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Abstract
We prove C'1@-regularity for local minimizers of functionals

/Q (| Vu]) de,

where ¢ is a Young function. In order to generalize the results of [Ful] and
[DSV], we assume for the function ¢ only the (As)-condition and

©'(1)

OEe

for a positive constant € (and of course a Hélder-condition for the second
derivatives).

AMS Subject Classification: 49 N 60

Keywords: vector-valued problems, local minimizers, nonstandard growth,
regularity

1 Introduction

We consider local minimizers u : R® D Q — RM defined on an open set
Q C R", n > 2, of the variational integral

f(w,Q)—/QH(Vw)dx. (1.1)

In the vectorial case, in the sixties De Giorgi, Giusti and Miranda provide
counterexamples to the full regularity until K. Uhlenbeck ,[Uh], proved in
1974 everywhere regularity for a radial functional, of p-growth, p > 2. Since
then a lot of generalizations have been made in the power case, in the almost
linear case and for general growth. The model case is:

H(Z)=(Z]), ZeR™M, (1.2)

for a function ¢ : [0,00) — [0,00) being C? away from 0. Integrands of
this particular form with essential contributions to the question of interior
regularity have been studied by many authors: the case p(t) = t? with p > 2
was investigated first by Uhlenbeck [Uh] and later extended by Giaquinta
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and Modica [GM], the subquadratic case by [AF]. For a more complete list
of references see the survey [Min]. Marcellini first investigate the so-called
(p, q)-growth conditions, i.e.,

c|ZIP72|PI* < D*H(Z)(P, P) < C(1+|2|"7*)|PJ?

for Z,P € R™™  constants ¢,C > 0 and exponents 1 < p < g < oo. On
account of counterexamples of Giaquinta [Gi] and Hong [Ho| we know that
there is no hope for regularity if p and g are to far apart. Note that the best
known bound in the (p, ¢)-growth situation is

q<p+2,

which is due to the work of Esposito, Leonetti and Mingione [ELM] as well
as Bildhauer and Fuchs [BF| and they assume that the minimizer is locally
bounded.
More general functions ¢ are the subject of Marcellini’s work (see [Mall-
[Ma3| and also [MP]).
To get a model, which is more flexible, additional assumptions are neces-
sary. This leads to variational problems with ¢-growth, where ¢ is a Young
function (compare [Ad]). This means we have to assume that ¢ is strictly
increasing and convex together with
lirnM = lim o = 0.
t—=0 t—00 gp(t)
Minimizers of (1.1) under the assumption (1.2), where ¢ is a Young-function,
were intensively studied by Fuchs [Ful], [Fu2] and Marcellini, Marcellini-Papi
and Diening, Stroffolini and Verde [DSV] (where one can find additional
references). In a comparison of this works, one notice that in all cases the
authors assume a (Aj)-condition for the function ¢, i.e.,

©(2t) < cp(t) forallt > 0. (A1)

Note that in [DSV] (A1) is not directly supposed, but follows from ¢”(t) <
/f\z@. This excludes some extreme cases like exponential growth (we re-
mark that this situation is studied in [MP]) and guarantees that the Orlicz
class K,(Q; RM) and the Orlicz space L,(2; RM) coincide (see [Ad], Chapter
VIII, for notation). Moreover, we can introduce the Orlicz-Sobolev space
VT/W(Q;RM ) of functions with zero traces in the usual way. Furthermore
they suppose a (Vz)-condition, which is defined as the (Aj)-condition for the
conjugate Young function

@ (t) = igg[st — ()],
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which is a Young function itself. As shown in [RR], if ¢ € C?(0,0), the
(V3)-condition follows from

_¢'(t)

@'(t) >

for a constant € > 0. (1.3) is supposed explicitly in [Ful] and [DSV] (note
that Fuchs [Ful] works under the more restrictive assumption ¢”(t) > @
but notes in Remark 3.1 that (1.3) is enough to prove his result). Both,
(Ay)- and (V3)-condition, together are equivalent to the reflexivity of the
corresponding Orlicz-Sobolev space W1#(€2;RY) (compare [Ad]), hence it
seems to be quite natural to assume (Ag) N (Vy) for the function . This
corresponds to the assumption 1 < p < oo in the power-growth situation. On

the other hand the (V3)-condition excludes almost linear growth, for example
o(t) = tlog(1l +1).

But this situation is already intensively studied in [FS], [EM], [FM] and

[MS].

Let us have a look at the differences of the papers [Ful] and [DSV]: As

mentioned above both assume a (Aj)-condition and (1.3), but in addition
Fuchs supposes that ¢ is C% up to 0 and

¢"(0) > 0. (1.4)

for allt >0 (1.3)

(1.4) implies that the minimization problem is non-degenerated at the origin.
This is quite restrictive because simple examples like

p(t) =t
forl<p<2or
o(t) = tPlog(1 +t)
are excluded. In the approach of [DSV] this examples can be considered .
But on the other hand in this work the condition

/
~(t
P'(t) < hSOT() for all ¢t > 0 (1.5)

is supposed. This is restrictive, too, which can be easily seen by consideration
of the example taken from Marcellini-Papi [MP]:

tp 9 t S 7—07
@(t) = BF4 4 9=P gin Jog log log ¢ .
t2 2 , t> T0;

where 7y is such that sinlogloglogmy = —1. Hence the aim of this paper
is to prove full Ct“-regularity only under the assumption ¢ € (A,) and
assumption (1.3) and to get rid of (1.4) and (1.5).

Let us formulate our regularity result.
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THEOREM 1.1 Let u € W) ?(Q;RM) be a local minimizer of (1.1) un-

loc
der the assumption (1.2) and ¢ € C'[0,00) N C%(0,00) a Young function
satisfying (A1) and for an exponent w > 0 and constants €,a > 0

g90’(1t)

< ¢"(t) <a(l+ t2)5@. (A2)

a) Then Vu is locally bounded.

b) If we suppose, in addition, the existence of 5 € (0, 1] such that

s B
(s +0) — 0] < o0 (5 (43)

for allt >0 and s € R with |s| < 3t, then there exists o > 0 such that
u € CHo(Q;RM),

REMARK 1.1 a) Note that from the first inequality in (A2) one can
follow the (Vs)-condition of v, compare [Ad]. Whereas the second in-
equality is always fulfilled, since we have no upper bound for the value
of w.

b) Condition (A3) shows that ¢" is locally Holder continuous off the di-
agonal. Such a condition appears in every full regularity theorem for
vector valued functions (compare [GM]).

c) Theorem 1.1 shows that the only assumptions which are necessary for
full regularity of functionals with @-growth are the (As)-condition and

o' (t) > ﬁ% This improves significantly the results of [Ful] and
[DSV].

Let us give some comments about properties of the function ¢ which follows
from our assumptions.

REMARK 1.2 a) From (A1) follows the existence of an exponent g > 1
such that
o(t) <ct?  fort > 1. (1.6)

b) From the first inequality in (A2) we can deduce that forp=1+¢€

o(t) > ct?  fort>1. (1.7)

b) By convezity and (As)-condition we obtain

()t = (t). (1.8)



2 Lipschitz regularity

The first step is to regularize the problem. Since our problem is degener-
ated at the origin we can not use the standard regularization (compare, for
example, [BF] and the references therein) as done in [Ful]. In order to over-
come this problem we work with an approximation, which was introduced in
[DE] and also used in [DSV]. Firstly we define for A > 0 the shifted Young
function p,(t) := f(f ©\(s) ds with

h(t) = 90/(;—;?75 (2.1)

for t > 0. For the function ) we obtain the following properties.

LEMMA 2.1 Let ¢ be a Young function with the properties (A1) and (A2)
and oy, 0 < X\ <1, defined as in (2.1). Then we have

a) @y fulfills a uniform (As)-condition, i.e.,

Pa(2t) < cpa(t), t=0,
where ¢ does not depend on .

b) assumption (A2) extends to vy uniformly, i.e.,

A\ ()

/
c @A(t)
t

t Y

< @) < a(l+ 1)

where €,a do not depend on .

c) pr € C?[0,00) and
¢5(0) > 0.

d) (1.6) and (1.7) extend uniformly to @y, i.e.
at?! <pa(t) <eot?, t>1,
where c¢1,co >0 and 1 < p < q < 0o are all independent of \.

e) (1.8) extends uniformly to ¢y, i.e.

@y ()t < eat) < (Bt

where c¢; > 0 is independent of \.



f) fort>1 we have
crpa(t) < p(t) < capa(t),
where cq, co are positive constants independent of \.

Proof: For the first statement we use (A1) and (1.8) to get

2t A t A 9 t A D)
0 0 0

A+s A+2s (A + 2s)2
t t t
Sc/ MSCZSSC/ MSdSSC/ Msds
o (A+2s)? o (A+s)? o (A+5s)
= cpy(t).

Hence the first inequality in e) follows, whereas the second one as a conse-
quence of the convexity of ¢,. We have a look at b):

pat) _ dA+1)

t A+t
" PA+t) | P"A+HHA+) - (A +1)
t) = t.
Al = F (A +1)2

Hence we obtain by the first inequality in (A2)
'A+)AN+t)+ (- 1) ( A+ 1)t
() > EOFDOH0+E= DO+

(A+1)?
SN A G ) PN O & o)
=(At+et) >+ > 1l,e} ———=
( +€)()\+t)2 > min {1, €} 0T D)
/
— min{1,8) %t(t) .
The second inequality in b) is a consequence of
"A+t)(A+t) — @ (A +t w @' ( N+t

(A+1)2 A+t

/

where we used (A2). Finally we receive

A0 = 7N

The first inequality in the last statement follows easily by direct calculations
using the As-property of . For the second one we calculate by convexity of

©
t 1 t
¢'(A+ s) e t/ 1
t) > —=sds > | = ds > t
90/\()_/5 Ats ° S_¢(2)2 %)\—FS s 2 ep(t),
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using (Ag) and (1.8). By (1.6) and (1.7) we can deduce d) from the last
statement. Now the proof is complete. O

With this preparations we are able to define a useful regularization: we define
for H\(Z) := ¢x(|Z]) the functional

Fa(u, B) :z/BHA(Vug)dx

for B € Q and u, as the unique minimizer of Fy(-, B) in u 4+ W1 (B, RM)
(note that on account of Lemma 2.1 f) the spaces Wh#(B, RM) and Wi (B, RM)
coincide). For u, we obtain:

LEMMA 2.2 e uy is uniformly bounded in W1 (B, RM) and sup, Fx(uy, B) <
00.

o Vuy € L2(Q,R™) and Uy, € Wo?(B) for every s < oo, where

loc
[Vual / 3
Uy s :z/ (—%(t)ﬁ) dt.
9 0 t

Proof: The first statement follows from
Fi(uy, B) < F(u, B)

and Lemma 2.1 f) (note that ¢, (t) < ¢(2) for ¢ < 1). The second one is
a consequence of [Ful], Theorem 1.1, Remark 3.1 and (2.3), since all condi-
tions mentioned there are fulfilled by Lemma 2.1, especially the problem is
non-degenerated at the origin on account of Lemma 2.1 c¢). O

LEMMA 2.3 Under the assumptions of Theorem 1.1 a) Vuy is uniformly
bounded in Lt (B, R™) for every t < oo.

loc

Proof: We follow the main ideas of [Ful]. Let n € C§°(B) be a cut-off
function and s;, > 0, we define T'y := 1 + |Vuy|? and

[Vuy| ' (t 3
\If)\yk = / (gp/\—()tsk) dt,
0 t

where we will specify s later. From [Ful], equation (2.3), we quote

3716
[ e <cm [ e(vapry (22)
B

supp(n)
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By Lemma 2.1 e), straightforward calculations show

NENOEES /Ot \/ ('DIAT(T)TS dr, (2.3)
hence

Sk
/ 7 (10 + [VOP) de < e(n) / (V)T do. (2.4)
B

supp(n)
Since @, (t) > ct for t > 1 (compare Lemma 2.1 d)) we have with the help of
(2.3) and Lemma 2.1 f)

_2_ g3 - _n_ S -
(VD172 [Vir[#77 < e (pa([ T )72 [Ver 477 + 1)

on_
<c (\Ifikz + 1) )

Plugging all together we have (note that ¢(n) does not depend on \)

on_
/ 1 (Ot + VO ea]?) da < e(n) {/ Wiy do + 1} (2.5)
B supp(n)

i n
Sk+1 - — Sk .
- n—2 n—2

We start the iteration with sq := 0, 51 := —25. Using (2.3) and (2.4) together

n—2

(2.6)

with Lemma 2.2 we can deduce uniform I/Vllof—bounds on Wyo. By (2.5) it
follows iteratively

Uy € W,22(B) uniform for all k € N. (2.7)

One easily checks that s — 0o, K — 00, hence the claim of Lemma 2.3 is a
consequence of (2.3) and Lemma 2.1 d). O

LEMMA 2.4 Under the assumptions of Theorem 1.1 a) Vuy is uniformly
bounded in LS. (B, R"M).

loc

Proof: We consider for ¢ := ¢+ w (¢ and w from Lemma 2.1) the function

G—2
T(k,r) = / [2 (wy — k) dx
A(k,r)

where we abbreviated wy :=logI'y and A(k,7) := B, N[|Vuy| > k]. We want

to show
c

T S G —h

ST (K, 7)" (2.8)
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for 0 < h <k, 0 <r <7 < Ry with exponents 7,0 > 0 and p > 1 (and,
of course, ¢ independent of \). From (2.8) we arrive at uniform Lj° -bounds
on Vu, using Stampacchia’s Lemma ([St], Lemma 5.1, p. 219), details are
given in [Bi]. Note that uniform bounds for 7 (which are necessary) follow
from Lemma 2.3.

Combining Lemma 2.1 b), d) and e) we conclude

q—2

c(1+12|%)" |P|> < D*H\(Z)(P,P) < C(1+ |Z]2)T|P for |Z] > 1,

where ¢,C > 0 do not depend on A. If we consider only the situation
|Vuy| > 1 (which is no restriction) we can apply the arguments from [Bi],
Thm. 5.22, to calculate 7 and obtain as mentioned there (2.8). Note that
Bildhauer consider in [Bi|, Thm. 5.22, the case M = 1, but due to the struc-
ture condition (1.2) we can use [Bi] ((32), p. 62) and procedure in the same
way. Hence the claim of Lemma 2.4 follows. OJ

The next step is to transfer the result to the minimizer u of (1.1). To do this,
on account of Lemma 2.3 and 2.4, it is enough to show

LEMMA 2.5 Under the assumptions of Theorem 1.1 a) we have the con-
vergence
uy — u in WH(B,RM), X\ = 0.

Proof: From Lemma 2.2 a) we deduce (at least for a subsequence, note that
due to our assumptions W1# (B, RM) is reflexive)

uy —: v in WY (B, RM), X\ — 0. (2.9)

We have to show that v minimizes the original functional. Considerering the

isomorphism
I€] (¢
Wy : R™M —>R”M,§»—>/ V—%t( ) dt
0

we obtain from the proof of Lemma 2.3 uniform W,-*-bounds on Wy (V).
This means

Wix(Vuy) —: H in W,22(B,R™M),

loc

Wy(Vuy) —: H in L} (B, R™)

for subsequences. Since Wy — W; uniformly we have Vuy, — W, '(H)
almost everywhere, thus Wy *(H) = Vv by (2.9). Now we know o, (|Vuy|) —
©(|V|) almost everwhere, hence using Fatou’s Lemma

/gp(|Vv|)d:v < liminf/ ox([Vus|) do < liminf/ ox(IVu]) da
B A B A B
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by definition of uy. On account of dominated convergence (compare Lemma
2.1 f)) we can change limes and integral and obtain

[ e < [ p(vuas,

which give us the claim due to uniqueness. O

We note that the arguments from Lemma 2.4 are note necessary for the proof
of Lemma 2.5, it is enough to have uniform I/Vlif—bounds on Wx(Vu,).

3 Full regularity

In this section we prove that u € C17(2, RM) for a ¢ > 0. The main idea is
the construction in the following lemma, which is motivated by [MS].

LEMMA 3.1 Let ¢ € C'[0,00) N C%*(0,00) a Young function satisfying
(A1), (A2) and (A3) and © > 1. Then there is a Young function pg €
C10,00) N C%*(0,00) such that

and
«©)%2 < 1) < o0) o), .)
" " 1 |S| B
bt +0) - 0 < @) (1) (32)

for allt >0 and s € R with |s| < it.

The result of the last section is
[Vulloos < K

on a ball B &€ € for a positive constant K. If we choose © > K, then u is a
minimizer of the functional

Fo(w, B) ::/Bcp@(|Vwax,

since it is a solution of the Euler equation and Fg is a convex functional.
Due to the r.h.s. of (3.1) in Lemma 3.1 all assumptions of [DSV] are fullfiled.
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This means we can quote their result and obtain the claim of Theorem 1.1 b).

Proof of Lemma 3.1: We define

po(t) == p(t) + Yeo(t),
Yo(t) := max {t — ©,0}*"

where ¢ and w are defined in (1.6) resp. (A2). Assuming ¢+ w > 3 we reach
that 1 is a C3-function, hence g € C*[0, 00) N C?(0, 00).

Let us start with inequality (3.1).

For t < © we have g = 0 and by (A2)

£1) < a1+ 25210

For ©® <t < 20 we first observe that

: p . 9t _ ¢(O)
> > —
egl?ggegp (t) = Ceglglgf%) t - ¢ 20 ¢(®)>0

and so

0o (t) = ¢ (t)+c(t—0)" % < c(1+4®2)5%®+@"+w2¢/§w 90’12?5) < C(@)cp/(w.

Moreover we obtain

and, as a consequence,

Last, if t > 20
(t—O)te—t ¢

Qb (t) < c(1+t)“’(p§t) +e(t—0)1T 2 < c(t—0)T 2 < ¢

t t—0O
Now, # — 1 as t — oo therefore fix ¢ = %, there exists T, such that
fot ¢ > T5 we have % < ﬁ < % and obviously for 20 < t < Ty we have

C1(0) < 75 < C5(0) we conclude (3.1) also in this case.
We now prove (3.2). It is sufficient to prove the following inequality:

5]

B8
(s + 1) — v (0)] < CO)e(H) (7) for 8] < 1t
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In the first case t < ©,s+t > O we compute (see (1.7) and (1.8))

es+t)=c(s+t—0)"2 <cs(s+t— 0Ot < c‘tﬂth“w_Q

gc<§5ﬁﬂﬁcmngo<%gﬁ¢f)gc(§05¢ﬁy

Now we suppose © <t < 20: we have for all s € R with |s]| < %t

" " " |S| A
(s +0) — bl < sup w(w) |s| < C(O) (_)

& <w<3e t

|s

< CO)p" (1 (—)5,

t

since infe<;<20 ¢"(t) > 0. Hence

B
S
bl +0) — (0] < el (1)
In the last situation ¢ > 20 we clearly have
ER
s+ )~ 0] < eoio) ()

since g (t) ~ t7 hence by (A3)

s B
b+ )~ (0] < b ()
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