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Abstract. The aim of this note is to investigate a regularity theory for
minimizers of energies whose density depends on the trace-free part of the
symmetric gradient, where integrands of anisotropic growth are considered.
An adequate coercive inequality guarantees the existence of minimizers of
such energies in suitable Sobolev classes. Moreover, various other Korn-
type inequalities are shown, which can be used to prove the smoothness of
weak solutions to linear elliptic systems involving the trace-free part of the
symmetric gradient. In particular, Campanato-type estimates for solutions
to such systems are established so that all tools are available to prove the
interior regularity of minimizers of energies depending on the trace-free
part of the symmetric gradient.
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Campanato-type estimates · Variational problems · Nonstandard growth ·
Regularity

Mathematics Subject Classification (2010). 35E99, 35J47, 49J99,
49N60, 74B99, 83C99

1 Introduction

In a recent paper [7] Fuchs and the author prove a generalization of Korn’s inequality,
in which the symmetric gradient Ev := 1

2 (∂ivj + ∂jv
i) of a vector field v : Ω → R2,

defined on a bounded Lipschitz domain Ω ⊂ R2, is replaced by its trace-free part
EDv := Ev − 1

2 div v (δij) (δij denoting the Kronecker symbol). More precisely,

‖v‖1,p 6 c‖EDv‖p

holds for each vector field v from the space
◦
W 1,p(Ω; R2), p ∈ (1,∞), of Sobolev func-

tions with zero trace. Korn-type inequalities involving the trace-free part of the sym-
metric gradient have applications in general relativity, Cosserat elasticity, and geome-
try; compare [7], [9], [19], and the references therein.
As shown in [7], functionals of the type

ˆ
Ω

f(EDv) dx

with an integrand f of quadratic growth have a unique minimizer and are C1,α–
regular under natural boundary and ellipticity conditions in the two–dimensional case.
Functionals of the above type appear, for example, in general relativity and Cosserat
elasticity; see [7] or [19] for some comments and further references.
One aim of this paper is to provide the tools, which are necessary to develop a

regularity theory for minimizers of functionals of the above type in arbitrary dimen-
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sions and under nonstandard growth conditions. We establish Korn- and Poincaré-
type inequalities involving EDv := Ev − 1

n div v (δij) for vector fields v from the class
W 1,p(Ω; Rn) (n > 2) and discuss the regularity properties of solutions to linear elliptic
systems involving the trace-free part of the symmetric gradient. Here, we show various
Caccioppoli- and Campanato-type inequalities, which play a central role in regularity
theory.
As an application we obtain some C1,α–regularity results for minimizers of function-

als of the above type under anisotropic growth conditions. In [2] and [3] corresponding
results are shown in the context of anisotropic power law fluids, where the functionals
under consideration depend on the symmetric part of the gradient and are minimized
in appropriate classes of solenoidal vector fields. The proofs of our regularity results
follow the general line of these papers, but the arguments given there have to be
adapted to our setting in a nontrivial way.
Let us give a detailed formulation of our regularity results: Let Ω ⊂ Rn be a bounded

Lipschitz domain and 1 < p 6 q <∞. Suppose that f : Mn → [0,∞) is a function of
class C2 with anisotropic growth in the following sense:

λ(1 + |σ|2)p/2−1|τ |2 6 D2f(σ)(τ, τ) 6 Λ(1 + |σ|2)q/2−1|τ |2 (1)

for all σ, τ ∈Mn with positive numbers λ,Λ. Here, Mn denotes the space of trace-free
matrices of order n. We consider the functional

J [v] = J [v; Ω] :=
ˆ

Ω

f(EDv) dx (2)

among vector fields v from the class K := u0 +
◦
W 1,p(Ω; Rn) with prescribed Dirichlet

boundary data u0 ∈ W 1,p(Ω; Rn). Our main result is the following existence and
regularity theorem, which extends the results from [7] and [19], where the case p =
q = 2 is considered.

Theorem 1.1. Let condition (1) hold and assume J [u0] <∞.

a) The minimization problem J → min in K admits a unique solution u.

b) If n > 3, q > 2 and q < (1 + 2/n)p, there is an open set of full Lebesgue measure
such that u ∈ C1,α(Ω0; Rn) for each α ∈ (0, 1).

c) Let n = 2 and q < min(2p, 2 + p). Then u ∈ C1,α(Ω; R2) for each α ∈ (0, 1).

Corollary 1.2. Let (1) hold and suppose that u is a local J–minimizer, that is,
u ∈W 1,p

loc(Ω; Rn) fulfills for each subdomain Ω′b Ω the conditions

J [u; Ω′] <∞ and J [u; Ω′] 6 J [v; Ω′]

for all v ∈ W 1,p
loc(Ω; Rn) such that spt(u − v) b Ω′. Then the statements b) and c) of

Theorem 1.1 continue to hold.
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Remark 1.3. It should be emphasized that in part b) of Theorem 1.1 the case q < 2
requires a different proof, which is in preparation. For some ideas concerning the
subquadratic case in the framework of anisotropic power law fluids we refer to [2].
Clearly, for exponents 1 < p 6 q < 2 the ellipticity condition (1) is satisfied with q
replaced by q = 2. Therefore, we have partial regularity if 2 < (1 + 2/n)p, that is,
p > 2n/(n+ 2) so that values of p and q close to 1 are excluded.

Basic Notation. We use the notations Lp(loc), W
k,p
(loc),

◦
W k,p, etc., for the standard

Lebesgue and Sobolev spaces equipped with their standard norms ‖ · ‖p, ‖ · ‖k,p; see
[1] for precise definitions and an overview. For vectors a = (ai), b = (bj) ∈ Rn we use
the notations

a · b = aibi, |a| =
√
a · a,

a⊗ b = (aibj), a� b = 1
2 (a⊗ b+ b⊗ a).

Moreover, we write

σ : τ = σijτij , |σ| =
√
σ : τ , σD = σ − 1

n (trσ)I

for matrices σ = (σij), τ = (τkl) ∈ Rn×n, where trσ = σii and I = (δij). Here, Ein-
stein’s convention of summation over repeated indices running from 1 to n is applied.
Throughout, the symbol c denotes a positive constant, whose value may change from
line to line.

2 Generalized Korn-type inequalities

In this section we collect variants of Korn’s inequality involving the trace-free part
of the symmetric gradient; for corresponding Korn-type inequalities in the classical
setting we refer to [8] and the references given there. In the following, unless anything
else is said, c is a positive constant depending on n, p, and Ω.

Theorem 2.1. Let p ∈ (1,∞) and n > 3. Then the space

Dp(Ω) :=
{
v ∈ Lp(Ω; Rn) : EDv ∈ Lp(Ω; Mn)

}
(where EDv is defined in the sense of distributions) coincides with the space W 1,p(Ω; Rn)
and for each v ∈ Dp(Ω) it holds

‖v‖1,p 6 c
(
‖v‖p + ‖EDv‖p

)
. (3)

As a consequence we get the following interpolation inequality.

Corollary 2.2. Let p > 2 and n > 3. Then

‖v‖p 6 c
(
‖v‖2 + ‖EDv‖p

)
(4)

for each v ∈W 1,p(Ω; Rn).
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The following theorem is an extension of the Korn-type inequality shown in [7] in
the two-dimensional case. For n > 3 this result follows by contradiction from Theorem
2.1, whereas the case n = 2 requires an absolutely different proof; compare Remark
2.4 a) below.

Theorem 2.3. Let p ∈ (1,∞) and n > 2. Then the space

Dp
loc(Ω) :=

{
v ∈ Lploc(Ω; Rn) : EDv ∈ Lploc(Ω; Mn)

}
coincides with the space W 1,p

loc(Ω; Rn). Moreover,

‖v‖1,p 6 c‖EDv‖p (5)

for each v ∈
◦
W 1,p(Ω; Rn).

Remark 2.4. a) Theorem 2.1 does not hold in the two-dimensional case. Indeed, if
we assume by contradiction that (3) holds for n = 2, the Peetre-Tatar lemma [13]
(Chapter I, Theorem 2.1) would imply that the kernel of the operator

EΩ : W 1,p(Ω; R2)→ Lp(Ω; M2), v 7→ EDv

is finite-dimensional. On the other hand, EDv = 0 is equivalent to the Cauchy-
Riemann equations in case n = 2 so that kerEΩ coincides with the space of holo-
morphic functions on Ω, which is a contradiction.

b) By scaling one easily verifies that for a ball BR = BR(x0) the Korn-type inequality
(3) takes the form

ˆ
BR

|∇v|p dx 6 c

(
1
Rp

ˆ
BR

|v|p dx+
ˆ
BR

|EDv|p dx

)
, (6)

where c = c(n, p) is a positive constant (being independent of R and x0).

c) From the proof of Theorem 2.3 we deduce that in case n = 2 the Korn-type inequality
(3) holds locally in the following sense: Let ω′ b ω b Ω. Then there are positive
numbers c1 = c1(n, p, ω′, ω) and c2 = c2(n, p, ω) such that

‖v‖1,p;ω′ 6 c1‖v‖p;ω + c2‖EDv‖p;ω

for each v ∈ W 1,p
loc(Ω; Rn). In particular, for balls Br = Br(x0) and BR = BR(x0)

with Br b BR b Ω,

ˆ
Br

|∇v|p dx 6 c

(
1

(R− r)p

ˆ
BR

|v|p dx+
ˆ
BR

|EDv|p dx

)
(7)

with a positive number c = c(n, p) (being independent of r, R and x0).
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Before we prove the above Korn-type inequalities, we give a characterization of the
kernel of the operator

EΩ : W 1,p(Ω; Rn)→ Lp(Ω; Mn), v 7→ EDv.

As already remarked, kerEΩ is infinite-dimensional and coincides with the space of
holomorphic functions on Ω if n = 2. In contrast, kerEΩ is finite-dimensional for
n > 3 and consists of the so-called conformal Killing vectors (Möbius transformations);
compare [4] or [17]. Since we found no rigorous proof of this fact, we outline the main
ideas here.

Proposition 2.5. Let n > 3. Then kerEΩ coincides with the space KΩ of conformal
Killing vectors χ : Ω→ Rn,

χ(x) = 2(a · x)x− |x|2a+Qx+ ρx+ b

with a, b ∈ Rn, ρ ∈ R, and a skew-symmetric matrix Q ∈ Rn×n.

Proof. A straightforward calculation shows KΩ ⊂ kerEΩ. To prove the converse in-
clusion, we observe that each χ ∈ kerEΩ satisfies the equations

∇χ = Eχ+ 1
n (divχ)I, (8)

∇Eχ = 1
n (∂idivχδjk − ∂jdivχδik), (9)

∇2divχ = 0 (10)

in the sense of distributions, where Eχ := 1
2 (∂iχj−∂jχi). The first equation (8) follows

from the definition of EDχ, whereas (9) and (10) can be deduced by combining EDχ = 0
with the relations

∂k∂jχ
i = ∂kEDijχ+ ∂jEDikχ− ∂iEDjkχ

+ 1
n (∂kdivχδij + ∂jdivχδik − ∂idivχδjk)

(11)

∂j∆χi = ∆EDijχ+ ∂j∂kEDikχ− ∂i∂kEDjkχ+ 1
n−1 ∂k∂lE

D
klχδij (12)

∂jEDijχ = 1
2∆χi +

(
1
2 −

1
n

)
∂idivχ (13)

(i, j, k ∈ {1, . . . , n}), which hold in the sense of distributions for each function χ ∈
L1

loc(Ω; Rn); compare (23), (24), and (26) in [4]. Assume without loss of generality
χ ∈ C∞(Ω; Rn). Then (10) implies divχ(x) = n(2a · x+ ρ) so that (9) gives Eχ(x) =
2(a⊗ x− x⊗ a) +Q. By observing ∇[2(a · x)x− |x|2a] = 2[a⊗ x− x⊗ a+ (a · x)I]
the claim follows from (8).

In the proof of Theorem 2.1 we make essential use of the following less familiar
lemma due to Nečas [15], [16].
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Lemma 2.6. Let w ∈W−k,p(Ω) with k ∈ Z and p ∈ (1,∞) such that all distributional
derivatives ∂jw belong to W−k,p(Ω). Then w ∈W−k+1,p(Ω) and

‖w‖−k+1,p 6 c

(
‖w‖−k,p +

n∑
j=1

‖∂jw‖−k,p

)
.

Proof of Theorem 2.1. It is straightforward to see that Dp(Ω) is a Banach space with
respect to the norm ‖v‖Dp(Ω) := ‖v‖p + ‖EDv‖p. Therefore, it suffices to show that the
mapping I : W 1,p(Ω; Rn) ↪→ Dp(Ω), v 7→ v, is surjective. Let v ∈ Dp(Ω). Then from
(12) we deduce ∂j∆vi ∈W−2,p(Ω), thus ∆vi ∈W−1,p(Ω) by Lemma 2.6. Moreover, we
have ∂idiv v ∈ W−1,p(Ω) according to (13) (recall n > 3). Hence, ∂k∂jvi ∈ W−1,p(Ω)
on account of (11) so that Lemma 2.6 implies ∂jvi ∈ Lp(Ω) and

‖∂jvi‖p 6 c

(
‖∂jvi‖−1,p +

n∑
k=1

‖∂k∂jvi‖−1,p

)
<∞,

which shows that I is surjective.

Proof of Corollary 2.2. Since KΩ is finite-dimensional for n > 3 and consists of smooth
functions we may introduce a basis {χ1, . . . , χsn} in KΩ, which is orthonormal with
respect to the standard scalar product in L2(Ω; Rn), that is,

´
Ω
χi · χj dx = δij . Let

K⊥Ω :=

{
w ∈W 1,p(Ω; Rn) :

ˆ
Ω

w · χdx = 0 for all χ ∈ KΩ

}

and consider the projection operator πΩ : W 1,p(Ω; Rn)→ KΩ,

πΩw :=
sn∑
i=1

( ˆ
Ω

w · χi dx

)
χi.

Then πΩw = 0 and
‖w‖p 6 c‖EDw‖p (14)

for all w ∈ K⊥Ω . To show (14) we argue by contradiction: Assume that there is a
sequence (wm) ⊂ K⊥Ω such that ‖wm‖p = 1 and ‖EDwm‖p < 1/m. By the Korn-
type inequality (3) the sequence (wm) is bounded in W 1,p(Ω; Rn) so that we have
wm

m−⇁ w in W 1,p(Ω; Rn) with a function w ∈ K⊥Ω (at least for a subsequence). But
then ‖w‖p = 1 and ‖EDw‖p = 0, and the last statement implies w = 0, which is a
contradiction. Now, we write v = πΩv+ v⊥ with a function v⊥ ∈ K⊥Ω . Then (14) gives
us

‖v‖p 6 ‖πΩv‖∞ + ‖v⊥‖p 6 c
(
‖v‖2 + ‖EDv‖p

)
.
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Proof of Theorem 2.3. For n = 2 the proof of the Korn-type inequality (5) is outlined
in [7]. For n > 3 this inequality follows by contradiction using the Korn-type inequality
(3). Clearly, it suffices to show

‖v‖p 6 c‖EDv‖p

for each v ∈
◦
W 1,p(Ω; Rn). Assume that (vm) ⊂

◦
W 1,p(Ω; Rn) is a sequence that satisfies

‖vm‖p = 1 and ‖EDvm‖p < 1/m. Then, by applying (3), we see that (vm) is bounded
in W 1,p(Ω; Rn) so that vm

m−⇁ v in W 1,p(Ω; Rn) as well as vm
m−→ v in Lp(Ω; Rn) with

a function v ∈
◦
W 1,p(Ω; Rn)∩KΩ satisfying ‖v‖p = 1 and EDv = 0. On the other hand

(recall (13)),
1
2

ˆ
Ω

∇v : ∇ϕdx+
(

1
2
− 1
n

)ˆ
Ω

div v divϕdx = 0

for each ϕ ∈
◦
W 1,p/(p−1)(Ω; Rn) and we may choose ϕ := v since the elements of KΩ

are smooth. Consequently, v ≡ 0, which is a contradiction. To prove the coincidence
of the spaces Dp

loc(Ω) and W 1,p
loc(Ω), we fix a subdomain Ω′ b Ω, v ∈ Dp

loc(Ω), and
consider a sequence (vν) of mollifications of v. We further let η ∈

◦
C∞(Ω) with η > 0

and η ≡ 1 in Ω′. Then ηvν ∈
◦
W 1,p(Ω; Rn) and we have the convergences

vν
ν−→ v in Lploc(Ω; Rn), EDvν

ν−→ EDv in Lploc(Ω; Mn). (15)

On the other hand, using (5), we find

‖ηvν‖1,p 6 c‖ED(ηvν)‖p 6 c
(
‖EDvν‖p + ‖∇η‖∞‖vν‖p

)
so that (ηvν) is bounded in W 1,p(Ω; Rn). Hence, there is a function v0 ∈W 1,p(Ω; Rn)
such that ηvν

ν−→ v0 in W 1,p(Ω; Rn) (at least for a subsequence). According to η ≡ 1 in
Ω′ this implies vν

ν−→ v0 inW 1,p(Ω′; Rn), which together with (15) proves the claim.

As a consequence of the Korn-type inequality (3) we get Poincaré-type inequalities
in dimensions n > 3. These inequalities do also hold in the two-dimensional case, but
require a different proof [6] (Lemma A.1).

Lemma 2.7.
Let n > 2, p ∈ (1,∞), and v ∈ W 1,p(BR; Rn), where BR = BR(x0). Then there exist
χ ∈ KBR and a positive constant c = c(n, p) such that(  

BR

|v − χ|p dx

)1/p

6 cR

(  
BR

|EDv|p dx

)1/p

. (16)

Moreover, if p < n,( 
BR

|v − χ|p
∗
dx

)1/p∗

6 cR

( 
BR

|EDv|p dx

)1/p

, (17)

where p∗ := np/(n− p).
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Remark 2.8. Lemma 2.7 is also valid for Sobolev functions defined on arbitrary do-
mains with sufficiently regular boundary. In particular, if Ω ⊂ R2 is a bounded domain
with piecewise C1–boundary and if v ∈W 1,p(Ω; R2), it holds

‖v − χ‖p(∗) 6

(
2
π
|Ω|
)1/2
‖EDv‖p

with a holomorphic function χ : Ω→ C. Specifically,

χ(z) =
1

2π i

ˆ
∂Ω

v(ζ)
ζ − z

dζ,

wherein
´
∂Ω
· · · dζ represents the “piecewise” complex line integral, that is,

´
∂Ω
· · · dζ =∑M

k=1

´
ωk
· · · dζ if ∂Ω can be represented as the sum of finitely many closed Jordan

arcs ω1, . . . , ωM . In the proof of the above inequalities the Cauchy-Pompeiu formula
[18] (§ IV.4)

v(z) =
1

2πi

ˆ
∂Ω

v(ζ)
ζ − z

dζ − 1
π

ˆ
Ω

∂zv(ζ)
ζ − z

dL2(ζ) (z ∈ Ω),

valid for functions v ∈ C∞(Ω; C), is combined with a well-known estimate for the
Riesz potential [12] (Lemma 7.12); see [6] for the details.

Proof of Lemma 2.7. In case n > 3 the first inequality (16) is a simple consequence of
(3) and the Peetre-Tatar lemma [13] (Chapter I, Theorem 2.1) applied to the operator
EBR ; compare [19] (Lemma 5.5). For n > 3 a different proof for (16) based on an
integral representation for EDv is provided by Reshetnyak [17]. The second inequality
(17) can be obtained by combining (16) with (3), whereby one can argue exactly as in
the proof of the classical Sobolev-Poincaré inequality [5] (Section 4.5.2).

3 Existence of minimizers: proof of Theorem 1.1 a)

Since (1) implies f(σ) > a|σ|p − b for all σ ∈Mn with suitable constants a > 0, b > 0,
using (5), for each function w ∈ K we get

J [w] > c

(ˆ
Ω

|EDw|p dx− |Ω|

)

> c

(ˆ
Ω

|ED(w − u0)|p dx−
ˆ

Ω

|∇u0|p dx− |Ω|

)

> c

(ˆ
Ω

|∇(w − u0)|p dx−
ˆ

Ω

|∇u0|p dx− |Ω|

)
.

(18)
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Now, if (um) ⊂ K is a J–minimizing sequence, (18) together with the assumption
J [u0] <∞ implies supm ‖um‖1,p <∞ so that

um
m−⇁: u in W 1,p(Ω; Rn) and um

m−→ u in Lp(Ω; Rn)

with a function u ∈ K (at least for a subsequence). By the lower semicontinuity of J
we deduce that u is a solution to the minimization problem J → min in K. To show
the uniqueness, suppose that v ∈ K is a second solution such that EDv 6= EDu holds on
a subset U of Ω with positive Lebesgue measure. But then

f

(
ED
(
u+ v

2

))
<

1
2
f(EDu) +

1
2
f(EDv) a.e. in U

by the strict convexity of f , which leads to the contradiction J [(u + v)/2] < infK J .
Hence, ED(u− v) = 0 a.e. in Ω and (5) implies u = v.

4 Linear elliptic systems

Based on the Korn-type inequalities shown in Section 2 we establish in this section the
smoothness of solutions v to linear elliptic systems involving EDv, where we adjust the
arguments from the classical setting [10] to our situation. By the way we obtain various
Caccioppoli- and Campanato-type estimates. Corresponding results in the context of
the linear Stokes problem are shown in [8] (Lemma 3.0.5).

Lemma 4.1. Let A be a symmetric bilinear form on the space Mn that satisfies
λ0 |τ |2 6 A(τ, τ) 6 Λ0 |τ |2 for each τ ∈ Mn with positive numbers λ0,Λ0. Then, if
v ∈W 1,2(Ω; Rn) satisfies for each ϕ ∈

◦
W 1,2(Ω; Rn)

ˆ
Ω

A(EDv, EDϕ) dx = 0, (19)

v ∈ C∞(Ω; Rn). Moreover, there is a positive constant c = c(n, λ0,Λ0) such that for
balls Br = Br(x0) b BR = BR(x0) ⊂ Ω we have:

i)
ˆ
Br

|EDv|2 dx 6
c

(R− r)2

ˆ
BR

|v − χ|2 dx (χ ∈ KBR)

ii)
ˆ
Br

|∇v|2 dx 6
c

(R− r)2

ˆ
BR

|v − ξ|2 dx (ξ ∈ Rn)

iii)
ˆ
Br

|∇v|2 dx 6 c

(
r

R

)nˆ
BR

|∇v|2 dx

iv)
ˆ
Br

|v − (v)x0,r|2 dx 6 c

(
r

R

)n+2ˆ
BR

|v − (v)x0,R|2 dx

9



v)
ˆ
Br

|∇v − (∇v)x0,r|2 dx 6 c

(
r

R

)n+2ˆ
BR

|∇v − (∇v)x0,R|2 dx

vi)
ˆ
Br

|EDv − (EDv)x0,r|2 dx 6 c

(
r

R

)n+2ˆ
BR

|EDv − (EDv)x0,R|2 dx

Here, we used the symbol (v)x0,r to denote the mean value
ffl
Br
v dx.

By combining the result of Lemma 4.1 with the well-known freezing technique [10]
(§ III.3) and the Korn-type inequality (5), we obtain the following regularity result for
systems with continuous coefficients; compare [19].

Corollary 4.2. Let A be a symmetric bilinear form on the space Mn with coefficients
Aklij = Aklij (x) ∈ C0(Ω) such that

λ0 |τ |2 6 A(x)(τ, τ) 6 Λ0 |τ |2

for all x ∈ Ω, τ ∈Mn with positive numbers λ0,Λ0. Then, if v ∈W 1,2(Ω; Rn) satisfies
for each ϕ ∈

◦
W 1,2(Ω; Rn) ˆ

Ω

A(EDv, EDϕ) dx = 0,

v ∈ C0,α(Ω; Rn) for each α ∈ (0, 1).

Remark 4.3. Clearly, it is possible to show regularity results for solutions to inhomo-
geneous systems. If v ∈W 1,2(Ω; Rn) satisfies

ˆ
Ω

A(EDv, EDϕ) dx+
ˆ

Ω

g : EDϕdx =
ˆ

Ω

h · ϕdx

with data g, h belonging to suitable Lebesgue and Morrey spaces, then v ∈ C0,α(Ω; Rn).
Moreover, if the data A, g and h are of class Ck,α for some k ∈ N, v belongs to Ck+1,α.

Proof of Lemma 4.1. The regularity of v follows by combining the well-known differ-
ence quotient technique with Theorem 2.3. We write

∆hw(x) :=
w(x+ hek)− w(x)

h
(h 6= 0)

for the difference quotient of a function w in direction k ∈ {1, . . . , n}. Next, we fix a
ball BR = BR(x0) b Ω, radii r < s < R, and consider ϕ := η2∆hv, where η ∈

◦
C∞(BR),

η > 0, is assumed to satisfy η ≡ 1 in Br, η ≡ 0 outside Bs, and |∇η| 6 c/(s − r) in
BR. From (19) we infer for sufficiently small h

ˆ
Bs

η2A(∆hEDv,∆hEDv) dx = −2
ˆ
Bs

ηA(∆hEDv, (∇η �∆hv)D) dx.
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Using the Cauchy-Schwarz and Young’s inequality with some δ ∈ (0, 1), we find
ˆ
Bs

η2A(∆hEDv,∆hEDv) dx 6 δ

ˆ
Bs

η2A(∆hEDv,∆hEDv) dx

+ c(δ)
ˆ
Bs

A((∇η �∆hv)D, (∇η �∆hv)D) dx,

which in turn implies (choose δ = 1/2)
ˆ
Br

|∆hEDv|2 dx 6
c

(s− r)2

ˆ
Bs

|∆hv|2 dx 6
c

(s− r)2

ˆ
BR+h

|∇v|2 dx.

Consequently, the weak derivatives ∂kEDv exist in L2
loc(Ω; Mn) and Theorem 2.3 implies

v ∈ W 2,2
loc(Ω; Rn). But then, w := ∂kv also satisfies (19), and we can repeat the

above steps to get w ∈ W 2,2
loc(Ω; Rn). Hence, v ∈ W 3,2

loc(Ω; Rn), and, by iterating this
procedure, we obtain v ∈W `,2

loc(Ω; Rn) for each ` ∈ N. Now, we enter into the proof of
the various inequalities stated in the lemma. The first inequality can be easily obtained
by inserting ϕ := η2(v − χ) ∈

◦
W 1,2(BR; Rn) in (19). To show ii), we combine i) with

the local Korn-type inequality (7): For each ρ ∈ (r,R) we get

ˆ
Br

|∇v|2 dx 6 c

(
1

(ρ− r)2

ˆ
Bρ

|v − ξ|2 dx+
ˆ
Bρ

|EDv|2 dx

)
,

from which ii) follows by choosing ρ := (r + R)/2 and applying i) (with v replaced
by v − ξ and χ = 0) to the second integral on the right-hand side. Using the W `,2

loc–
regularity of v, iii) can be deduced along the lines of [11] (Proposition 1.9): Let r < R/2
(otherwise iii) is trivial). Let us consider the case R = 1 and x0 = 0. Then, for ` > n/2,
we have ˆ

Bs

|∇v|2 dx 6 csn‖∇v‖2∞;B1/2
6 csn‖∇v‖2`,2;B1/2

(20)

for each s < 1/2. We write

‖∇v‖2`,2;B1/2
=
ˆ
B1/2

|∇v|2 dx+
∑̀
ν=2

( ˆ
B1/2

∑
|γ|=ν

|∂γv|2 dx

)

and define ρν := 1/(2ν − 2) for ν ∈ {2, . . . , `}. Then B1/2 b B1/2+jρν ⊂ B1 for all
j ∈ {1, . . . , ν − 1}, B1/2+(ν−1)ρν = B1, and repeated application of ii) leads to

ˆ
B1/2

∑
|γ|=ν

|∂γv|2 dx 6
c

ρ2
ν

ˆ
B1/2+ρν

∑
|γ|=ν−1

|∂γv|2 dx

6

(
c

ρ2
ν

)2̂
B1/2+2ρν

∑
|γ|=ν−2

|∂γv|2 dx 6 · · · 6
(
c

ρ2
ν

)ν−1̂

B1

|∇v|2 dx.

11



Returning to (20), we have established
ˆ
Bs

|∇v|2 dx 6 csn
ˆ
B1

|∇v|2 dx,

from which iii) follows by rescaling. Inequality iv) can be proved by applying Poincaré’s
inequality on the left-hand side of iii) and ii) on the right-hand side. Inequality v) is
a direct consequence of iv) (replace v by ∇v). It remains to prove vi): Let r < R/2
(otherwise vi) is obvious). From v) we deduce

ˆ
Br

|EDv − (EDv)x0,r|2 dx 6 c

(
r

R

)n+2ˆ
BR/2

|∇v − (∇v)x0,R/2|
2 dx

6 c

(
r

R

)n+2ˆ
BR/2

|∇v −Q|2 dx,

where Q ∈ Rn×n is an arbitrary matrix. Let w(x) := v(x) − (∇v)x0,Rx and choose
χ ∈ KBR according to Lemma 2.7 such that

ˆ
BR

|w − χ|2 dx 6 cR2

ˆ
BR

|EDw|2 dx.

Now, if we set Q := (∇v)x0,R +∇χ and w := w− χ, we have ∇w = ∇v−Q as well as
EDw = EDw = EDv − (EDv)x0,R so that, using ii) with v replaced by w and ξ = 0, we
find ˆ

BR/2

|∇v −Q|2 dx 6 c

ˆ
BR

|EDw|2 dx = c

ˆ
BR

|EDv − (EDv)x0,R|2 dx.

5 Regularization, higher integrability and a Caccioppoli-type inequality

Assume that we are in the situation of Theorem 1.1. Since the functional J (defined
in (2)) is anisotropic according to (1), we have to consider a more regular functional.
To this purpose we fix a ball BR = BR(x0) b Ω and consider a sequence (uν) of
mollifications of u. We define

δν :=
(
1 + ν + ‖EDuν‖2qq;BR

)−1
,

fν(σ) := f(σ) + δν(1 + |σ|2)q/2 (σ ∈Mn)

and let vν denote the unique minimizer of the functional

Jν [w] :=
ˆ
BR

fν(EDw) dx

in the class uν +
◦
W 1,q(BR; Rn).
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Lemma 5.1. Let (1) hold with q > 2, and let Γν := 1 + |EDvν |2.

a) vν ∈W 2,2
loc(BR; Rn) and τν := Dfν(EDvν) ∈W 1,q/(q−1)

loc (BR; Mn)

b) Γ p/4ν , Γ
q/4
ν ∈W 1,2

loc(BR)

c) vν
ν−⇁ u in W 1,p(BR; Rn)

d)
ˆ
BR

f(ν)(EDvν) dx ν−→
ˆ
BR

f(EDu) dx and δν

ˆ
BR

Γ q/2ν dx ν−→ 0

Remark 5.2. Note that if (1) is satisfied with exponents 1 < p 6 q < 2, it also holds
with q replaced by q = 2. Therefore, if we replace q by q = 2 in the definition of fν ,
the above lemma is also available in the situation of part c) of Theorem 1.1.

Proof of Lemma 5.1. To prove the statements a) and b) we can argue as in [2]. Let
us give a sketch of the proof of the W 2,2

loc–regularity of vν . From the growth of Dfν we
deduce τν ∈ Lq/(q−1)(BR; Mn) and since vν minimizes Jν we have the Euler-Lagrange
equation ˆ

BR

τν : EDϕdx = 0

for all ϕ ∈
◦
W 1,q(BR; Rn), from which we deduceˆ

BR

∆hτν : EDϕdx = 0 (21)

for all ϕ ∈ W 1,q(BR; Rn) with sptϕ ⊂ BR and sufficiently small h 6= 0. Let Br =
Br(x) b BR, 0 < ρ < ρ′< r, and ϕ := η2∆hu, where η ∈

◦
C∞(Br(x)), η > 0, is chosen

such that η ≡ 1 in Bρ(x), η ≡ 0 outside Bρ′(x) as well as |∇η| 6 c/(ρ′− ρ). Then from
(21) we inferˆ

Bρ′(x)

η2∆hτν : ∆hEDvν dx = −2
ˆ
Bρ′(x)

η∆hτν : (∇η �∆hvν)D dx (22)

Now, we use the relation

∆hτν =
ˆ 1

0

D2fν(EDvν + th∆hEDvν)(∆hEDvν , · ) dt

and consider the positive bilinear form

Bx :=
ˆ 1

0

D2f(EDvν(x) + th∆hEDvν(x)) dt

acting on trace-free matrices. Then, if we write Qx for the associated quadratic form,
(22) reads asˆ

Bρ′(x)

η2Qx(∆hEDvν) dx = −2
ˆ
Bρ′(x)

ηBx(∆hEDvν , (∇η �∆hvν)D) dx. (23)

13



To estimate the right-hand side, we apply the Cauchy-Schwarz inequality for Bx as
well as Young’s inequality with some δ > 0:

ˆ
Bρ′(x)

η |Bx(∆hEDvν , (∇η �∆hvν)D)|dx

6
ˆ
Bρ′(x)

ηQx(∆hEDvν)1/2Qx((∇η �∆hvν)D)1/2 dx

6 δ

ˆ
Bρ′(x)

η2Qx(∆hEDvν) dx+ c(δ)
ˆ
Bρ′(x)

Qx((∇η �∆hvν)D) dx,

where an upper bound for the second integral on the right-hand side is given by (using
(1) and Hölder’s inequality)

c

(ρ′− ρ)2

( ˆ
Bρ′(x)

(1 + |EDvν |2 + |h∆hEDvν |2)q/2 dx

)1−2/q(ˆ
Bρ′(x)

|∆hvν |q dx

)2/q

.

Therefore, by combining these estimates with (23) we finally arrive at (compare [2],
proof of Lemma 3.1):

ω(ρ) 6
c

(ρ′− ρ)2

(
1 +

ˆ
Br+h(x)

|∇vν |q dx

)
, (24)

where we have abbreviated

ω(ρ) :=
ˆ
Bρ(x)

Qx(∆hEDvν) dx.

On the other hand, since q > 2, the definition of fν implies

ω(ρ) > cδν

ˆ
Bρ(x)

|∆hEDvν |2 dx,

which together with (24) shows that ∂kEDvν exists in L2
loc(Ω; Mn). Hence, vν ∈

W 2,2
loc(BR; Rn) according to Theorem 2.3. Now, to justify c), we observe that by the

growth of f and the minimality of vν we have

‖EDvν‖pp 6 c

( ˆ
BR

f(EDuν) dx+ δν

ˆ
BR

(1 + |EDuν |2)q/2 dx+ 1

)
,

wherein the second term on the right-hand side vanishes as ν →∞ by definition of δν .
On the other hand, the minimality of vν and Jensen’s inequality gives

ˆ
BR

f(ν)(EDvν) dx 6
ˆ
BR

f(ν)(EDuν) dx 6
ˆ
BR

f(EDu) dx+O(ν), (25)
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where O(ν) ν−→ 0. Therefore, supν ‖EDvν‖p 6 c and (5) implies

‖vν‖1,p 6 ‖vν − uν‖p + ‖uν‖p 6 c
(
‖EDvν‖p + ‖uν‖1,p

)
.

Consequently, vν
ν−⇁ ũ in W 1,p(BR; Rn) (at least for a subsequence) with a function

ũ ∈ u +
◦
W 1,p(BR; Rn). Hence, c) and d) follow from (25) as in [2] (proof of Lemma

4.1).

Lemma 5.3. Let Hν := D2fν(EDvν)(∂kEDvν , ∂kEDvν)1/2 (with summation with re-
spect to k ∈ {1, . . . , n}). Then for all η ∈

◦
C∞(BR) and χ ∈ KBR we have the

estimate ˆ
BR

η2H2
ν dx 6 c

ˆ
BR

|∇η|2Γ q/2−1
ν |∇vν −∇χ|2 dx,

where c = c(Λ) is a positive number (being independent of ν and R).

Proof. By inserting ϕ := η2∆h(vν − χ) in (21) we get
ˆ
BR

η2∆hτν : ∆hEDvν dx

= −2
ˆ
BR

η∆hτν : (∇η �∆h(vν − χ))D dx.
(26)

Since ∆hτν : ∆hEDvν > 0 and

∆hτν : ∆hEDvν
(h→0)−−−−→ D2fν(EDvν)(∂kEDvν , ∂kEDvν)

a.e. in BR, Fatou’s lemma implies
ˆ
BR

η2D2fν(EDvν)(∂kEDvν , ∂kEDvν) dx

6 lim inf
h→0

ˆ
BR

η2∆hτν : ∆hEDvν dx.

For the right-hand side of (26) we observe |EDvν |q/2 ∈W 1,2
loc(BR) (by Lemma 5.1 b)) so

that by Sobolev’s imbedding theorem |EDvν |q/2 ∈ Ltloc(BR) for some t > q. Since from
vν ∈ W 1,q(BR; Rn) we also get |vν | ∈ Lt(BR), Theorem 2.3 gives vν ∈ W 1,t

loc(BR; Rn).
Hence, using Young’s inequality, we get

η|∆hτν ||∇η||∆h(vν − χ)| 6 c(η, t1, t2)
(
|∆hτν |t1 + |∆h(vν − χ)|t2

)
with suitable exponents t1 < q/(q−1) and t2 ∈ (q, t) so that we have equi-integrability.
Therefore, by Vitali’s theorem (26) (with summation with respect to k) turns into

ˆ
BR

η2H2
ν dx 6 −2

ˆ
BR

η∂kτν : (∇η � ∂k(vν − χ))D dx. (27)
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Now, by combining the Cauchy-Schwarz inequality with (1), we see

Γ 1−q/2
ν |∇τν |2 6 c(Λ)H2

ν (28)

so that, using Hölder’s and Young’s inequality with some δ ∈ (0, 1), we arrive at

r.h.s. of (27) 6 δ

ˆ
BR

η2H2
ν dx+ c(δ)

ˆ
BR

|∇η|2Γ q/2−1
ν |∇vν −∇χ|2 dx,

from which the desired estimate follows by choosing δ = 1/2.

Lemma 5.4. Let 0 < ρ < r such that r − ρ 6 1 and Br(x) b BR(x0). Then
ˆ
Bρ(x)

H2
ν dx 6

c

(r − ρ)4

ˆ
Br(x)

Γ q/2ν dx,

where c = c(n, q,Ω) is independent of m and the balls.

Proof. From Lemma 5.3 we infer

ˆ
BR

η2H2
ν dx 6 c‖∇η‖2∞

(ˆ
spt∇η

Γ q/2ν dx

)1−2/q(ˆ
spt∇η

|∇vν −∇χ|q dx

)2/q

.

Let η ∈
◦
C∞(B(ρ+r)/2(x)), η > 0, such that η ≡ 1 in Bρ(x) and |∇η| 6 c/(r − ρ). By

applying the Korn-type inequality (7) we get(ˆ
B(ρ+r)/2(x)

|∇vν −∇χ|q dx

)1/q

6
c

r − ρ

(ˆ
Br(x)

|vν − χ|q dx

)1/q

+ c

( ˆ
Br(x)

|EDvν |q dx

)1/q

and if we choose χ according to Lemma 2.7, we find( ˆ
spt∇η

|∇vν −∇χ|q dx

)2/q

6 c

(
1 +

r

r − ρ

)2( ˆ
Br(x)

|EDvν |q dx

)2/q

and the desired estimate follows at once.

Using Lemma 5.4 we can show uniform higher integrability of EDvν now, which in
turn gives us uniform higher integrability of the gradient.

Lemma 5.5. There exists an exponent q̃ > q such thatˆ
Bρ(x)

Γ eq/2
ν dx 6 c

(
n, p, q, ρ,R,Ω, x, J [u;BR]

)
<∞

for each ball Bρ(x) b BR.
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Proof. Let q̃ := pκ > q with

κ :=

{
n
n−2 ; n > 3

any number > p
2p−q ; n = 2

(recall q < (1 + 2/n)p in case n > 3 and q < 2p in case n = 2). From Lemma 5.1 we
know φν := Γ

p/4
ν ∈W 1,2

loc(BR; Rn) so that

ˆ
Bρ(x)

Γ eq/2
ν dx 6

ˆ
BR

(ηφν)2κ dx 6 c

( ˆ
BR

|∇(ηφν)|2 dx

)κ

6 c

( ˆ
BR

|∇η|2φ2
ν dx+

ˆ
BR

η2|∇φν |2 dx

)κ
,

where η ∈
◦
C∞(BR), η > 0, is chosen such that η ≡ 1 in Bρ(x), η ≡ 0 outside

B(ρ+r)/2(x) for some r ∈ (ρ,R), and |∇η| 6 c/(r−ρ). Now, by combining the formula
for ∇φν with the lower bound for D2fν we get

|∇φν |2 6 cΓ p/2−1
ν |∇EDvν |2 6 cH2

ν (29)

so that, using the estimate from Lemma 5.4, we find( ˆ
Bρ(x)

Γ eq/2
ν dx

)1/κ

6
c

(r − ρ)4

(ˆ
BR

Γ p/2ν dx+
ˆ
Br(x)

Γ q/2ν dx

)
. (30)

Owing to q < q̃ and since we may assume q > p (otherwise replace p by a slightly
smaller number p0 such that q < (1 + 2/n)p0 in case n > 3 or q < 2p0 in case n = 2,
respectively), there is a number θ = θ(p, κ) ∈ (0, 1) such that

1
q

=
1− θ
q̃

+
θ

p
.

Since the definition of κ together with the condition for q implies

(1− θ) q
p

=
κ

κ− 1

(
q

p
− 1
)
< 1, (31)

we may apply the interpolation inequality for Lebesgue spaces [12] ((7.9), p. 146) to
Γ

1/2
ν with the result:

ˆ
Br(x)

Γ q/2ν dx 6

(ˆ
Br(x)

Γ eq/2
ν dx

)(1−θ)q/eq(ˆ
Br(x)

Γ p/2ν dx

)θq/p

6 δ

(ˆ
Br(x)

Γ eq/2
ν dx

)1/κ

+ δ−γ

(ˆ
Br(x)

Γ p/2ν dx

)β
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with δ ∈ (0, 1) and suitable exponents β > 1 and γ > 0. Here, we used Young’s
inequality in the second step, which is possible on account of (31). If we choose
δ = (2c)−1(r − ρ)4 and use the latter inequality on the right-hand side of (30), we
arrive at(ˆ

Bρ(x)

Γ eq/2
ν dx

)1/κ

6
1
2

(ˆ
Br(x)

Γ eq/2
ν dx

)1/κ

+
c

(r − ρ)eγ
(ˆ

BR

Γ p/2ν dx

)β
,

where γ̃ = 4(1 + γ). But now we are in the same situation as in (4.19) of [2] and can
argue in the same way as in [2] to complete the proof.

Corollary 5.6. For each ball Br(x) b BR we have supν ‖vν‖1,eq;Br(x) <∞. Moreover,
u ∈W 1,eq

loc(Ω; Rn).

Proof. From Lemma 5.1 c) we know supν ‖vν‖1,p <∞ so that by Sobolev’s imbedding
theorem we get supν ‖vν‖p1 <∞, where p1 > p is given by

p1 :=
{
q̃ ; p > n

p∗ ; p < n.

In case n > 3 we can argue as in the proof of Corollary 4.2 in [2] by using the Korn-type
inequality (3), which does not hold in the two-dimensional case. For n = 2 we have
to use the local variant (7) of (3). For this purpose we choose a small radius ρ′ such
that Bρ(x) b Bρ′(x) b BR. If q̃ 6 p1, we get

‖vν‖1,eq;Bρ(x) 6 c
(
‖vν‖p1;Bρ′(x) + ‖EDvν‖eq;Bρ′(x)

)
,

wherein the right-hand side is uniformly bounded with respect to ν (by Lemma 5.5),
thus, supν ‖vν‖1,eq;Bρ(x) <∞. In the same way we get supν ‖vν‖1,p1;Bρ′(x) <∞ in case
q̃ > p1. But then Sobolev’s imbedding theorem implies supν ‖vν‖eq;Bρ′(x) <∞ (observe
p1 = p∗ > 2 = n), which leads to supν ‖vν‖1,eq;Bρ(x) <∞ by using (7) once more.

Lemma 5.7. Let φ := (1+ |EDu|2)p/4. Then φ ∈W 1,2
loc(Ω) and φν

ν−⇁ φ in W 1,2
loc(BR).

Proof. By combining (29) with Lemmas 5.4 and 5.5 the sequence (∇φν) is seen to
be bounded in L2

loc(BR; Rn) so that there exists a function φ̃ ∈ W 1,2
loc(BR) such that

φν
ν−⇁ φ̃ in W 1,2

loc(BR) as well as φν
ν−→ φ̃ a.e. in BR (at least for a subsequence). To

get the desired convergence, it suffices to show

EDvν
ν−→ Eu a.e. in BR. (32)

For this purpose we consider the decompositionˆ
BR

f(EDvν)− f(EDu) dx =
ˆ
BR

Df(EDu) : EDwν dx

+
ˆ
BR

ˆ 1

0

(1− t)D2f(EDu+ tEDwν)(EDwν , EDwν) dtdx =: I1 + I2,

(33)
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where wν := vν − u. (Note that both integrals on the right-hand side of (33) are well
defined on account of the growth properties ofDf andD2f and since u ∈W 1,q(BR; Rn)
by Corollary 5.6.) Since vν ∈ uν +

◦
W 1,q(BR; Rn) and uν

ν−→ u in W 1,q(BR; Rn) (recall
that uν is a mollification of u) we get

I1 =
ˆ
BR

Df(EDu) : (EDvν − EDuν) dx+
ˆ
BR

Df(EDu) : (EDuν − EDu) dx

=
ˆ
BR

Df(EDu) : (EDuν − EDu) dx ν−→ 0,

where we used the Euler-Lagrange equation for u as well as the growth of Df in the
last step. Now, by Lemma 5.1 d) the left-hand side of (33) vanishes as ν →∞ so that
from (33) we infer I2

ν−→ 0. Since on the other hand, (1) implies
ˆ
BR

φ2−4/p
ν |EDwν |2 dx 6

ˆ
BR

(1 + |EDvν |2 + |EDu|2)p/2−1|EDwν |2 dx 6 cI2,

(32) follows from the convergence φν
ν−→ φ̃ a.e. in BR.

6 Partial regularity: proof of Theorem 1.1 b)

Let n > 3, and let (1) be fulfilled with q > 2 and p 6 q such that q < (1 + 2/n)p. To
prove part b) of Theorem 1.1, we adjust the well-known blowup technique (compare
[2] or [8]) to our setting. We define the excess of u with respect to a ball Br(x0) b Ω
by

(Eu)x0,r :=
 
Br(x0)

|EDu− (EDu)x0,r|2 dx+
 
Br(x0)

|EDu− (EDu)x0,r|q dx

Note that according to Corollary 5.6 (Eu)x0,r is well defined.

Lemma 6.1. Let ` > 0 be given. Then there is a positive constant c∗ with the property:
To each τ ∈ (0, 1/4) there exists a positive number ε = ε(`, τ) such that for every ball
Br(x0) b Ω for which

|(EDu)x0,r| < ` and (Eu)x0,r < ε

hold, we have

(Eu)x0,τr 6 c∗τ
2(Eu)x0,r.

From the above lemma we deduce by a standard iteration procedure (compare [8]
or [19]) that EDu is of class C0,α on the set

Ω0 :=
{
x ∈ Ω : sup

r>0
|(EDu)x,r| <∞ and lim inf

r↘0
(Eu)x,r = 0

}
.

Moreover, Ω0 is an open set of full Lebesgue measure.
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Now, let ω b Ω0. Then EDu ∈ C0,α(ω; Mn) and with the arguments from [2] (p.
386) we get u ∈W 2,2

loc(ω; Rn) as well as
ˆ
ω

D2f(EDu)(ED(∂ku), EDϕ) dx = 0 (34)

for each ϕ ∈
◦
C1(ω; Rn) and k ∈ {1, . . . , n}. Therefore, w := ∂ku ∈ W 1,2(ω; Rn) solves

the elliptic system (34) with continuous matrix D2f(EDu). Hence, w ∈ C0,α(ω; Rn) by
Corollary 4.2, which proves Theorem 1.1 b).
Consequently, it remains to prove the blowup lemma.

Proof of Lemma 6.1. We argue by contradiction and assume that there exist τ ∈
(0, 1/4) and a sequence of balls Brm(xm) b Ω such that

|(EDu)xm,rm | < `, (Eu)xm,rm =: λ2
m

ν−→ 0,

(Eu)xm,τrm > c∗τ
2λ2
m.

(35)

We define
um(z) :=

u(xm + rmz)− rmAmz − χm(z)
λmrm

(z ∈ B1),

where Am := (EDu)xm,rm and χm ∈ KB1 is chosen according to Lemma 2.7 such that
 
B1

|um|2 dz 6 c

 
B1

|EDum|2 dz. (36)

Observing EDum = λ−1
m [EDu(xm + rmz)−Am], the definition of λm implies
 
B1

|EDum|2 dz + λq−2
m

 
B1

|EDum|q dz = 1, (37)

which together with (36) and the Korn-type inequality (3) gives boundedness of (um)
in W 1,2(B1; Rn). Hence, we have (at least for a subsequence)

um
m−⇁: v in W 1,2(B1; Rn)

λmEDum
m−→ 0 in L2(B1; Mn) and a.e. in B1.

(38)

Moreover, Am
m−→: A (for a subsequence) with a matrix A ∈Mn, |A| 6 `, and v fulfills

ˆ
B1

D2f(A)(EDv, EDϕ) dz = 0 (39)

for all ϕ ∈
◦
C1(B1; Rn), which can be shown as in [2] (Proposition 5.1).

By virtue of (39) and Lemma 4.1 v belongs to C∞(B1; Rn) and satisfies
 
Bτ

|EDv − (EDv)0,τ |2 dz 6 c∗τ2

 
B1

|EDv − (EDv)0,1|2 dz 6 c∗τ2 (40)
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with a constant c∗ = c∗(n, p, q, `), where in the last step we used (EDv)0,1 = 0 (which
follows from (EDum)0,1 = 0 and (38)) as well as (37). Suppose that we can show
EDum

m−→ EDv in L2
loc(B1; Mn) and λ1−2/q

m EDum
m−→ 0 in Lqloc(B1; Mn) in case q > 2.

Then (40) turns into

lim
m

 
Bτ

|EDum − (EDum)0,τ |2 dz + λq−2
m

 
Bτ

|EDum − (EDum)0,τ |q dz 6 c∗τ2.

But then, choosing c∗ = 2c∗, we get a contradiction to our assumption (35) since the
third condition in (35) is equivalent to

 
Bτ

|EDum − (EDum)0,τ |2 dz + λq−2
m

 
Bτ

|EDum − (EDum)0,τ |q dz > c∗τ
2.

Therefore, we have to show:

Lemma 6.2. a) EDum
m−→ EDv in L2

loc(B1; Mn)

b) λ1−2/q
m EDum

m−→ 0 in Lqloc(B1; Mn) if q > 2

In the proof of Lemma 6.2 we need the convergences

λ1−2/q
m um

m−→ 0 in Lq(B1; Rn), λ1−2/q
m ∇um

m−⇁ 0 in Lq(B1; Rn×n) (41)

in case q > 2. To see this, we observe that by the interpolation inequality (4) we have

‖um‖q 6 c
(
‖um‖2 + ‖EDum‖q

)
so that the Korn-type inequality (3) together with (38) implies

‖um‖1,q 6 c
(
‖um‖2 + ‖EDum‖q

)
6 c
(
1 + ‖EDum‖q

)
.

Thus,

λq−2
m

ˆ
B1

|um|q + |∇um|q dz 6 c

(
1 + λq−2

m

ˆ
B1

|EDum|q dz

)
,

wherein the right-hand side is uniformly bounded on account of (37). Therefore, we
have λ1−2/q

m um
m−⇁: v in W 1,q(B1; Rn) as well as λ1−2/q

m um
m−→ v in L2(B1; Rn) (at

least for a subsequence), which together with (35) and (38) implies (41). Moreover,
we need the estimate contained in the following lemma in the proof of Lemma 6.2.

Lemma 6.3. Let ρ ∈ (0, 1) and ψm := λ−1
m [Θ(Am + λmEDum) − Θ(Am)], where

Θ(σ) := (1 + |σ|2)p/4 (σ ∈Mn). Then ψm ∈W 1,2
loc(B1; Rn) and

ˆ
Bρ

|∇ψm|2 dz 6 c(ρ)
ˆ
B1

(1 + |Am + λmEDum|2)q/2−1|∇um|2 dz,

where the constant c(ρ) is independent of m.
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Proof. By Lemma 5.7 and the definition of um we have ψm ∈ W 1,2
loc(B1; Rn) with

∇ψm(z) = rmλ
−1
m ∇Θ(EDu(xm + rmz))∇EDu(xm + rmz) so that after rescaling we

obtain ˆ
Bρ

|∇ψm|2 dz = λ−2
m r2−n

m

ˆ
Bρrm(xm)

|∇φ|2 dx, (42)

where φ := Θ(EDu) = (1 + |EDu|2)p/4. To estimate the right-hand side, we recall
∇φν

ν−→ ∇φ in L2
loc(BR) and show a limit version of the estimate
ˆ
BR

η2|∇φν |2 dx 6 c

ˆ
BR

|∇η|2Γ q/2−1
ν |∇vν −Q|2 dx, (43)

which is valid for each η ∈
◦
C∞(BR) and Q ∈ Rn×n. Note that (43) can be obtained

by analogous calculations as in the proof of Lemma 5.3 (recall (29)). The Korn-type
inequality (3) implies

‖∇vν −∇u‖p;Br(x) 6 c
(
‖vν − u‖p;Br(x) + ‖EDvν − EDu‖p;Br(x)

)
for each ball Br(x) b BR so that the convergences stated in Lemma 5.1 and (32)
together with the higher integrability results stated in Corollary 5.6 imply ∇vν

ν−→ ∇u
in Lploc(BR; Rn×n) and a.e. in BR (at least for a subsequence). But then we can argue
as in the proof of Lemma 4.6 in [2] to get from (43) the estimate

ˆ
BR

η2|∇φ|2 dx 6 c

ˆ
BR

|∇η|2Γ q/2−1|∇u−Q|2 dx, (44)

where Γ := 1 + |EDu|2. Now, if we choose η > 0 such that η ≡ 1 in Bρrm(xm) and
|∇η| 6 c/(rm − ρrm), (6.3) together with (44) implies (by scaling)
ˆ
Bρ

|∇ψm|2 dz = c(ρ)λ−2
m

ˆ
B1

(1 + |EDu(xm + rmz)|2)q/2−1|∇u(xm + rmz)−Q|2 dz.

Finally, choosing Q := Am + r−1
m ∇χm(z), the desired estimate follows.

Proof of Lemma 6.2. Following the lines of [2] we show

lim
m

ˆ
Bρ

ˆ 1

0

(1− t)(1 + |Am + λmEDv + tλmEDwm|2)p/2−1|EDwm|2 dtdz = 0 (45)

for each ρ ∈ (0, 1), where wm := um−v. From the minimality of u we get for r ∈ (0, 1)
(by scaling) ˆ

Br

f(Am + λmEDum) dz 6
ˆ
Br

f(Am + λmEDϕ) dz (46)

for each ϕ ∈ um +
◦
W 1,2(Br; Rn). Let us specify ϕ: let η ∈

◦
C1(B1), η > 0, with η ≡ 1

in Bρ and η ≡ 0 outside Br for some r ∈ (ρ, 1). Then ϕ := um − ηwm is admissible in
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(46). Next, we consider the relation
ˆ
Br

ˆ 1

0

(1− t)ηD2f(Am + λmEDv + tλmEDwm)(EDwm, EDwm) dtdz

= λ−2
m

ˆ
Br

η[f(Am + λmEDum)− f(Am + λmEDv)] dz

− λ−1
m

ˆ
Br

ηDf(Am + λmEDv) : EDwm dz.

(47)

Owing to (1) and the properties of η the left-hand side of (47) is bounded from below
by the left-hand side of (45). Therefore, we have to show that the right-hand side of
(47) vanishes as m→∞. Using (46) and the convexity of f we get

r.h.s. of (47) = λ−2
m

(ˆ
Br

f(Am + λmEDv + tλmEDum) dz

−
ˆ
Br

[(1− η)f(Am + λmEDv + tλmEDum)

+ ηf(Am + λmEDv + tλmEDv)] dz

)

− λ−1
m

ˆ
Br

ηDf(Am + λmEDv) : EDwm dz

6 λ−2
m

( ˆ
Br

f(Am + λm[EDum − ED(ηwm)]) dz

−
ˆ
Br

f(Am + λm[(1− η) EDum + η EDv]) dz

)

− λ−1
m

ˆ
Br

ηDf(Am + λmEDv) : EDwm dz

=: λ−2
m T1 − λ−1

m T2.

(48)

Let σm := Am + λm[(1− η) EDum + η EDv]. Then

λ−2
m T1 = λ−2

m

(ˆ
Br

f(σm − λm(∇η � wm)D)− f(σm) dz

)

=
ˆ
Br

ˆ 1

0

(1− t)D2f(σm − tλm(∇η � wm)D)

((∇η � wm)D, (∇η � wm)D) dt dz

− λ−1
m

ˆ
Br

Df(σm) : (∇η � wm)D dz

=: I1 − λ−1
m I2.
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For the first integral on the right-hand side we obtain (using (1) and (35))

I1 6 c

ˆ
Br

(1 + |σm|2 + λq−2
m |∇η|q−2|wm|2)q/2−1|∇η|2|wm|2 dz

6 c

( ˆ
Br

|∇η|2|wm|2 dz + λq−2
m

ˆ
Br

|∇η|q|wm|q dz

+
ˆ
Br

|∇η|2|wm|2|σm|q−2 dz

)

6 c

( ˆ
Br

|∇η|2|wm|2 dz + λq−2
m

ˆ
Br

|∇η|q|wm|q dz

+ λq−2
m

ˆ
Br

|∇η|2|wm|2
(
|EDum|q−2 + |EDv|q−2

)
dz

)
,

wherein the right-hand side vanishes as m → ∞ on account of (37), (38), (41), and
v ∈W 1,∞

loc (B1; Rn). Returning to (48), we have shown

r.h.s. of (47) 6 O(m) + λ−1
m |I2 + T2|, (49)

where O(m) m−→ 0. For the remaining term we observe that I2 + T2 can be rewritten
as follows:

I2 + T2 =
ˆ
Br

[Df(σm)−Df(Am + λmEDv)] : (∇η � wm)D dz

+
ˆ
Br

Df(Am + λmEDv) : ED(ηwm) dz =: J1 + J2.

Since σm = Am + λmEDv + λm(1− η) EDwm, we have

|J1| = λm

∣∣∣∣∣
ˆ
Br

ˆ 1

0

(1− ϕ)D2f(Am + λmEDv + tλm(1− η) EDwm)

(EDwm, (∇η � wm)D) dtdz

∣∣∣∣∣,
which can be estimated similar to I1 with the result that λ−1

m J1
m−→ 0. Similarly, we

get λ−1
m J2

m−→ 0 by observing

λ−1
m |J2| = λ−1

m

∣∣∣∣∣
ˆ
Br

[Df(Am + λmEDv)−Df(Am)] : ED(ηwm) dz

∣∣∣∣∣
=

∣∣∣∣∣
ˆ
Br

ˆ 1

0

D2f(Am + tλmEDv)(EDv, ED(ηwm)) dtdz

∣∣∣∣∣.
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Returning to (49), we have established that the right-hand side of (47) vanishes as
m → ∞ so that (45) follows from (1) and the choice of η. Now, we can argue as in
[2]. First, we note that (45) immediately implies part a) as well as part b) in the case
p = q. In case p > 2, q > p we use the estimate

λq−2
m |EDum|q 6 λq−2+(2/p−1)q

m ψ2q/p
m

on the set Bρ − Um, where Um :=
{
z ∈ Bρ : λm|EDum| 6 M

}
with a sufficiently

large number M . Since q < (1 + 2/n)p, we have 2q/p < 2n/(n− 2) so that Sobolev’s
imbedding theorem together with the estimate from Lemma 6.3 and the convergences
(38), (41) shows ˆ

Bρ

ψ2q/p
m dz 6 c(ρ).

On the other hand, it is straightforward to show
´
Um
λq−2
m |Eum|q dz m−→ 0 and we

conclude b). The remaining case p < 2 can be handled by similar arguments; compare
[2] (p. 397).

7 The two-dimensional case: proof of Theorem 1.1 c)

Let us assume in the following that we are in the situation of part c) of Theorem 1.1,
that is, we have n = 2 and q < min(2p, p+2). To show full regularity of the minimizer
u, we use a technique described in [3], whose main ingredient is a higher integrability
lemma.
First, we note that according to Corollary 5.6 we have

vν
ν−⇁ u in W 1,t(Br(x); Rn) (50)

for each t ∈ (1,∞) and each ball Br(x) b BR. (Note that q̃ may be replaced by each
exponent t in case n = 2.)
From the proof of Lemma 5.3 (compare (27)) we infer

ˆ
BR

η2H2
ν dx 6 c

ˆ
BR

η|∇η||∇τν ||∂kvν − χk|dx

for each η ∈
◦
C∞(BR) and χk ∈ KBR . We choose η > 0 such that η ≡ 1 in Br/2(x),

η ≡ 0 outside Br(x), and |∇η| 6 c/r and get the starting inequality (recall (28))
 
Br/2(x)

H2
ν dx 6

c

r

 
Br(x)

Γ (q−2)/4
ν Hν |∂kvν − χk|dx. (51)

Let γ := 4/3. Then vν ∈ W 2,γ
loc (BR; R2) according to Lemma 5.1. Hence, using the

Hölder and the Poincaré-type inequality (17) with suitable functions χk on the right-
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hand side of (51), we find

 
Br/2(x)

H2
ν dx 6 c

( 
Br(x)

(
Γ (q−2)/4
ν Hν

)γ dx

)1/γ
1
r

( 
Br(x)

|∂kvν − χk|4 dx

)1/4

6 c

( 
Br(x)

(
Γ (q−2)/4
ν Hν

)γ dx

)1/γ(  
Br(x)

|∇EDvν |γ dx

)1/γ

.

Applying (29) on the right-hand side we arrive at(  
Br/2(x)

H2
ν dx

)1/2

6 c

(  
Br(x)

(
hνHν

)γ dx

)1/γ

, (52)

where hν := max
{
Γ

(2−p)/4
ν , Γ

(q−2)/4
ν

}
. This is exactly the situation of Lemma 1.2 in

[3] with the choices

d = 2/γ = 3/2, f = Hγ
ν , g = hγν , h = 0.

Note that from Lemmas 5.4 and 5.5 we know thatHν is uniformly bounded in L2
loc(BR).

Thus, we can apply Lemma 1.2 from [3] if exp(βh2
ν) ∈ L1

loc(BR) holds for some β > 0.
In fact, since φν is uniformly bounded in W 1,2

loc(BR) (according to Lemma 5.7) one can
show ˆ

Bρ(x)

exp(βφ2−κ
ν ) dx 6 c(β, κ, ρ) <∞

for all β > 0, κ ∈ (0, 1) and for each ball Bρ(x) b BR, from which it follows that
ˆ
Bρ(x)

exp(βh2
ν) dx 6 c(β, ρ) <∞;

see [3] (p. 141) for similar arguments. Lemma 1.2 from [3] implies
ˆ
Bρ(x)

H2
ν logc0β(e+Hν) dx 6 c(β, ρ) <∞

and, using the estimate |∇τν | 6 chνHν , we end up with
ˆ
Bρ(x)

|∇τν |2 logβ
′
(e+Hν) dx 6 c(β′, ρ) <∞

for each β′ > 1, which gives us continuity of τν = Dfν(EDvν) uniformly with respect
to ν; compare [3]. Together with the convergence (32) this implies continuity of τ =
Df(EDu) so that EDu is continuous as well. Therefore, we can argue as in the previous
section to get that u belongs to W 2,2

loc(Ω; R2) and that each partial derivative of u
solves the system (34) with continuous matrix D2f(EDu), but now on each subdomain
ω b Ω. Hence, ∇u ∈ C0,α(Ω; R2×2) follows from Corollary 4.2.
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