.94 3378.18 3.0 1858.92 3920.42 2.1
RIBM 121.92 3141.94 25.8 800.37 3541.54 4.4

RIBM with ST 80.63 3148.70 39.1 663.55 3483.37 5.2

ity measure is more stable with respect to the quantisation, since the values
only get approximately halved by introducing a tolerance ǫ = 0.5. For the
moment invariants the decrease is much larger. If we add white Gaussian
noise with σn = 20, the ratio of the two average errors decreases for both
tolerances with a factor around seven in the case of RIBM. With ǫ = 0.5,
the moment-based similarity measure seems to have less problems concerning
the introduction of noise. Hence, there are some moments with better error
ratios.

Distribution of the Weights

At this point we want to discuss the distribution of the weights which is
influenced by the smoothing parameter λ. The larger the parameter the
larger the weights will be, i.e. the filtered image will be smoother. If it is too
large, important image structures could be destroyed. On the other hand, if
one chooses a value that is too small, only a few pixels are a significant part
of the weighted average. Hence, the noise is not removed in some regions of
the image. For this reason it is very important to choose a filter parameter
that allows the removal of noise and at the same time the preservation of
important image structures like edges, corners etc. In the case of original
NL means, Buades et al. have already stated that the parameter should
depend on the amount of noise and they have made a suggestion about
the value. The use of moments within the distance measure makes it more
difficult to find a good global λ, which is illustrated in Fig. 2. We take the
Ring image and pick three patches of radius five with different contrasts.
When we add some noise, it is observable that the structure concerning the
patch around point 1 is almost destroyed, whereas the other patches are less
affected. The patch whose centre pixel is point 3 is almost in its original
state. In order to show the dependence between the filter parameter and the
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Figure 2: Visualisation of the weights for different methods. First row:
Ring with three chosen points, image with Gaussian noise (σn = 20) and the
three noisy patches. Second row: Weights using a moment-based similarity
measure (Hu moments) for the noisy image with λ2 = 10−3 concerning the
points 1, 2 and 3. Third row: Weights with λ2 = 10−4. Fourth row:
Weights using standard block matching with λ2 = 1000. Fifth row: Weights
using RIBM with λ2 = 600.
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distribution of the weights, we work with two different parameters, λ2 = 10−3

and λ2 = 10−4. Instead of a small search window, we use the whole image for
the illustration. The intensity of a pixel’s grey value stands for the magnitude
of its corresponding weight. Bright grey values correspond to large weights.
We have used a distance measure using the seven Hu moments (normalised)
for this experiment.
The second row of Fig. 2 shows the distribution of the weights using λ2 =
10−3. It is obvious that this value is too large, since both pixel 1 and pixel
2 get too many pixels having large weights despite the different structures
within their neighbourhoods. Even pixel 3 gets a lot of bad pixels. One
possible solution for getting rid of this problem might be a smaller filter
parameter. The third row shows the results for λ2 = 10−4. There are still a
lot of bad pixels that will be used for denoising the first point. The result for
the second point looks much better, since a bigger part of bad pixels has less
influence. For the third pixel we get a quite good result where bad pixels are
hardly visible and only relevant pixels can be seen. Even if the whole Ring
image is less smooth with λ2 = 10−4, it is still blurred near the boundary of
the Ring (see point 1) because of the multitude of bad pixels. These are the
first indications for the difficulty of finding a suitable value for λ.
The last two rows show the result for the standard block matching and
RIBM (without tensor) with relatively large filter parameters λ2 = 1000
and λ2 = 600 respectively. These values might be too large for the corre-
sponding filtering process, but are used here for visualisation purposes. One
can see that even such large values allow only a limited influence of bad pixels
for all three points. Thus, the methods using the weighted block matching
distance seem to be more stable than the moment-based similarity measure.
Furthermore one can notice the tolerance of standard block matching against
slight rotations, whereas the RIBM yields circular lines despite the noise.
The simplest solution for avoiding the problem with bad pixels is the use of a
small search window instead of the whole image, which is used in practice in
order to save CPU time. This restricts the number of bad pixels and might
yield a higher quality of the denoised image. However, the proportion of bad
pixels could still be too large in some cases.

5.2 Filter Parameters

This subsection discusses the influence and significance of the parameters for
the moment-based approach. We would like to see which settings are appro-
priate for this modified filter and thus will discuss all the filter parameters
(patch radius, search window radius and λ) that are used. Since RIBM is
related to the standard block matching used in NL means and Buades et al.

21



have already discussed the parameters, for example in [8], we do not discuss
them here again. In order to measure the quality of the filtered images, we
will use the peak signal-to-noise ratio (PSNR). It is computed by

PSNR(f, g) = 10 · log10

( 2552 · |Ω|
∑

xi∈Ω

|f(xi) − g(xi)|2
)

, (35)

with the noisy image g and its denoised version f . The higher the PSNR,
the better is the quality of the denoised image. In our experiments, we work
with normalised moments (see 3.2) and use a non-iterated filter.

Patch Radius

The first parameter we want to analyse is the patch radius. This parameter
steers the size of the circular neighbourhood around a pixel, in which the
moments are computed. Thus, it has an important influence on the moment
distance measure. In our experiments, the patch radius varies from 2 to
10. The search window radius is always 10 and the filter parameter λ is
adapted to the used type of moment invariants, but it is fixed for each curve.
Furthermore, we always use the maximum number of moments or moment
orders for each of the four types. Figure 3 shows the relation between the
patch radius and the PSNR for the Ring image. Whereas Hu’s, the affine
and the rotation moment invariants seem to prefer a small patch radius like
2 or 3, the Zernike moments need a larger radius equal to 5 or greater. If
the radius is too large, the result gets worse, because smaller structures are
more blurred. Because of the large radius, the smaller structures within
the corresponding large patch have less influence on the similarity measure.
Thus, there are a lot of patches that do not contain these structures, but
have a higher weight in the averaging process.

Search Window Radius

The search window radius is another important parameter. It defines those
pixels that are used in the weighted average. Using a search window instead of
the whole image has two main advantages: The algorithm is much faster and
further bad pixels outside of the search window that might have a negative
influence on the weighted average are excluded. In our experiments, we keep
the other parameters fixed for each curve (adopted to the type of moments
and the test image) and change the search window radius from 5 to 30 with
step size 5. As before, the maximum number of moments or moment orders
is used within each type. The results are depicted in Figure 4. In all cases,
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Figure 3: Coherence between the patch radius and the PSNR. The search
window radius is 10 in all cases and λ is optimised according to the particular
type of invariants.

a larger search window yields worse results, in particular for the Zernike
moments. Best results can be obtained with a radius between 5 and 10. The
absolute loss concerning the PSNR for the other three invariant types, going
from 10 to 30, is around 1. Overall, the recommendation is to use small
search windows.

Smoothing Parameter λ

At last, we analyse the λ-parameter. It is responsible for the distribution of
the weights as we have mentioned above. In Fig. 5, one can see the behaviour
of the PSNR regarding the value of λ2, where the x-axis is logarithmically
scaled. The patch radius is fixed for each curve, but is changed according
to the invariants, because for example Zernike moments need a larger ra-
dius than the other types. Concerning the number of moment invariants or
orders, we always choose the maximum for each type. Although the mo-
ment invariants are normalised, they have different optimal λ2-values, as we
can observe in Fig. 5. The course of the curves in both images looks similar.
Affine moment invariants require the smallest value in order to reach the best
PSNR within the corresponding parameter setting. Both the Hu invariants
and the independent rotation moments need almost the same value. This is
not really surprising, because five Hu moments belong to this independent
set. The largest parameter belongs to the set of Zernike moments.
We will later see that there is another problem with this parameter: In
contrast to block-based NL means, it heavily depends on the image. If,
however, one considers the original NL means filter, good results for different
images can be achieved with a fixed λ.
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Figure 4: Coherence between the search window radius and the PSNR. The
patch radius and λ vary adapted to the particular type of invariants.

5.3 Running Time

One of the main reasons for introducing a moment-based similarity measure
besides the rotational invariance is the running time. If we consider for
instance a patch with radius 5 that contains 81 pixels, then the standard
block matching needs 81 comparisons in order to compute the distance. The
moment-based approach replaces the set of grey values by a smaller set of
invariant values. Thus, the computation of the distance is much faster and
the similarity measure is rotationally invariant at the same time. The only
two parameters with a significant influence on the running time are both the
patch and the search window radius. If we choose for example a parameter
setting including a circular patch with radius 3 and a search window radius
of size 5, then the running times for the filters using block matching methods
for a 512× 512 test image are 23 seconds with classical block matching (NL
means), 31 seconds with RIBM and 33 seconds for the combination with
the structure tensor (σ = 0.5, ρ = 2) on a standard desktop PC (Pentium
4, 3.2 GHz). This means that the running time for a filter using RIBM
is only about 30% larger and is for this reason very fast in contrast to a
method which uses fixed rotation angles within the patch comparison (see
for example [27]). Depending on the machine and the choice of parameters,
the increase of running time varies from 10% to 40%, but never exceeds this
upper limit in our experiments. Even the integration of the structure tensor
does not affect the running time too much, i.e. increases it additionally by
less than 10%. We emphasise that the computation of the structure tensor
is only part of the precomputation step and not optimised. Considering the
moment-based approach using all Hu invariants and the above mentioned
radii, the running time is only about 7 seconds and thus three times faster
than standard nonlocal means. Even the method with the use of 24 Zernike
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Figure 5: Coherence between λ2 and the PSNR. The patch radius varies
adapted to the particular type of invariants and the search window radius is
always 10.

moment invariants only needs about 9 seconds. For a parameter setting with
a patch radius of size 5 and a search window with radius 10, this method
is finished in 36 seconds, whereas the running times of the other filters are
about 194, 288 and 316 seconds, i.e. up to nine times slower. Overall we
can state that the moment-based approach is able to save a lot of CPU time
and the RIBM methods are much faster than any method using several fixed
rotation angles.

5.4 Denoising Quality and Comparison

Now, we want to analyse the denoising quality of our modified NL means
filters and compare them to the classical filter. To this end, we use well-
known test images (see Fig. 8 and Fig. 10) in addition to the Ring image.
As we have mentioned in Sec. 2.3, we use some special modifications for
the weighting of the centre patch. The evaluation of the denoising results is
presented in Table 5. Some of the results are illustrated in the figures 8, 9, 10
and 11. We have tried different parameter settings for each image and each
type of moment invariants and only show the best result concerning these
settings.
The filters based on block matching strategies have only one parameter set-
ting that is described in the table.

Moment-Based Method

At first glance one can see that the classical NL means filter with only one
parameter setting yields better results for all images except for Ring and
Trui with optimised parameter settings. This already shows one problem: It
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Table 5: Denoising results (PSNR) of the moment-based approach and com-
parison to classical NL means (NLM) as well as RIBM, where Gaussian noise
with σn = 20 is used. The parameters for the filter using the moment-based
distance measure are optimised, whereas in the case of the other three filters
only one parameter setting is used for all images: a = 3/

√
2, λ2 = 225, patch

radius 3, search window radius 5 and for the structure tensor σ = 0.5, ρ = 2.

Image Barbara Boats Lena House Peppers Ring Trui

NLM with

Hu 25.14 28.52 30.51 30.63 28.86 31.49 32.00
patch radius 2 2 3 2 2 3 3
sw radius 7 7 5 8 4 9 6

λ2 5 · 10−3 5 · 10−3 2.5 · 10−2 5 · 10−2 1.5 · 10−2 10−3 3.5 · 10−2

moments Φ1 Φ1 Φ1 Φ1 Φ1 Φ1 Φ1

NLM with

Zernike 26.62 28.24 30.43 30.86 28.40 32.48 30.05
patch radius 4 4 5 7 4 5 7
sw radius 5 4 4 7 4 13 6

λ2 5 · 10−2 7 · 10−2 2.5 · 10−1 6 · 10−2 4 · 10−2 10−2 1.5 · 10−1

moments S1 − S24 S1 − S17 S1 − S11 S1 − S11 S1 − S24 S1, S2, S1 − S24

S7 − S17

NLM with

Affine 24.90 28.13 30.02 30.19 28.21 30.84 31.46
patch radius 2 2 3 3 2 3 3
sw radius 12 10 7 7 4 10 12

λ2 5 · 10−4 7 · 10−5 5 · 10−3 5 · 10−3 6 · 10−4 6 · 10−6 5 · 10−3

moments I1 I1, I2 I1 I1 I1 I1 I1

NLM with

Ind. Rot. 24.93 28.48 29.92 30.53 28.82 31.48 30.20
patch radius 2 2 2 2 2 3 2
sw radius 7 7 6 9 4 9 3

λ2 10−3 9 · 10−4 10−2 8 · 10−3 2 · 10−3 2 · 10−4 1.5 · 10−1

moments Ψ1 − Ψ6 Ψ1 − Ψ6 Ψ1 − Ψ6 Ψ1 − Ψ6 Ψ1 − Ψ6 Ψ1 − Ψ6 Ψ1 − Ψ6

NLM 29.67 29.58 31.56 31.89 30.21 30.54 31.96
RIBM 28.93 29.53 31.66 32.06 30.43 29.65 32.53

RIBM+ST 29.73 29.71 31.84 32.17 30.51 30.29 32.47

is difficult to find a single parameter setting that gives reasonable results in
all cases in contrast to the standard filter, and even optimised results can be
worse, in particular the performance on Barbara decreases significantly. The
necessity of very different parameter settings shows that this simple moment-
based method is difficult to use in practice. If we compute the average PSNR
for each type of moment invariants, then the invariants of Hu and the Zernike
moments have the best values, 29.59 and 29.58. The optimised results are
depicted in Fig. 9 and Fig. 11. One can see, in particular for Trui, that the
method using Zernike moments can have problems at image edges and the
one with Hu moment invariants might have problems in homogenous areas
(e.g. black hair in Trui).
The other two types, rotation moments with 29.19 and affine invariants with
29.11, are inferior. For NL means, the average value is better, i.e. 30.77.
The parameter setting for nonlocal means is of course not optimal, but it
yields even with a small patch and search window radius reasonable results
in addition to a better running time. These results can be seen in Fig. 8 as
well as Fig. 10.
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In the case of the Hu, the affine as well as the independent rotation moment
invariants one can also see that the best results are obtained with the use of
only one low-order moment (Φ1, I1) and low-order basis (Ψ1, ..., Ψ6) respec-
tively. For affine moments, only Boats needs the integration of two moments,
i.e. I1 and I2. Concerning the Zernike moments, it is visible that incorpo-
rating higher orders is necessary in order to get a better performance. The
result for the Ring image shows that a moment-based approach can be useful
for denoising synthetic images with many rotationally invariant structures.
Another conclusion that has been already treated in Fig. 3 concerns the size
of the patch radius. It should be small, i.e. around 2 or 3, in all cases except
for the Zernike ones that allow larger radii up to 7. As we have observed in
Fig. 4, smaller search window radii are better, and we can also see this in
Table 5. The values for the filter parameter λ do not only depend on the
different types of moments, but also on the different images. This makes it
very difficult to find a good global value for λ, which is very important with
respect to practical applications.
Finally we would like to combine all treated types of moment invariants in
order to denoise the Ring image. For this experiment, we consider Table 3
that shows the results with tolerance ǫ = 0.5 and additive white Gaussian
noise. We take those moments that have a ratio larger than or equal to 9.9
(minimum value that allows the integration of all types) in this case, i.e. Φ1,
S1, S9, S14, S15, I1 and Ψ7.
The main problem with the combination of different types are the varying
optimal values of λ. Our first experiment considers only one λ-parameter. In
this case, our best result has got a PSNR value of 32.37, where λ2 = 10−2,
the patch radius is 5 and the search window radius 14. We can see that the
parameter setting is similar to the one of Table 5 with Zernike moments.
This might be explained by the fact that four of the seven chosen moment
invariants are Zernike ones. The second experiment covers four different λ-
values, i.e. one for each invariant type. Here, our best result yields a PSNR
of 32.48 with the same patch radius as before, search window radius 15 and
λ2

Φ = 10−2, λ2
I = 1.25 · 10−4, λ2

Ψ = 10−3, λ2
S = 1.25 · 10−2, but it is still not

better than the best result in Table 5.
Compared to the approach of Ji et al. [23], our PSNR values with respect
to Zernike moments are up to 3.5 dB (Barbara) smaller. Therefore, we used
their invariant setting and normalisation technique, but we were not able to
reproduce the reported results of Ji et al.
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Figure 6: Segment of Barbara (90 × 90). Left: Noisy segment (σn = 20).
Middle: Filtered using RIBM. Right: Filtered using RIBM with structure
tensor.

Figure 7: Segment of Trui (80 × 80). Left: Noisy segment (σn = 20).
Middle: Filtered using NL means. Right: Filtered using RIBM.

RIBM

In contrast to the moment-based method, RIBM is able to achieve good re-
sults with only one parameter setting for all images (see Table 5) and is hence
more comparable to NL means. This setting contains only small radii in order
to have a better running time. The overall performance of the RIBM filter
is clearly better than the moment-based one. It can outperform NL means
in many cases, especially on images with lots of edges and corners, like in
the Trui test image (see Fig. 7). The additional use of the structure tensor
improves all results except for the Trui, where the PSNR slightly degrades.
This is due to the fact, that the smoothing of the structure tensor hinders
the correct estimation of the orientation at sharp corners. But for Barbara
and Ring, the incorporation of the structure tensor yields a significant im-
provement compared to the RIBM algorithm. In both images, the original
RIBM has problems with the parallel lines as one can see in Fig. 6, where a
small segment of the Barbara image containing parallel lines is depicted. It
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is not really surprising that RIBM achieves worse results than original NL
means: Standard block matching is tolerant against small rotations (see Fig.
2). As we use small search windows, we have only small rotations in the Ring
image and basically no rotations at all in the Barbara image. Thus, RIBM
cannot benefit from its rotational invariance, while at the same time it suf-
fers from its instability on blocks with fine lines. As both test images contain
a lot of such patches, RIBM+ST can achieve more stable results on these
images. The average PSNR values for the RIBM methods are 30.68 without
and 30.96 with the structure tensor. The denoising results with RIBM+ST
can be found in Fig. 9 and 11. As we have mentioned above, the average
value for NL means is 30.77. The worse value of RIBM without the structure
tensor is mainly due to the result for the Barbara image.

6 Conclusion and Future Work

In this paper, we have presented two different ideas for a rotationally invari-
ant similarity measure that is used for image denoising with the NL means
algorithm. Our first approach replaces the set of grey values within a patch,
which is usually used in block matching algorithms, by a set of moment in-
variants for the patch comparison. The advantage of such a procedure is that
the number of the set of moment invariants can be much smaller than the
number of pixels within a patch and hence it is able to greatly reduce the
CPU time, though it allows for some invariances. Furthermore, a moment-
based approach avoids costly methods which do not only consider the original
patch but also some rotated versions with fixed angles, where maybe some
additional interpolation is necessary.
The main disadvantage of a rotationally invariant similarity measure using
moment invariants is that the invariants have different magnitudes. With-
out any normalisation, the moments with a relative large magnitude will
dominate the similarity measure and significantly attenuate the influence of
invariants with relative small magnitudes. In order to suppress this problem,
we have used a simple normalisation technique that can be used for arbi-
trary types of invariants. Due to its simplicity this normalisation might not
be optimal for all moment invariants.
Another problem that goes along with the different magnitudes is the choice
of the smoothing parameter λ. Despite the normalisation it is difficult to
find an appropriate value, since λ seems to depend not only on the type
of invariants but also on the image. Hence, the filter is less attractive for
practical applications.
Our second approach, RIBM, reverts to classical block matching ideas and
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even serves as a generalisation of them. A second implementation, i.e.
RIBM+ST, was presented to improve the stability of the algorithm that
causes problems in some test images. The implementations of the presented
algorithm only add a small overhead to the running time, as opposed to
methods that simply try different rotations. We have shown that this mod-
ification can improve the results of the NL means algorithm even on small
search windows, where natural image usually only contain small rotations. A
natural question for future work would be, how this effect develops on larger
search windows. Unfortunately, larger search windows in general decrease the
PSNR performance of NL means, as the exponential weighting function is not
capable of perfectly separating good matches form bad matches. Thus, better
results are usually achieved on small search windows. A modified weighting
function might be able to better separate good pixels from bad pixels. With
such a modified weighting, the influence of rotationally invariant similarity
measures might be even stronger. Another modification to RIBM+ST could
be the incorporation of Higher-Order Structure Tensors [34]. This might
avoid the drawback of the use of a smoothed structure tensor at sharp edges,
like in the Trui image. Another very interesting open question is whether
one can also benefit from RIBM in the context of other denoising methods
such as collaborative filtering [14] or other image processing applications like
for example inpainting [15]. Concerning the moment-based approach, our
future work will concentrate on better normalisation techniques and adap-
tive strategies for the smoothing parameter in order to improve its practical
use and attenuate the sensitivity with respect to λ. With the help of such
strategies it is likely that one can improve the quality of the denoising results.
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[12] P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann, and C. Barillot.
An optimized blockwise nonlocal means denoising filter for 3-D magnetic
resonance images. IEEE Transactions on Medical Imaging, 27(4):425–
441, April 2008.
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Figure 8: Images with size 512× 512. Left: Original image. Middle: Noisy
image with additive Gaussian noise (σn = 20). Right: Denoised image with
classical NL means. 1st row: Barbara. 2nd row: Boats. 3rd row: Lena.

35



Figure 9: Denoised images (512 × 512) with rotationally invariant methods.
Left: RIBM+ST. Middle: Zernike moments. Right: Hu moments.
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Figure 10: Images with size 256×256. Left: Original image. Middle: Noisy
image with additive Gaussian noise (σn = 20). Right: Denoised image with
classical NL means. 1st row: House. 2nd row: Peppers. 3rd row: Ring.
4th row: Trui.
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Figure 11: Denoised images (256×256) with rotationally invariant methods.
Left: RIBM+ST. Middle: Zernike moments. Right: Hu moments.

38


