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Abstract

The Euler-Lagrange (EL) framework is the most widely-used strat-
egy for solving variational optic flow methods. We present the first
approach that solves the EL equations of state-of-the-art methods
on sequences with 640×480 pixels in near-realtime on GPUs. This
performance is achieved by combining two ideas: (i) We extend the
recently proposed Fast Explicit Diffusion (FED) scheme to optic flow,
and additionally embed it into a coarse-to-fine strategy. (ii) We paral-
lelise our complete algorithm on a GPU, where a careful optimisation
of global memory operations and an efficient use of on-chip memory
guarantee a good performance. Applying our approach to the varia-
tional ‘Complementary Optic Flow’ method (Zimmer et al. (2009)),
we obtain highly accurate flow fields in less than a second. This cur-
rently constitutes the fastest method in the top 10 of the widely used
Middlebury benchmark.

1 Introduction

A fundamental task in computer vision is the estimation of the optic flow,
which describes the apparent motion of brightness patterns between two
frames of an image sequence. As witnessed by the Middlebury benchmark 1,
the accuracy of optic flow methods has increased tremendously over the last
years [1]. This trend was enabled by the recent developments in energy-
based methods (e.g. [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]) that find the flow field
by minimising an energy, usually consisting of a data and a smoothness
term. While the data term models constancy assumptions on image features,
like the brightness, the smoothness term, also called regulariser, penalises
fluctuations in the flow field.
To achieve state-of-the-art results, a careful design of the energy is manda-
tory. In the data term, robust subquadratic penaliser functions reduce the
influence of outliers [5, 7, 11, 10], higher-order constancy assumptions [7, 10]
help to deal with illumination changes, and a normalisation [4, 10] prevents
an overweighting at large image gradients. In the smoothness term, sub-
quadratic penalisers yield a discontinuity-preserving isotropic smoothing be-
haviour [5, 7, 11]. Anisotropic strategies [3, 6, 8, 9, 10] additionally allow to
steer the smoothing direction, which in [10] yields an optimal complementar-
ity between data and smoothness term.
A major problem of recent sophisticated methods is that their energies are
highly nonconvex and nonlinear, rendering the minimisation a challenging

1available at http://vision.middlebury.edu/flow/eval/
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task. Modern multigrid methods are well-known for their good performance
on CPUs [12, 13], but still do not achieve even near-realtime performance
on larger image sequences. Multigrid methods on GPUs do achieve realtime
performance, but due to their complicated implementation, they were only
realised for basic models so far [14].
Another class of efficient algorithms that can easily be parallelised for GPUs
and additionally support modern models are primal-dual approaches; see e.g.
[11, 9]. The minimisation strategy of these methods introduces an auxiliary
variable to decouple the minimisation w.r.t. the data and smoothness term.
For the data term, one ends up with a thresholding that can be efficiently
implemented on the GPU. For the smoothness term, a projected gradient de-
scent algorithm similar to [15] is used. Problems of primal-dual approaches
are (i) the rather limited number of data terms that can be efficiently imple-
mented and (ii) the required adaptation of the gradient descent algorithm
to the smoothness term. The latter is especially challenging for anisotropic
regularisers, see [9].
The most popular minimisation strategy for continuous energy-based (varia-
tional) approaches is the Euler-Lagrange (EL) framework, e.g. [2, 3, 7, 10, 16].
Following the calculus of variations, one derives a system of coupled partial
differential equations that constitute a necessary condition for a minimiser.
The benefits of this framework are: (i) Flexibility: The EL equations can be
derived in a straightforward manner for a large variety of different models.
Even non-differentiable penaliser functions like the TV penaliser [17] can be
handled by introducing a small regularisation parameter. (ii) Generality:
The EL equations are of diffusion-reaction type. This does not only allow
to use the same solution strategy for different models, but also permits to
adapt solvers known from the solution of diffusion problems. However, one
persistent issue of the EL framework is an efficient solution. As mentioned
above, multigrid strategies are either restricted to basic models [14] or do not
give realtime performance for modern test sequences [12].

Our Contribution. In the present paper, we present the first method that
achieves near-realtime performance on a GPU for solving the EL equations.
To this end, we adapt the recent Fast Explicit Diffusion (FED) scheme [18]
to the EL framework. FED is an explicit solver with varying time step sizes,
where some time steps can significantly exceed the stability limit of classi-
cal explicit schemes. If a series of time step sizes is carefully chosen, the
approach can be shown to be unconditionally stable. The already high per-
formance is further boosted by a coarse-to-fine strategy. Finally, our whole
approach is parallelised on a GPU using the NVidia CUDA architecture [19].
By doing so, we introduce FED for massively parallel computing, where it
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unifies algorithmic simplicity with state-of-the-art performance. To obtain
high performance despite the large amounts of data involved in the compu-
tation, we pay particular attention to an efficient use of on-chip memory to
reduce transfers from and to global memory.
To prove the merits of our approach, we apply it within the recent variational
optic flow method of Zimmer et al. [10], which gives qualitatively good results.
Moreover, due to its anisotropic regulariser, it can easily be specialised to less
complicated smoothness terms. Experiments with our GPU-based algorithm
show speedups by one order of magnitude over CPU implementations of both
a multigrid solver and an FED scheme. Compared to the anisotropic primal-
dual method of Werlberger et al. [9], we obtain better results in an equivalent
runtime. In the Middlebury benchmark, we rank among the top 10 methods,
and can report the smallest runtime among them.

Paper Organisation. In Sec. 2 we review the optic flow model of Zimmer et
al. [10]. We then adapt the FED framework in Sec. 3, and present details on
the GPU implementation in Sec. 4. Experiments demonstrating the efficiency
and accuracy of our method are shown in Sec. 5, followed by a summary in
Sec. 6.

2 Variational Optic Flow

Let f(x)=(f 1(x), f2(x), f3(x))> denote an image sequence where f i repre-
sents the i-th RGB colour channel, x :=(x, y, t)>, with (x, y)>∈Ω describing
the location within a rectangular image domain Ω ⊂ R2 and t ≥ 0 denotes
time. We further assume that f has been presmoothed by a Gaussian convo-
lution of standard deviation σ. The sought optic flow field w :=(u, v, 1)> that
describes the displacements from time t to t+1 is then found by minimising
a global energy functional of the general form

E(u, v) =

∫
Ω

[M(u, v) + αV (∇u,∇v)] dx dy , (1)

where ∇ := (∂x, ∂y)
> denotes the spatial gradient operator, and α> 0 is a

smoothness weight.

2.1 Complementary Optic Flow

The model we will use to exemplify our approach is the recent method of
Zimmer et al. [10], because it gives favourable results at the Middlebury
benchmark and uses a general anisotropic smoothness term.
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Data Term. For simplicity, we use a standard RGB colour representation
instead of the HSV model from the original paper. Our data term is given
by

M(u, v) := ΨM

(
3∑

i=1

θi
0

(
f i(x+w)− f i(x)

)2)
(2)

+γ ΨM

(
3∑

i=1

(
θi

x

(
f i

x(x+w)− f i
x(x)

)2
+ θi

y

(
f i

y(x+w)− f i
y(x)

)2))
,

where subscripts denote partial derivatives. The first line in (2) models the
brightness constancy assumption [2], stating that image intensities remain
constant under the displacement, i.e. f(x+w) = f(x). To prevent an
overweighting of the data term at large image gradients, a normalisation in
the spirit of [4] is performed. To this end, one uses a normalisation factor
θi
0 :=(|∇f i|2+ζ2)−1, where the small parameter ζ >0 avoids division by zero.

Finally, to reduce the influence of outliers caused by noise or occlusions,
a robust subquadratic penaliser function ΨM(s2) :=

√
s2+ε2 with a small

parameter ε>0 is used [7].
Weighted by γ > 0, the second line in (2) models the gradient constancy
assumption ∇f(x+w)=∇f(x) that renders the approach robust under ad-
ditive illumination changes [7]. The corresponding normalisation factors are
defined as θi

{x,y} :=(|∇f i
{x,y}|2 + ζ2)−1. As proposed in [12] a separate penali-

sation of the brightness and the gradient constancy assumption is performed,
which is advantageous if one assumption produces an outlier.

Smoothness Term. The data term only constraints the flow vectors in
one direction, the data constraint direction. In the orthogonal direction, the
data term gives no information (aperture problem). Thus, it makes sense
to use a smoothness term that works complementary to the data term: In
data constraint direction, a reduced smoothing should be performed to avoid
interference with the data term, whereas a strong smoothing is desirable in
the orthogonal direction to obtain a filling-in of missing information.
To realise this strategy, one needs to determine the data constraint direction.
This can be achieved by considering the largest eigenvector of the regulari-
sation tensor

Rρ :=
3∑

i=1

Kρ ∗
[
θi
0∇f i

(
∇f i

)>
+γ
(
θi

x∇f i
x

(
∇f i

x

)>
+θi

y∇f i
y

(
∇f i

y

)>)]
, (3)

whereKρ is a Gaussian of standard deviation ρ, and ∗ denotes the convolution
operator. Apart from this convolution, the regularisation tensor is a spatial
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version of the motion tensor that occurs in a linearised data term. For more
details, see [10].
Let r1≥r2 denote the two orthonormal eigenvectors of Rρ, i.e. r1 is the data
constraint direction. Then, the complementary regulariser is given by

V (∇u,∇v) = ΨV

((
r>1 ∇u

)2
+
(
r>1 ∇v

)2)
+
(
r>2 ∇u

)2
+
(
r>2 ∇v

)2
. (4)

To reduce the smoothing in data constraint direction, we use the subquadrat-
ic Perona-Malik penaliser (Lorentzian) [5, 20] given by ΨV (s2) := λ2 ln(1 +
(s2/λ2)) with a contrast parameter λ > 0. In the orthogonal direction, a
strong quadratic penalisation allows to fill in missing information.

2.2 Minimisation via the Euler-Lagrange Framework

According to the calculus of variations, a minimiser (u, v) of the proposed
energy (1) necessarily has to fulfil the associated Euler-Lagrange equations

∂uM − α div
(
D (r1, r2,∇u,∇v) ∇u

)
= 0 , (5)

∂vM − α div
(
D (r1, r2,∇u,∇v) ∇v

)
= 0 , (6)

with reflecting boundary conditions. These equations are of diffusion-reaction
type, where the reaction part (∂uM and ∂vM ) stems from the data term, and
the diffusion part (written in divergence form) stems from the smoothness
term.
To write down the reaction part of the EL equations, we use the abbreviations
f i
∗∗ := ∂∗∗f

i(x+w), f i
z := f i(x+w)−f i(x) and f i

∗z := ∂∗f
i(x+w)−∂∗f i(x),

where ∗∗ ∈ {x, y, xx, xy, yy} and ∗ ∈ {x, y}. With their help, we obtain

∂uM = Ψ′
M

(
3∑

i=1

θi
0

(
f i

z

)2) ·

(
3∑

i=1

θi
0f

i
z f

i
x

)
(7)

+ γ Ψ′
M

(
3∑

i=1

(
θi

x

(
f i

xz

)2
+ θi

y

(
f i

yz

)2)) ·

(
3∑

i=1

(
θi

xf
i
xz f

i
xx + θi

yf
i
yz f

i
xy

))
,

∂vM = Ψ′
M

(
3∑

i=1

θi
0

(
f i

z

)2) ·

(
3∑

i=1

θi
0 f

i
z f

i
y

)
(8)

+ γ Ψ′
M

(
3∑

i=1

(
θi

x

(
f i

xz

)2
+ θi

y

(
f i

yz

)2)) ·

(
3∑

i=1

(
θi

xf
i
xz f

i
xy + θi

yf
i
yz f

i
yy

))
.

The joint diffusion tensor D (r1, r2,∇u,∇v) is given by

D (r1, r2,∇u,∇v) := Ψ′
V

((
r>1 ∇u

)2
+
(
r>1 ∇v

)2)
r1r

>
1 + r2r

>
2 . (9)
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Analysing the diffusion tensor, one realises that the resulting smoothing pro-
cess is not only complementary to the data term, but can also be characterised
as joint image- and flow driven: The smoothing direction is adapted to the
direction of image structures, encoded in r1 and r2. The smoothing strength
depends on the flow contrast given by the expression (r>1 ∇u)2+(r>1 ∇v)2.
As a result, one obtains the same sharp flow edges as image-driven methods,
but does not suffer from their oversegmentation problems.

Solution of the Euler-Lagrange Equations. The preceding EL equa-
tions are difficult to solve because the unknown w implicitly appears in the
argument of the expressions f i(x+w). A common strategy to resolve this
problem is to embed the solution into a coarse-to-fine multiscale warping ap-
proach [7]. To obtain a coarse representation of the problem, the images are
downsampled by a factor of η ∈ [0.5, 1). The resulting pyramid is cut off at
level L ∈ N+

0 , or earlier if the resulting image becomes smaller than 2×2 pix-
els. At each warping level k, the flow field is split up into wk+dwk =:wk+1,
where wk =(uk,vk) is the already computed solution from coarser levels and
dwk = (duk,dvk) is a small flow increment that is computed by a linearised
approach.
Let us derive this linearised approach. To ease presentation, we omit the
gradient constancy part, i.e. set γ = 0, and restrict ourselves to the first
EL equation (5). The extension to the full model works straightforward in
accordance to [7]. A first step is to perform a Taylor linearisation

f i,k+1
z := f i(x+wk+1)−f i(x) ≈ f i,k

z + f i,k
x duk + f i,k

y dvk , (10)

where in expressions of the form f i,k the flow wk is used. Replacing all
occurrences of f i

z by this linearisation and using the information from level k
for all other constituents, one obtains the linearised first EL equation (with
γ=0)

Ψ′
M

(
3∑

i=1

θi,k
0

(
f i,k

z +f i,k
x duk+f i,k

y dvk
)2)

·
3∑

i=1

θi,k
0

(
f i,k

z +f i,k
x duk+f i,k

y dvk
)
f i,k

x

−α div
(
D
(
rk

1 , r
k
2 ,∇

(
uk+duk

)
,∇
(
vk+dvk

))
∇
(
uk+duk

))
= 0 . (11)

At this point, it is feasible to use a solver for nonlinear systems of equations.
However, we use a second coarse-to-fine strategy per warping level for an
even faster convergence. Here the prolongated solution from a coarse level
serves as initialisation for the next finer level.
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3 Fast Explicit Diffusion Solver

A classical approach to solve elliptic problems such as the linearised EL
equation (11) are semi-implicit schemes: They are unconstrained in their
time step sizes, but require to solve large linear systems of equations in each
step. In contrast, explicit schemes are much easier to implement and have a
low complexity per step, but are typically restricted to very small step sizes
to guarantee stability. In this paper, we use a new time discretisation that
combines the advantages of both worlds [18]: Fast Explicit Diffusion (FED)
schemes are as simple as classical explicit frameworks, but use some ex-
tremely large time steps to ensure a fast convergence. Still, the combination
of large (unstable) and small (stable) time steps within one cycle guarantees
the unconditional stability of the complete approach. Hence, FED schemes
outperform semi-implicit schemes in terms of efficiency and are additionally
much simpler to implement, especially on massively parallel architectures.
Let us first derive a stabilised explicit scheme [16] for solving the linearised
EL equation (11) w.r.t. the unknown duk. To this end, we introduce the
iteration variable l:

duk,l+1−duk,l

τl
= div

(
D
(
rk

1 , r
k
2 ,∇

(
uk+duk,l

)
,∇
(
vk+dvk,l

))
∇
(
uk+duk,l

))
− 1

α

(
ψ′

M
k,l

(..)·
3∑

i=1

θi,k
0

(
f i,k

z +f i,k
x duk,l+1+f i,k

y dvk,l
)
f i,k

x

)
, (12)

where τl denotes the FED time step size at iteration 0 6 l < n which is
computed as [18]

τl = 1
8
·
(
cos2

(
π 2l+1

4n+2

))−1
. (13)

In (12), the term ψ′
M
k,l(..) is an abbreviation for the expression Ψ′

M(..) in
the first line of (11), where we additionally replace duk by duk,l and dvk by
dvk,l. Finally, note that our scheme is stabilised by using duk,l+1 from the
next iteration in the last row.
In our next step we discretise the expression div(D(..)∇(uk+duk,l)) in matrix-
vector notation by A(uk+duk,l, vk+dvk,l)(uk+duk,l) =: Ak+1,luk+1,l. This enables
us to rewrite (12) as

duk,l+1 =

[
duk,l+τlA

k+1,luk+1,l− τl
α

(
ψ′

M
k,l

(..)·
3∑

i=1

θi,k
0

(
f i,k

z +f i,k
y dvk,l

)
f i,k

x

)]

·

(
1 +

τl
α
· ψ′

M
k,l

(..) ·
3∑

i=1

θi,k
0

(
f i,k

x

)2)−1

. (14)
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Remarks. The number of individual time steps n in a cycle is given by
min{n ∈ N+ | (n2 + n)/12 > T}, where T denotes the desired stopping
time of the cycle. For n > 3, one can show that an FED cycle reaches this
stopping time T faster than any other explicit scheme with n stable time
step sizes.
Moreover, the ordering of steps within one FED cycle is irrelevant from a
theoretical point of view, but can in practice affect the influence of rounding
errors to the result. However, it is possible to find permutations of the set
{τl | 0 6 l < n} that are more robust w.r.t. floating-point inaccuracies than
others. Given the next larger prime number p to n and κ < p, a series
{τl̃ | l̃ = ((l+1) · κ) mod p, l̃ < n} is known to give good results [18, 21].
In order to find a suitable value for the parameter κ, we analysed a simple
1-D problem and choose the one κ that minimises the error between the FED
output and the analytic reference solution. These values were once computed
for all practical choices of n to set up a lookup table which is used throughout
our implementation.

4 Implementation on the GPU

Since our algorithm is hierarchic and uses different data configurations and
cache patterns for the operations it performs, we split it up into single GPU
kernels of homogeneous structure. This concept allows to have a recursive
program flow on the CPU, while the data is kept in GPU memory throughout
the process.

FED Solver. Our stabilised fast explicit scheme forms the heart of our
algorithm. It is also the most expensive GPU kernel in our framework: Due
to its low arithmetic complexity, it is strictly memory bound and requires
significant amounts of data. For the smoothness term, we reduce the memory
complexity by exploiting the symmetry of the non-diagonal matrix A from
(14), which comes down to store the four upper off-diagonals. The remaining
entries can be computed in shared memory. Where offset data loads are
necessary for this strategy, they can be efficiently realised by texture lookups.

Derivatives. Spatial image and flow derivatives are discretised via central
finite differences with consistency order 2 and 4, respectively [12]. For the
motion tensor, these derivatives are averaged from the two frames f(x, y, t)
and f(x, y, t+ 1), whereas for the regularisation tensor, they are solely com-
puted at the first frame. Where required, we compute both the first order
and second order derivatives in the same GPU kernel which saves a large
number of loads from global memory. Thanks to the texture cache, the
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slightly larger neighbourhood that is needed in this context does again not
significantly affect the runtime.

Diffusion Tensor. In order to set up the diffusion tensor D for the smooth-
ness term, we apply the diffusivity function to the eigenvalues of the struc-
ture tensor and use these new eigenvalues to assemble a new tensor. Both
the derivative computation and the principal axis transforms that are used
in this context are fully data parallel. Note that we do not store the tensor
entries to global memory, but directly compute the weights that are later to
be used in the solver. By this, we save again a significant number of global
loads and stores.

Gaussian Convolution. Our GPU-based Gaussian convolution algorithm
is tailored to the small standard deviations σ that typically occur in the
context of optic flow: We exploit the operation’s separability and cut off
the discretised kernel at a precision of 3σ. This allows our ‘sliding window’
approach to keep a full neighbourhood in shared memory, and thus to reduce
global memory operations to one read and write per pixel. Along the main
direction of the 2-D data in memory, we apply loop unrolling over data-
independent rows and keep three consecutive sub-planes of the source image
in a ring buffer. Across this direction, we cut our domain in sufficiently large
chunks, and maintain a ring buffer of chunk-wide rows that cover the entire
neighbourhood of the computed row.

Resampling. Key ingredients for hierarchic coarse-to-fine algorithms are
prolongation and restriction operators. Several examples for such operators
are known in the literature, but they are either quite expensive on GPUs due
to their ‘inhomogeneous’ algorithmic structure, or do not possess necessary
properties such as grey value preservation, aliasing artefact prevention, and
flexibility with respect to the choice of the resampling factor [22, 23]. As
a remedy, we propose a fast but versatile technique that approximates the
desired behaviour well enough to satisfy the quality requirements for optic
flow. It has a uniform algorithmic structure for all target cells and uses the
texturing mechanism of CUDA cards to obtain a high performance.
Textures can be queried at any point in a continuous domain, and in particu-
lar in between grid points. The resulting value is then computed in hardware
by means of a bilinear interpolation. These properties alone yield an efficient
prolongation algorithm: For any target cell of the result, we use the value at
the corresponding point of the source texture. Note that this strategy does
not guarantee grey value preservation from a theoretical point of view, but
experimentally yields favourable results.
As it turns out, we must not apply the same algorithm for restriction pur-
poses: Typical choices of restriction factors close to two cause undersampling
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and lead to aliasing artefacts. To overcome this problem, we use four sam-
pling points instead of one: Let rx, ry be the restriction factors in x– and
y–direction, respectively, and assume textures to be defined on the domain
[0, nx−1)× [0, ny−1). For any target point (x, y)>, we then average over the
texture values at locations(

1

rx

·
(
x± 1

4

)
,

1

ry

·
(
y ± 1

4

))>

. (15)

This modification allows us to choose arbitrary factors in the interval [1
2
, 1)

which suffices for our purposes. Moreover, since nearby sampling points are
likely to be in the 2-D texture cache at the same time, this strategy is almost
as fast as prolongation.

Warping. In order to access images at warped positions, i.e. to evaluate
expressions of type f i(x+wk), we use the texturing mechanism of graphics
cards: We store the image channel i that is to be warped in a texture, com-
pute the target location by adding flow field and pixel coordinates, and fetch
the texture at the respective point. Albeit incoherent memory access is of-
ten considered a major performance problem on massively parallel hardware,
this operation turns out to be highly efficient: Optic flow is often piecewise
laminar and sufficiently smooth, such that the missing data locality is largely
compensated by the 2-D texture cache.

5 Experiments

Quality. We first consider a qualitative evaluation of our results. To this
end, we chose 4 sequences with known ground truth from the Middlebury
database, and computed the optic flow fields using our algorithm and an
individual choice of parameters. A visualisation of the results is shown in
Fig. 1. Like in the original CPU implementation of Zimmer et al. [10], the flow
fields are accurate and without visual artefacts. We also evaluated our results
to the ground truth by computing the Average Endpoint Error (AEE), as
well as the Average Angular Error (AAE). In order to be better comparable
to the results of other state-of-the-art methods, we additionally performed
the same experiment on a fixed parameter set for all sequences, as it is
required for the Middlebury benchmark. From Tab. 1, we see that if we
use fixed parameters, we obtain results comparable to those of Werlberger
et al. [9], which has been the top-ranked anisotropic GPU-based method in
the Middlebury benchmark so far. Using individually tuned parameters as
in Fig. 1, the obtained quality can be further enhanced.
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584×388
339 ms

640×480
545 ms

584×388
466 ms

640×480
855 ms

Figure 1: Our results for 4 Middlebury sequences with ground truth. Top to
bottom: Dimetrodon, Grove2, RubberWhale, Urban2. Left to right: First
frame with flow key, ground truth (white pixels mark locations where no
ground truth is available), result with size and runtime. We use optimised
parameter sets (α, γ, ζ, λ, L) for the individual sequences (D : (400, 8, 1.0,
0.05, 6), G : (50, 1, 1.0, 0.05, 10), R: (1000, 20, 1.0, 0.05, 10), U : (1500, 25,
0.01, 0.1, 40)). Fixed parameters for all cases: η = 0.91, σ = 0.3, ρ = 1.3, 1
cascadic FED step with 1 nonlinear update and T = 150 per warp level.
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Table 1: Error measures for 4 Middlebury sequences with known ground
truth using the optimal parameter sets from Fig. 1, and a fixed parameter
set (300, 20, 0.01, 0.1, 40).

Optimised Fixed
Sequence AEE AAE AEE AAE

Dimetrodon 0.08 1.49 0.11 2.20
Grove2 0.16 2.32 0.19 2.69
RubberWhale 0.09 2.93 0.11 3.76
Urban2 0.29 2.75 0.36 3.56

The high quality of our algorithm is also reflected in the position in the
Middlebury benchmark. In July 2010, it ranks seventh out of 37 both w.r.t.
AAE and AEE.

Runtime. Finally, we evaluate the efficiency of our approach on image
sequences of varying sizes. To this end, we benchmark the runtimes on
an NVidia GeForce GTX 285 black edition graphics card. Since runtimes
are affected by the size ratio of the image sequence and the parameter set,
we used a ratio of 4:3 and the fixed parameter set from Tab. 1. This is
depicted in Fig. 2. On Urban2 (640×480), our algorithm takes 980 ms.
Compared to hand-optimised Multigrid (FAS) [12] and FED schemes with
equivalent results on one core of an 2.33 GHz Intel Core2 Quad CPU, this
performance results in speedups of 11 and 13, respectively. Thanks to a
better GPU occupancy, these factors are even higher the larger the frame size,
e.g. 17 and 21 for frames of 1024× 768 pixels. Moreover, our algorithm has
comparable runtimes to the approach of Werlberger et al. [9], despite yielding
more accurate results, as seen in the Middlebury benchmark. Concerning
the latter, our method currently is the fastest among the top 10 approaches,
outperforming the competitors by one to three orders of magnitude.

6 Conclusions and Outlook

We have presented a highly efficient method for minimising variational optic
flow approaches by solving the corresponding Euler-Lagrange (EL) equations.
The core of our approach is the recently proposed Fast Explicit Diffusion
(FED) scheme [18], which can be adapted to optic flow due to the diffusion-
reaction character of the EL equations. Additionally, we apply a coarse-
to-fine strategy, and parallelise our complete algorithm on a GPU, thereby
introducing the first parallel FED implementation.
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Figure 2: Runtimes (with and without device transfer) on images with size
ratio 4:3.

In our experiments, we used the proposed approach to minimise the optic flow
model of Zimmer et al. [10], resulting in highly accurate flow fields that are
computed in less than one second for sequences of size 640×480. This gives
a speedup by one order of magnitude compared to a CPU implementation of
(i) a multigrid solver and (ii) an FED solver. In the Middlebury benchmark,
we rank among the top 10 and achieve the smallest runtime there.
Since most variational optic flow algorithms are based on solving the EL
equations, we hope that our approach can also help to tangibly speedup
other optic flow methods based on the EL framework. Note that we used an
anisotropic regulariser, which results in the most general form of the diffusion
part. Applying our approach with other popular smoothness terms, like TV
regularisation, thus works straightforward by simply replacing the diffusion
tensor by a scalar-valued diffusivity.
Our future research will be concerned with further reducing the runtimes to
meet an ultimate goal: Realtime performance for state-of-the-art optic flow
approaches on high resolution (maybe high-definition) image sequences.
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