
Universität des Saarlandes

U
N IV

E R S IT A
S

S
A

R A V I E N S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 278

A general regularity theorem for functionals
with ϕ-growth

D. Breit, B. Stroffolini and A. Verde

Saarbrücken 2010





Fachrichtung 6.1 – Mathematik Preprint No. 278
Universität des Saarlandes submitted: August 2, 2010

A general regularity theorem for functionals
with ϕ-growth

D. Breit
Saarland University

Department of Mathematics
P.O. Box 15 11 50
66041 Saarbrücken

Germany
Dominic.Breit@math.uni-sb.de

B. Stroffolini
Dipartimento di Matematica e Applicazioni ”R. Caccioppoli”
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Abstract
We prove C1,α-regularity for local minimizers of functionals∫

Ω

ϕ(|∇u|) dx,

where ϕ is a Young function. In order to generalize the results of [Fu1] and
[DSV], we assume for the function ϕ only the (∆2)-condition and

ϕ′′(t) ≥ ε̂
ϕ′(t)

t

for a positive constant ε̂ (and of course a Hölder-condition for the second
derivatives).

AMS Subject Classification: 49 N 60

Keywords: vector-valued problems, local minimizers, nonstandard growth,
regularity

1 Introduction

We consider local minimizers u : Rn ⊃ Ω → RM , defined on an open set
Ω ⊂ Rn, n ≥ 2, of the variational integral

F(w,Ω) =

∫
Ω

H(∇w) dx. (1.1)

In the vectorial case, in the sixties De Giorgi, Giusti and Miranda provide
counterexamples to the full regularity until K. Uhlenbeck ,[Uh], proved in
1974 everywhere regularity for a radial functional, of p-growth, p ≥ 2. Since
then a lot of generalizations have been made in the power case, in the almost
linear case and for general growth. The model case is:

H(Z) = ϕ(|Z|), Z ∈ RnM , (1.2)

for a function ϕ : [0,∞) → [0,∞) being C2 away from 0. Integrands of
this particular form with essential contributions to the question of interior
regularity have been studied by many authors: the case ϕ(t) = tp with p ≥ 2
was investigated first by Uhlenbeck [Uh] and later extended by Giaquinta
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and Modica [GM], the subquadratic case by [AF]. For a more complete list
of references see the survey [Min]. Marcellini first investigate the so-called
(p, q)-growth conditions, i.e.,

c|Z|p−2|P |2 ≤ D2H(Z)(P, P ) ≤ C(1 + |Z|q−2)|P |2

for Z, P ∈ RnM , constants c, C > 0 and exponents 1 < p ≤ q < ∞. On
account of counterexamples of Giaquinta [Gi] and Hong [Ho] we know that
there is no hope for regularity if p and q are to far apart. Note that the best
known bound in the (p, q)-growth situation is

q < p+ 2,

which is due to the work of Esposito, Leonetti and Mingione [ELM] as well
as Bildhauer and Fuchs [BF] and they assume that the minimizer is locally
bounded.
More general functions ϕ are the subject of Marcellini’s work (see [Ma1]-
[Ma3] and also [MP]).
To get a model, which is more flexible, additional assumptions are neces-
sary. This leads to variational problems with ϕ-growth, where ϕ is a Young
function (compare [Ad]). This means we have to assume that ϕ is strictly
increasing and convex together with

lim
t→0

ϕ(t)

t
= lim

t→∞

t

ϕ(t)
= 0.

Minimizers of (1.1) under the assumption (1.2), where ϕ is a Young-function,
were intensively studied by Fuchs [Fu1], [Fu2] and Marcellini, Marcellini-Papi
and Diening, Stroffolini and Verde [DSV] (where one can find additional
references). In a comparison of this works, one notice that in all cases the
authors assume a (∆2)-condition for the function ϕ, i.e.,

ϕ(2t) ≤ cϕ(t) for all t ≥ 0. (A1)

Note that in [DSV] (A1) is not directly supposed, but follows from ϕ′′(t) ≤
ĥϕ
′(t)
t

. This excludes some extreme cases like exponential growth (we re-
mark that this situation is studied in [MP]) and guarantees that the Orlicz
class Kϕ(Ω;RM) and the Orlicz space Lϕ(Ω;RM) coincide (see [Ad], Chapter
VIII, for notation). Moreover, we can introduce the Orlicz-Sobolev space
W̊ 1,ϕ(Ω;RM) of functions with zero traces in the usual way. Furthermore
they suppose a (∇2)-condition, which is defined as the (∆2)-condition for the
conjugate Young function

ϕ∗(t) := sup
s≥0

[st− ϕ(s)],
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which is a Young function itself. As shown in [RR], if ϕ ∈ C2(0,∞), the
(∇2)-condition follows from

ϕ′′(t) ≥ ε̂
ϕ′(t)

t
for all t ≥ 0 (1.3)

for a constant ε̂ > 0. (1.3) is supposed explicitly in [Fu1] and [DSV] (note

that Fuchs [Fu1] works under the more restrictive assumption ϕ′′(t) ≥ ϕ′(t)
t

but notes in Remark 3.1 that (1.3) is enough to prove his result). Both,
(∆2)- and (∇2)-condition, together are equivalent to the reflexivity of the
corresponding Orlicz-Sobolev space W 1,ϕ(Ω;RN) (compare [Ad]), hence it
seems to be quite natural to assume (∆2) ∩ (∇2) for the function ϕ. This
corresponds to the assumption 1 < p <∞ in the power-growth situation. On
the other hand the (∇2)-condition excludes almost linear growth, for example

ϕ(t) = t log(1 + t).

But this situation is already intensively studied in [FS], [EM], [FM] and
[MS].
Let us have a look at the differences of the papers [Fu1] and [DSV]: As
mentioned above both assume a (∆2)-condition and (1.3), but in addition
Fuchs supposes that ϕ is C2 up to 0 and

ϕ′′(0) > 0. (1.4)

(1.4) implies that the minimization problem is non-degenerated at the origin.
This is quite restrictive because simple examples like

ϕ(t) = tp

for 1 < p < 2 or
ϕ(t) = tp log(1 + t)

are excluded. In the approach of [DSV] this examples can be considered .
But on the other hand in this work the condition

ϕ′′(t) ≤ ĥ
ϕ′(t)

t
for all t > 0 (1.5)

is supposed. This is restrictive, too, which can be easily seen by consideration
of the example taken from Marcellini-Papi [MP]:

ϕ(t) =

{
tp , t ≤ τ0,

t
p+q

2
+ q−p

2
sin log log log t, t > τ0;

where τ0 is such that sin log log log τ0 = −1. Hence the aim of this paper
is to prove full C1,α-regularity only under the assumption ϕ ∈ (∆2) and
assumption (1.3) and to get rid of (1.4) and (1.5).
Let us formulate our regularity result.
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THEOREM 1.1 Let u ∈ W 1,ϕ
loc (Ω;RM) be a local minimizer of (1.1) un-

der the assumption (1.2) and ϕ ∈ C1[0,∞) ∩ C2(0,∞) a Young function
satisfying (A1) and for an exponent ω ≥ 0 and constants ε̂, a > 0

ε̂
ϕ′(t)

t
≤ ϕ′′(t) ≤ a(1 + t2)

ω
2
ϕ′(t)

t
. (A2)

a) Then ∇u is locally bounded.

b) If we suppose, in addition, the existence of β ∈ (0, 1] such that

|ϕ′′(s+ t)− ϕ′′(t)| ≤ cϕ′′(t)

(
|s|
t

)β
(A3)

for all t > 0 and s ∈ R with |s| < 1
2
t, then there exists σ > 0 such that

u ∈ C1,σ(Ω;RM).

REMARK 1.1 a) Note that from the first inequality in (A2) one can
follow the (∇2)-condition of ϕ, compare [Ad]. Whereas the second in-
equality is always fulfilled, since we have no upper bound for the value
of ω.

b) Condition (A3) shows that ϕ′′ is locally Hölder continuous off the di-
agonal. Such a condition appears in every full regularity theorem for
vector valued functions (compare [GM]).

c) Theorem 1.1 shows that the only assumptions which are necessary for
full regularity of functionals with ϕ-growth are the (∆2)-condition and

ϕ′′(t) ≥ ε̂ϕ
′(t)
t

. This improves significantly the results of [Fu1] and
[DSV].

Let us give some comments about properties of the function ϕ which follows
from our assumptions.

REMARK 1.2 a) From (A1) follows the existence of an exponent q > 1
such that

ϕ(t) ≤ ctq for t ≥ 1. (1.6)

b) From the first inequality in (A2) we can deduce that for p = 1 + ε̂

ϕ(t) ≥ ctp for t ≥ 1. (1.7)

b) By convexity and (∆2)-condition we obtain

ϕ′(t)t ≈ ϕ(t). (1.8)
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2 Lipschitz regularity

The first step is to regularize the problem. Since our problem is degener-
ated at the origin we can not use the standard regularization (compare, for
example, [BF] and the references therein) as done in [Fu1]. In order to over-
come this problem we work with an approximation, which was introduced in
[DE] and also used in [DSV]. Firstly we define for λ > 0 the shifted Young
function ϕλ(t) :=

∫ t
0
ϕ′λ(s) ds with

ϕ′λ(t) :=
ϕ′(λ+ t)

λ+ t
t (2.1)

for t ≥ 0. For the function ϕλ we obtain the following properties.

LEMMA 2.1 Let ϕ be a Young function with the properties (A1) and (A2)
and ϕλ, 0 < λ ≤ 1, defined as in (2.1). Then we have

a) ϕλ fulfills a uniform (∆2)-condition, i.e.,

ϕλ(2t) ≤ cϕλ(t), t ≥ 0,

where c does not depend on λ.

b) assumption (A2) extends to ϕλ uniformly, i.e.,

ε̂
ϕ′λ(t)

t
≤ ϕ′′λ(t) ≤ a(1 + t2)

ω
2
ϕ′λ(t)

t
,

where ε̂, a do not depend on λ.

c) ϕλ ∈ C2[0,∞) and
ϕ′′λ(0) > 0.

d) (1.6) and (1.7) extend uniformly to ϕλ, i.e.

c1t
p ≤ ϕλ(t) ≤ c2t

q, t ≥ 1,

where c1, c2 > 0 and 1 < p ≤ q <∞ are all independent of λ.

e) (1.8) extends uniformly to ϕλ, i.e.

c1ϕ
′
λ(t)t ≤ ϕλ(t) ≤ ϕ′λ(t)t

where c1 > 0 is independent of λ.
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f) for t ≥ 1 we have
c1ϕλ(t) ≤ ϕ(t) ≤ c2ϕλ(t),

where c1, c2 are positive constants independent of λ.

Proof: For the first statement we use (A1) and (1.8) to get

ϕλ(2t) =

∫ 2t

0

ϕ′(λ+ s)

λ+ s
s ds = 4

∫ t

0

ϕ′(λ+ 2s)

λ+ 2s
s ds ≤ c

∫ t

0

ϕ(λ+ 2s)

(λ+ 2s)2
s ds

≤ c

∫ t

0

ϕ(λ+ s)

(λ+ 2s)2
s ds ≤ c

∫ t

0

ϕ(λ+ s)

(λ+ s)2
s ds ≤ c

∫ t

0

ϕ′(λ+ s)

(λ+ s)
s ds

= cϕλ(t).

Hence the first inequality in e) follows, whereas the second one as a conse-
quence of the convexity of ϕλ. We have a look at b):

ϕ′λ(t)

t
=
ϕ′(λ+ t)

λ+ t
;

ϕ′′λ(t) =
ϕ′(λ+ t)

λ+ t
+
ϕ′′(λ+ t)(λ+ t)− ϕ′(λ+ t)

(λ+ t)2
t.

Hence we obtain by the first inequality in (A2)

ϕ′′λ(t) ≥
ϕ′(λ+ t)(λ+ t) + (ε̂− 1)ϕ′(λ+ t)t

(λ+ t)2

= (λ+ ε̂t)
ϕ′(λ+ t)

(λ+ t)2
≥ min {1, ε̂} ϕ

′(λ+ t)

(λ+ t)

= min {1, ε̂} ϕ
′
λ(t)

t
.

The second inequality in b) is a consequence of

ϕ′′(λ+ t)(λ+ t)− ϕ′(λ+ t)

(λ+ t)2
t ≤ ϕ′′(λ+ t) ≤ c(1 + (λ+ t)2)

ω
2
ϕ′(λ+ t)

λ+ t

≤ c(1 + t2)
ω
2
ϕ′λ(t)

t
,

where we used (A2). Finally we receive

ϕ′′λ(0) =
ϕ′(λ)

λ
> 0.

The first inequality in the last statement follows easily by direct calculations
using the ∆2-property of ϕ. For the second one we calculate by convexity of
ϕ

ϕλ(t) ≥
∫ t

t
2

ϕ′(λ+ s)

λ+ s
s ds ≥ ϕ′

(
t

2

)
t

2

∫ t

t
2

1

λ+ s
ds ≥ cϕ(t),
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using (∆2) and (1.8). By (1.6) and (1.7) we can deduce d) from the last
statement. Now the proof is complete. �

With this preparations we are able to define a useful regularization: we define
for Hλ(Z) := ϕλ(|Z|) the functional

Fλ(u,B) :=

∫
B

Hλ(∇uδ) dx

for B b Ω and uλ as the unique minimizer of Fλ(·, B) in u + W̊ 1,ϕ(B,RM)
(note that on account of Lemma 2.1 f) the spacesW 1,ϕ(B,RM) andW 1,ϕλ(B,RM)
coincide). For uλ we obtain:

LEMMA 2.2 • uλ is uniformly bounded in W 1,ϕ(B,RM) and supλFλ(uλ, B) <
∞.

• ∇uλ ∈ L∞loc(Ω,RnM) and Ψλ,s ∈ W 1,2
loc (B) for every s <∞, where

Ψλ,s :=

∫ |∇uλ|
0

(
ϕ′λ(t)

t
ts
) 1

2

dt.

Proof: The first statement follows from

Fλ(uλ, B) ≤ Fλ(u,B)

and Lemma 2.1 f) (note that ϕλ(t) ≤ ϕ(2) for t ≤ 1). The second one is
a consequence of [Fu1], Theorem 1.1, Remark 3.1 and (2.3), since all condi-
tions mentioned there are fulfilled by Lemma 2.1, especially the problem is
non-degenerated at the origin on account of Lemma 2.1 c). �

LEMMA 2.3 Under the assumptions of Theorem 1.1 a) ∇uλ is uniformly
bounded in Ltloc(B,RnM) for every t <∞.

Proof: We follow the main ideas of [Fu1]. Let η ∈ C∞0 (B) be a cut-off
function and sk ≥ 0, we define Γλ := 1 + |∇uλ|2 and

Ψλ,k :=

∫ |∇uλ|
0

(
ϕ′λ(t)

t
tsk
) 1

2

dt,

where we will specify sk later. From [Fu1], equation (2.3), we quote∫
B

η2|∇Ψλ,k|2 dx ≤ c(η)

∫
supp(η)

ϕλ(|∇uλ|)Γ
sk
2
λ dx. (2.2)
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By Lemma 2.1 e), straightforward calculations show

√
ϕλ(t)ts ≈

∫ t

0

√
ϕ′λ(τ)

τ
τ s dτ, (2.3)

hence∫
B

η2
(
|Ψλ,k|2 + |∇Ψλ,k|2

)
dx ≤ c(η)

∫
supp(η)

ϕλ(|∇uλ|)Γ
sk
2
λ dx. (2.4)

Since ϕλ(t) ≥ ct for t ≥ 1 (compare Lemma 2.1 d)) we have with the help of
(2.3) and Lemma 2.1 f)

ϕλ(|∇uλ|)|∇uλ|
2

n−2 |∇uλ|sk
n
n−2 ≤ c

(
ϕλ(|∇uλ|)

n
n−2 |∇uλ|sk

n
n−2 + 1

)
≤ c
(

Ψ
2n
n−2

λ,k + 1

)
.

Plugging all together we have (note that c(η) does not depend on λ)∫
B

η2
(
|Ψλ,k+1|2 + |∇Ψλ,k+1|2

)
dx ≤ c(η)

{∫
supp(η)

Ψ
2n
n−2

λ,k dx+ 1

}
(2.5)

sk+1 :=
2

n− 2
+ sk

n

n− 2
. (2.6)

We start the iteration with s0 := 0, s1 := 2
n−2

. Using (2.3) and (2.4) together

with Lemma 2.2 we can deduce uniform W 1,2
loc -bounds on Ψλ,0. By (2.5) it

follows iteratively

Ψλ,k ∈ W 1,2
loc (B) uniform for all k ∈ N. (2.7)

One easily checks that sk →∞, k →∞, hence the claim of Lemma 2.3 is a
consequence of (2.3) and Lemma 2.1 d). �

LEMMA 2.4 Under the assumptions of Theorem 1.1 a) ∇uλ is uniformly
bounded in L∞loc(B,RnM).

Proof: We consider for q̃ := q + ω (q and ω from Lemma 2.1) the function

τ(k, r) :=

∫
A(k,r)

Γ
q̃−2

2
λ (ωλ − k)2 dx

where we abbreviated ωλ := log Γλ and A(k, r) := Br∩ [|∇uλ| > k]. We want
to show

τ(h, r) ≤ c

(r̂ − r)γ(h− k)θ
τ(k, r̂)µ (2.8)
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for 0 < h < k, 0 < r < r̂ < R0 with exponents γ, θ > 0 and µ > 1 (and,
of course, c independent of λ). From (2.8) we arrive at uniform L∞loc-bounds
on ∇uλ using Stampacchia’s Lemma ([St], Lemma 5.1, p. 219), details are
given in [Bi]. Note that uniform bounds for τ (which are necessary) follow
from Lemma 2.3.
Combining Lemma 2.1 b), d) and e) we conclude

c(1 + |Z|2)
p−2

2 |P |2 ≤ D2Hλ(Z)(P, P ) ≤ C(1 + |Z|2)
q̃−2

2 |P |2 for |Z| ≥ 1,

where c, C > 0 do not depend on λ. If we consider only the situation
|∇uλ| ≥ 1 (which is no restriction) we can apply the arguments from [Bi],
Thm. 5.22, to calculate τ and obtain as mentioned there (2.8). Note that
Bildhauer consider in [Bi], Thm. 5.22, the case M = 1, but due to the struc-
ture condition (1.2) we can use [Bi] ((32), p. 62) and procedure in the same
way. Hence the claim of Lemma 2.4 follows. �

The next step is to transfer the result to the minimizer u of (1.1). To do this,
on account of Lemma 2.3 and 2.4, it is enough to show

LEMMA 2.5 Under the assumptions of Theorem 1.1 a) we have the con-
vergence

uλ ⇀ u in W 1,ϕ(B,RM), λ→ 0.

Proof: From Lemma 2.2 a) we deduce (at least for a subsequence, note that
due to our assumptions W 1,ϕ(B,RM) is reflexive)

uλ ⇀: v in W 1,ϕ(B,RM), λ→ 0. (2.9)

We have to show that v minimizes the original functional. Considerering the
isomorphism

Wλ : RnM → RnM , ξ 7→
∫ |ξ|

0

√
ϕ′λ(t)

t
dt

we obtain from the proof of Lemma 2.3 uniform W 1,2
loc -bounds on Wλ(∇uλ).

This means

Wλ(∇uλ) ⇀: H in W 1,2
loc (B,RnM),

Wλ(∇uλ)→: H in L2
loc(B,RnM)

for subsequences. Since Wλ → W0 uniformly we have ∇uλ → W−1
0 (H)

almost everywhere, thus W−1
0 (H) = ∇v by (2.9). Now we know ϕλ(|∇uλ|)→

ϕ(|∇v|) almost everwhere, hence using Fatou’s Lemma∫
B

ϕ(|∇v|) dx ≤ lim inf
λ

∫
B

ϕλ(|∇uλ|) dx ≤ lim inf
λ

∫
B

ϕλ(|∇u|) dx

9



by definition of uλ. On account of dominated convergence (compare Lemma
2.1 f)) we can change limes and integral and obtain∫

B

ϕ(|∇v|) dx ≤
∫
B

ϕ(|∇u|) dx,

which give us the claim due to uniqueness. �

We note that the arguments from Lemma 2.4 are note necessary for the proof
of Lemma 2.5, it is enough to have uniform W 1,2

loc -bounds on Wλ(∇uλ).

3 Full regularity

In this section we prove that u ∈ C1,σ(Ω,RM) for a σ > 0. The main idea is
the construction in the following lemma, which is motivated by [MS].

LEMMA 3.1 Let ϕ ∈ C1[0,∞) ∩ C2(0,∞) a Young function satisfying
(A1), (A2) and (A3) and Θ ≥ 1. Then there is a Young function ϕΘ ∈
C1[0,∞) ∩ C2(0,∞) such that

ϕΘ(t) = ϕ(t) for t ≤ Θ

and

c(Θ)
ϕ′Θ(t)

t
≤ ϕ′′Θ(t) ≤ C(Θ)

ϕ′Θ(t)

t
, (3.1)

|ϕ′′Θ(s+ t)− ϕ′′Θ(t)| ≤ C(Θ)ϕ′′Θ(t)

(
|s|
t

)β
(3.2)

for all t > 0 and s ∈ R with |s| < 1
2
t.

The result of the last section is

‖∇u‖∞,B ≤ K

on a ball B b Ω for a positive constant K. If we choose Θ > K, then u is a
minimizer of the functional

FΘ(w,B) :=

∫
B

ϕΘ(|∇w|) dx,

since it is a solution of the Euler equation and FΘ is a convex functional.
Due to the r.h.s. of (3.1) in Lemma 3.1 all assumptions of [DSV] are fullfiled.
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This means we can quote their result and obtain the claim of Theorem 1.1 b).

Proof of Lemma 3.1: We define

ϕΘ(t) := ϕ(t) + ψΘ(t),

ψΘ(t) := max {t−Θ, 0}q+ω ,

where q and ω are defined in (1.6) resp. (A2). Assuming q+ ω > 3 we reach
that ψΘ is a C3-function, hence ϕΘ ∈ C1[0,∞) ∩ C2(0,∞).
Let us start with inequality (3.1).
For t < Θ we have ψΘ = 0 and by (A2)

ϕ′′(t) ≤ a(1 + t2)
ω
2
ϕ′(t)

t
≤ a(1 + Θ2)

ω
2
ϕ′(t)

t
.

For Θ ≤ t ≤ 2Θ we first observe that

inf
Θ≤t≤2Θ

ϕ′′(t) ≥ c inf
Θ≤t≤2Θ

ϕ′(t)

t
≥ c

ϕ′(Θ)

2Θ
= C(Θ) > 0

and so

ϕ′′Θ(t) = ϕ′′(t)+c(t−Θ)q+ω−2 ≤ c(1+4Θ2)
ω
2
ϕ′(t)

t
+Θq+ω−2ϕ

′(t)

t

t

ϕ′(t)
≤ C(Θ)

ϕ′(t)

t
.

Moreover we obtain

ψ′Θ(t)

t
≤ c ≤ cϕ′′(t)

and, as a consequence,

c(Θ)
ϕ′Θ(t)

t
≤ ϕ′′Θ(t).

Last, if t > 2Θ

ϕ′′Θ(t) ≤ c(1+t)ω
ϕ′(t)

t
+c(t−Θ)q+ω−2 ≤ c(t−Θ)q+ω−2 ≤ c

(t−Θ)q+ω−1

t

t

t−Θ

Now, t
t−Θ
→ 1 as t → ∞ therefore fix ε = 1

2
, there exists T2 such that

fot t > T2 we have 1
2
< t

t−Θ
< 3

2
and obviously for 2Θ < t < T2 we have

C1(Θ) < t
t−Θ

< C2(Θ) we conclude (3.1) also in this case.
We now prove (3.2). It is sufficient to prove the following inequality:

|ψ′′Θ(s+ t)− ψ′′Θ(t)| ≤ C(Θ)ϕ′′θ(t)

(
|s|
t

)β
for |s| < 1

2
t

11



In the first case t < Θ, s+ t > Θ we compute (see (1.7) and (1.8))

ψ′′Θ(s+ t) = c(s+ t−Θ)q+ω−2 ≤ cs(s+ t−Θ)q+ω−3 ≤ c
|s|
t
tq+ω−2

≤ c

(
|s|
t

)β
tp−2C(Θ) ≤ C

(
|s|
t

)β
ϕ′(t)

t
≤ c

(
|s|
t

)β
ϕ′′(t).

Now we suppose Θ ≤ t ≤ 2Θ: we have for all s ∈ R with |s| < 1
2
t

|ψ′′Θ(s+ t)− ψ′′Θ(t)| ≤ sup
Θ
2
≤w≤3Θ

ψ′′′Θ(w) |s| ≤ C(Θ)

(
|s|
t

)β
≤ C(Θ)ϕ′′(t)

(
|s|
t

)β
,

since infΘ≤t≤2Θ ϕ
′′(t) > 0. Hence

|ϕ′′Θ(s+ t)− ϕ′′Θ(t)| ≤ C(Θ)ϕ′′Θ(t)

(
|s|
t

)β
.

In the last situation t ≥ 2Θ we clearly have

|ψ′′Θ(s+ t)− ψ′′Θ(t)| ≤ cψ′′Θ(t)

(
|s|
t

)β
,

since ψΘ(t) ≈ tq+ω, hence by (A3)

|ϕ′′Θ(s+ t)− ϕ′′Θ(t)| ≤ cϕ′′Θ(t)

(
|s|
t

)β
.

�
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