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Optic Flow in Harmony

Henning Zimmer Andrés Bruhn Joachim Weickert

Abstract

Most variational optic flow approaches just consist of three con-
stituents: a data term, a smoothness term and a smoothness weight.
In this paper, we present an approach that harmonises these three
components. We start by developing an advanced data term that is
robust under outliers and varying illumination conditions. This is
achieved by using constraint normalisation, and an HSV colour rep-
resentation with higher order constancy assumptions and a separate
robust penalisation. Our novel anisotropic smoothness is designed to
work complementary to the data term. To this end, it incorporates
directional information from the data constraints to enable a filling-in
of information solely in the direction where the data term gives no in-
formation, yielding an optimal complementary smoothing behaviour.
This strategy is applied in the spatial as well as in the spatio-temporal
domain. Finally, we propose a simple method for automatically deter-
mining the optimal smoothness weight. This method bases on a novel
paradigm that we call “optimal prediction principle” (OPP). It states
that the flow field obtained with the optimal smoothness weight allows
for the best prediction of the next frames in the image sequence. The
benefits of our “optic flow in harmony” (OFH) approach are demon-
strated by an extensive experimental validation and by a competitive
performance at the widely used Middlebury optic flow benchmark.

1 Introduction

Despite almost three decades of research on variational optic flow approaches,
there have been hardly any investigations on the compatibility of their three
main components: the data term, the smoothness term and the smoothness
weight. While the data term models constancy assumptions on image fea-
tures, the smoothness term penalises fluctuations in the flow field, and the
smoothness weight determines the balance between the two terms. In this pa-
per, we present the optic flow in harmony (OFH) method, which harmonises
the three constituents by following two main ideas:
(i) Widely-used data terms such as the one resulting from the linearised
brightness constancy assumption only constrain the flow in one direction.

1



However, most smoothness terms impose smoothness also in the data con-
straint direction, leading to an undesirable interference. A notable exception
is the anisotropic smoothness term proposed by Nagel and Enkelmann [27].
At large image gradients, their regulariser solely smoothes along image edges.
For a basic data term modelling the brightness constancy assumption, this
smoothing direction is orthogonal to the data constraint direction and thus
both term complement each other in an optimal manner. Unfortunately, this
promising concept of complementarity between data and smoothness term
has not been further investigated after 1986. Our paper revives this concept
for state-of-the-art optic flow models by presenting a novel complementary
smoothness term in conjunction with an advanced data term.
(ii) Having adjusted the smoothing behaviour to the imposed data con-
straints, it remains to determine the optimal balance between the two terms
for the image sequence under consideration. This comes down to selecting an
appropriate smoothness weight, which is usually considered a difficult task.
We propose a method that is easy to implement for all variational optic
flow approaches and nevertheless gives surprisingly good results. It bases on
the assumption that the flow estimate obtained by an optimal smoothness
weight allows for the best possible prediction of the next frames in the image
sequence. This novel paradigm we name optimal prediction principle (OPP).

1.1 Related Work

In the first ten years of research on optic flow, several basic strategies have
been considered, e.g. phase-based methods [15], local methods [23, 5] and
energy-based methods [19]. In recent years, the latter class of methods be-
came increasingly popular, mainly due to their potential for giving highly
accurate results. Within energy-based methods, one can distinguish discrete
approaches that minimise a discrete energy function and are often proba-
bilistically motivated, and variational approaches that minimise a continuous
energy functional.
Our variational approach naturally incorporates concepts that have proven
their benefits over the years. In the following, we briefly review advances in
the design of data and smoothness terms that are influential for our work.

Data Terms. To cope with outliers caused by noise or occlusions,
Black and Anandan [6] replaced the quadratic penalisation from Horn and
Schunck [19] by a robust subquadratic penaliser.
To obtain robustness under additive illumination changes, Brox et al. [8]
combined the classical brightness constancy assumption [19] with the higher-
order gradient constancy assumption [37, 31]. Bruhn and Weickert [9] im-
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proved this idea by a separate robust penalisation of brightness and gradient
constancy assumption. This gives advantages if one of the two constraints
produces an outlier. Recently, Xu et al. [45] went a step further and estimate
a binary map that locally selects between imposing either brightness or gra-
dient constancy. An alternative to higher-order constancy assumptions can
be to preprocess the images by a structure-texture decomposition [40].
In addition to additive illumination changes, realistic scenarios also encom-
pass a multiplicative part [38]. For colour image sequences, this issue can
be tackled by normalising the colour channels [17], or by using alternative
colour spaces with photometric invariances [17, 38, 24]. If one is restricted
to greyscale sequences, using log-derivatives [24] can be useful.
A further successful modification of the data term has been reported by
performing a constraint normalisation [34, 21, 32]. It prevents an undesirable
overweighting of the data term at large image gradient locations.

Smoothness Terms. First ideas go back to Horn and Schunck [19] who
used a homogeneous regulariser that does not respect any flow discontinuities.
Since different image objects may move in different directions, it is, however,
desirable to also permit discontinuities.
This can for example be achieved by using image-driven regularisers that take
into account image discontinuities. Alvarez et al. [1] proposed an isotropic
model with a scalar-valued weight function that reduces the regularisation
at image edges. An anisotropic counterpart that also exploits the directional
information of image discontinuities was introduced by Nagel and Enkel-
mann [27]. Their method regularises the flow field along image edges but
not across them. Note that for a basic data term modelling the brightness
constancy assumption, the image edge direction coincides with the comple-
mentary direction orthogonal to the data constraint direction.
Of course, not every image edge will coincide with a flow edge. Thus, image-
driven strategies are prone to give oversegmentation artefacts in textured
image regions. To avoid this, flow-driven regularisers have been proposed
that respect discontinuities of the evolving flow field and are therefore not
misled by image textures. In the isotropic setting this comes down to the use
of robust, subquadratic penalisers which are closely related to line processes
[7]. For energy-based optic flow methods, such a strategy was used in [33, 31].
An anisotropic extension was later presented by Weickert and Schnörr [42].
The drawback of flow-driven regularisers lies in less well-localised flow edges
compared to image-driven approaches.
Concerning the individual problems of image- and flow-driven strategies, the
idea arises to combine the advantages of both worlds. This goal was first
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achieved in the discrete method of Sun et al. [36]. There, the authors devel-
oped an anisotropic regulariser that uses directional flow derivatives steered
by image structures. This allows to adapt the smoothing direction to the di-
rection of image structures and the smoothing strength to the flow contrast.
We call such a strategy image- and flow-driven regularisation. It combines
the benefits of image- and flow-driven methods, i.e. sharp flow edges without
oversegmentation problems.
The smoothness terms discussed so far only assume smoothness of the flow
field in the spatial domain. As image sequences usually consist of more than
two frames, yielding more than one flow field, it makes sense to also assume
temporal smoothness of the flow fields. This leads to spatio-temporal smooth-
ness terms. In a discrete setting they go back to Murray and Buxton [25]. For
variational approaches, an image-driven spatio-temporal smoothness terms
was proposed by Nagel [26] and a flow-driven counterpart was later presented
by Weickert and Schnörr [43].

Automatic Parameter Selection. It is well-known that an appropriate
choice of the smoothness weight is crucial for obtaining favourable results.
Nevertheless, there has been remarkably little research on methods that au-
tomatically estimate the optimal smoothness weight or other model param-
eters.
Concerning an optimal selection of the smoothness weight for variational op-
tic flow approaches, Ng and Solo [28] proposed an error measure which can
be estimated from the image sequence and the flow estimate only. Using this
measure, a brute-force search for the smoothness weight that gives the small-
est error is performed. Computing the proposed error measure is, however,
computationally expensive, especially for robust data terms. Ng and Solo [28]
hence restricted their focus to the basic method of Horn and Schunck [19]. In
a Bayesian framework, a parameter selection approach that can also handle
robust data terms was presented by Krajsek and Mester [20]. This method
jointly estimates the flow and the model parameters where the latter encom-
pass the smoothness weight and also the relative weights of different data
terms. This method does not require a brute-force search, but the minimisa-
tion of the objective function is more complicated and only computationally
feasible if certain approximations are performed.

1.2 Our Contributions

The OFH method is obtained in three steps. We first develop a robust and
invariant data term. Then an anisotropic image- and flow-driven smoothness
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term is designed that works complementary to the data term. Finally we pro-
pose a simple method for automatically determining the optimal smoothness
weight for the given image sequence.
Our data term combines the brightness and the gradient constancy as-
sumption, and performs a constraint normalisation. It further uses a Hue-
Saturation-Value (HSV) colour representation with a separate robustification
of each channel. The latter is motivated by the fact that each channel in the
HSV space has a distinct level of photometric invariance and information
content. Hence, a separate robustification allows to choose the most reliable
channel at each position. Our anisotropic complementary smoothness term
takes into account directional information from the constraints imposed in
the data term. Across “constraint edges”, we perform a robust penalisation
to reduce the smoothing in the direction where the data term gives the most
information. Along constraint edges, where the data term gives no infor-
mation, a strong filling-in by using a quadratic penalisation makes sense.
This strategy not only allows for an optimal complementarity between data
and smoothness term, but also leads to a desirable image- and flow-driven
behaviour. We further show that our regulariser can easily be extended to
work in the spatio-temporal domain. Our method for determining the opti-
mal smoothness weight bases on the proposed OPP paradigm. This results
in finding the optimal smoothness weight as the one corresponding to the
flow field with the best prediction quality. To judge the latter, we evaluate
the data constraints between the first and the third frame of the sequence.
Under mild assumptions (constant speed, linear trajectory of objects) this
can be realised by simply doubling the flow vectors. Due to its simplicity,
our method is easy to implement for all variational optic flow approaches,
but nevertheless produces surprisingly good results.
The present article extends our shorter conference paper [46] by the following
points: (i) A more extensive derivation and discussion of the data term. (ii)
An explicit discussion on the adequate treatment of the hue channel of the
HSV colour space. (iii) A taxonomy of existing smoothness terms within a
novel general framework. The latter allows to reformulate most existing as
well as our novel regulariser in a common notation. (iv) The extension of
our complementary regulariser to the spatio-temporal domain. (v) A simple
method for automatically selecting the smoothness weight. (vi) A deeper
discussion of implementation issues. (vii) A more extensive experimental
validation.

Organisation. In Section 2 we present our variational optic flow model
with the robust data term and the complementary smoothness term. The
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latter is then extended to the spatio-temporal domain. Section 3 describes
the method proposed for determing the smoothness weight. After discussing
implementation issues in Section 4, we show experiments in Section 5. The
paper is finished with conclusions and an outlook on future work in Section 6.

2 Variational Optic Flow

Let f(x) be a grayscale image sequence where x := (x, y, t)⊤. Here, the vector
(x, y)⊤∈ Ω denotes the location within a rectangular image domain Ω ⊂ R

2,
and t ∈ [0, T ] denotes time. We further assume that f is presmoothed by
a Gaussian convolution: Given an image sequence f0(x), we obtain f(x) =
(Kσ ∗ f0)(x), where Kσ is a spatial Gaussian of standard deviation σ and ∗
denotes the convolution operator.
The optic flow field w := (u, v, 1)⊤ describes the displacement vector field
between two frames at time t and t + 1. It is found by minimising a global
energy functional of the general form

E(u, v) =

∫

Ω

(
M(u, v) + α V (∇2u,∇2v)

)
dx dy , (1)

where ∇2 := (∂x, ∂y)
⊤ denotes the spatial gradient operator. The term

M(u, v) denotes the data term, V (∇2u,∇2v) the smoothness term, and α > 0
is a smoothness weight. Note that the energy (1) refers to the spatial case
where one computes one flow field between two frames at time t and t + 1.
The more general spatio-temporal case that uses all frames t ∈ [0, T ] will be
presented in Section 2.3.
According to the calculus of variations [14], a minimiser (u, v) of the energy
(1) necessarily has to fulfil the associated Euler-Lagrange equations

∂uM − α
(
∂x (∂ux

V ) + ∂y

(
∂uy

V
))

= 0 , (2)

∂vM − α
(
∂x (∂vx

V ) + ∂y

(
∂vy

V
))

= 0 (3)

with homogeneous Neumann boundary conditions.

2.1 Data Term

Let us now derive our data term in a systematic way. The classical starting
point is the brightness constancy assumption used by Horn and Schunck [19].
It states that image intensities remain constant under their displacement, i.e.
f(x+w) = f(x). Assuming that the image sequence is smooth and that the
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displacements are small, we can perform a first-order Taylor expansion that
yields the linearised optic flow constraint (OFC)

0 = fx u + fy v + ft = ∇⊤

3f w , (4)

where ∇3 := (∂x, ∂y, ∂t)
⊤ is the spatio-temporal gradient operator and sub-

scripts denote partial derivatives. With a quadratic penalisation, the corre-
sponding data term is given by

M1(u, v) =
(
∇⊤

3f w
)2

= w⊤J0 w , (5)

with the tensor
J0 := ∇3f ∇⊤

3f . (6)

The single equation given by the OFC involves two unknowns u and v. It
is thus not sufficient to compute a unique solution, which is known as the
aperture problem [4]. Nevertheless, the OFC does allow to compute the
flow component orthogonal to image edges, the so-called normal flow. For
|∇2f | 6= 0 it is defined as

wn :=
(
u⊤

n , 1
)⊤

:=

(
− ft

|∇2f |
∇⊤

2 f

|∇2f |
, 1

)⊤

. (7)

Normalisation. Our experiments will show that normalising the data term
can be beneficial. Following [34, 21, 32] and using the abbreviation u :=
(u, v)⊤, we rewrite the data term M1 as

M1(u, v) =
(
∇⊤

2f u + ft

)2
=

[
|∇2f |

(∇⊤

2f u

|∇2f |
+

ft

|∇2f |

)]2

= |∇2f |2
[ ∇⊤

2f

|∇2f |

(
u +

ft ∇2f

|∇2f |2
)]2

= |∇2f |2
(

∇⊤

2f

|∇2f |
(u − un)

︸ ︷︷ ︸
=:d

)2

. (8)

The term d constitutes a projection of the difference between the estimated
flow u and the normal flow un in the direction of the image gradient ∇2f . In
a geometric interpretation, the term d describes the distance from u to the
line l in the uv-space that is given by

v = −fx

fy

u − ft

fy

. (9)
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d

l

un

∇2f

|∇2f |

u

Figure 1: Geometric interpretation of the rewritten data term (8).

On this line, the flow u has to lie according to the OFC (4), and the normal
flow un is the smallest vector that lies on this line. A sketch of this situation
is given in Figure 1. Our geometric interpretation suggests that one should
ideally penalise the distance d in a data term M2(u, v) = d 2. The data term
M1, however, weighs this distance by the squared spatial image gradient, as
M1(u, v) = |∇2f |2 d 2, see (8). This results in a stronger enforcement of the
data constraint at high gradient locations. This overweighting is undesirable
as large gradients can be caused by unreliable structures, such as noise or
occlusions.
As a remedy, we normalise the data term M1 by multiplying it with a factor
[34, 21]

θ0 :=
1

|∇2f |2 + ζ2
, (10)

where the regularisation parameter ζ > 0 avoids division by zero and ad-
ditionally reduces the influence of small gradients, while not influencing the
normalisation for gradients significantly larger than ζ2. A normalised version
of M1 can then be written as

M2(u, v) = w⊤J̄0 w , (11)

with the normalised tensor

J̄0 := θ0 J0 = θ0

(
∇3f ∇⊤

3f
)

. (12)

Gradient Constancy Assumption. To render the data term robust un-
der additive illumination changes, it was proposed to impose the gradient
constancy assumption [37, 31, 8]. In contrast to the brightness constancy
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assumption, it states that image gradients remain constant under their dis-
placement, i.e. ∇2f(x+w) = ∇2f(x). A Taylor linearisation gives

∇⊤

3fx w = 0 , and ∇⊤

3fy w = 0 , (13)

respectively. Combining both brightness and gradient constancy assumption
in a quadratic way gives the data term

M3(u, v) = w⊤Jw , (14)

where the tensor J can be written in the motion tensor notation [10] that
allows to combine the two constancy assumptions in a joint tensor

J := J0 + γ Jxy := J0 + γ (Jx + Jy)

:= ∇3f ∇⊤

3f + γ
(
∇3fx ∇⊤

3fx + ∇3fy ∇⊤

3fy

)
, (15)

where the parameter γ > 0 steers the contribution of the gradient constancy
assumption.
To normalise M3, we replace the motion tensor J by its normalised counter-
part

J̄ := J̄0 + γ J̄xy := J̄0 + γ
(
J̄x + J̄y

)

:= θ0 J0 + γ (θx Jx + θy Jy)

:= θ0

(
∇3f ∇⊤

3f
)

(16)

+γ
(
θx

(
∇3fx ∇⊤

3fx

)
+θy

(
∇3fy ∇⊤

3fy

))
,

with two additional normalisation factors defined as

θx :=
1

|∇2fx|2 + ζ2
, and θy :=

1

|∇2fy|2 + ζ2
. (17)

The normalised data term M4 is given by

M4(u, v) = w⊤J̄ w . (18)

Colour Image Sequences. In a next step we extend our data term to
multi-channel sequences (f 1(x), f 2(x), f 3(x)). If one uses the standard RGB
colour space, the three channels represent the red, green and blue channel,
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respectively. We couple the three colour channels in the motion tensor

J̄ c :=
3∑

i=1

J̄ i :=
3∑

i=1

[
J̄ i

0 + γ J̄ i
xy

]
:=

3∑

i=1

[
J̄ i

0 + γ
(
J̄ i

x + J̄ i
y

)]

:=
3∑

i=1

[
θi
0

(
∇3f

i ∇⊤

3f
i
)

(19)

+ γ
(
θi

x

(
∇3f

i
x ∇⊤

3f
i
x

)
+ θi

y

(
∇3f

i
y ∇⊤

3f
i
y

))]
,

with normalisation factors θi for each colour channel f i. The corresponding
data term reads as

M5(u, v) = w⊤J̄ c w . (20)

Photometric Invariant Colour Spaces. Realistic illumination models
encompass a multiplicative influence [38], which cannot be captured by the
gradient constancy assumption that is only invariant under additive illumi-
nation changes. This problem can be tackled by using the Hue Saturation
Value (HSV) colour space, as proposed in [17]. The hue channel is invariant
under global and local multiplicative illumination changes, as well as under
local additive changes. The saturation channel is only invariant under global
multiplicative illumination changes, and the value channel exhibits no in-
variances. Mileva et al. [24] thus only used the hue channel for optic flow
computation as it exhibits the most invariances. We will additionally use the
saturation and value channel, because they contain information that is not
encoded in the hue channel.
As an example, consider the HSV decomposition of the Rubberwhale image
shown in Figure 2. As we can see, the shadow at the left of the wheel
(shown in the zoom) is not present in the hue and the saturation channel,
but appears in the value channel. Nevertheless, especially the hue channel
discards a lot of image information, as can be observed for the striped cloth.
This information is, on the other hand, available in the value channel.
One problem when using a HSV colour representation is that the hue channel
f 1 describes an angle in a colour circle, i.e. f 1∈ [0◦, 360◦). The hue channel
is hence not differentiable at the interface between 0◦ and 360◦. Our solution
to this problem is to consider the unit vector (cos f 1, sin f 1)⊤ corresponding
to the angle f 1. This results in treating the hue channel as two (coupled)
channels, which are both differentiable. The corresponding motion tensor for
the brightness constancy assumption consequently reads as

J̄ 1
0 := θ1

0

(
∇3 cos f 1 ∇⊤

3 cos f 1 + ∇3 sin f 1 ∇⊤

3 sin f 1
)

, (21)
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Figure 2: HSV decomposition on the example of the Rub-
berwhale image from the Middlebury optic flow database [2]
(http://vision.middlebury.edu/flow/data/). First row, from left to right:
(a) Colour image with zoom in shadow region left of the wheel. (b) Hue
channel, visualised with full saturation and value. Second row, from left to
right: (c) Saturation channel. (d) Value channel

where the normalisation factor is defined as

θ1
0 :=

1

|∇2 cos f 1|2 + |∇2 sin f 1|2 + ζ2
. (22)

The tensor J̄ 1
xy for the gradient constancy assumption is adapted accordingly.

Note that in the differentiable parts of the hue channel, the motion tensor
(21) is equivalent to our earlier definition, as

∇3 cos f 1 ∇⊤

3 cos f 1 + ∇3 sin f 1 ∇⊤

3 sin f 1

= sin2f 1
(
∇̃3f

1 ∇̃⊤

3f
1
)

+ cos2f 1
(
∇̃3f

1 ∇̃⊤

3f
1
)

= ∇̃3f
1∇̃⊤

3f
1 , (23)

where ∇̃ denotes the gradient in the differentiable parts of the hue channel.

Robust Penalisers. To provide robustness of the data term against out-
liers caused by noise and occlusions, Black and Anandan [6] proposed to
refrain from a quadratic penalisation. Instead they use a subquadratic pe-
nalisation function ΨM(s2), where s2 denotes the quadratic data term. Using
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such a robust penaliser within our data term yields

M6(u, v) = ΨM

(
w⊤J̄ c w

)
. (24)

Good results are reported in [8] for the subquadratic penaliser ΨM(s2) :=√
s2 + ε2 using a small regularisation parameter ε > 0.

Bruhn and Weickert [9] later proposed a separate penalisation of the bright-
ness and the gradient constancy assumption, which is advantageous if one
assumption produces an outlier. Incorporating this strategy into our ap-
proach gives the data term

M7(u, v) = ΨM

(
w⊤J̄ c

0 w
)

+ γ ΨM

(
w⊤J̄ c

xy w
)

, (25)

where the separate motion tensors are defined as

J̄ c
0 :=

3∑

i=1

J̄ i
0 , and J̄ c

xy :=
3∑

i=1

J̄ i
xy . (26)

We will go further by proposing a separate robustification of each colour
channel in the HSV space. This can be justified by the distinct information
content of each of the three channels, see Figure 2, that drives the optic flow
estimation in different ways. The separate robustification then downweights
the influence of less appropriate colour channels.

Final Data Term. Incorporating our separate robustification idea into M7

brings us to our final data term

M(u, v)=
3∑

i=1

ΨM

(
w⊤J̄ i

0 w
)
+γ

(
3∑

i=1

ΨM

(
w⊤J̄ i

xy w
)
)

, (27)

with the motion tensors J̄ 1 adapted to the HSV colour space as described
before. Note that our final data term is (i) normalised, (ii) combines the
brightness and gradient constancy assumption, and (iii) uses the HSV colour
space with (iv) a separate robustification of all colour channels.
The contributions of our data term (27) to the Euler-Lagrange equations (2)
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and (3) are given by

∂uM =
3∑

i=1

(
Ψ′

M

(
w⊤J̄ i

0 w
)
·
([

J̄ i
0

]
1,1

u +
[
J̄ i

0

]
1,2

v +
[
J̄ i

0

]
1,3

))
(28)

+ γ

(
3∑

i=1

(
Ψ′

M

(
w⊤J̄ i

xy w
)
·
([

J̄ i
xy

]
1,1

u +
[
J̄ i

xy

]
1,2

v +
[
J̄ i

xy

]
1,3

)))
,

∂vM =
3∑

i=1

(
Ψ′

M

(
w⊤J̄ i

0 w
)
·
([

J̄ i
0

]
1,2

u +
[
J̄ i

0

]
2,2

v +
[
J̄ i

0

]
2,3

))
(29)

+ γ

(
3∑

i=1

(
Ψ′

M

(
w⊤J̄ i

xy w
)
·
([

J̄ i
xy

]
1,2

u +
[
J̄ i

xy

]
2,2

v +
[
J̄ i

xy

]
2,3

)))
,

where [J]m,n denotes the entry in row m and column n of the tensor J,
and Ψ′

M(s2) denotes the derivative of ΨM(s2) w.r.t. its argument. Analysing
the terms (28) and (29), we see that the separate robustification of the HSV
channels makes sense: If a specific channel violates the imposed constancy as-
sumption at a certain location, the corresponding argument of the decreasing
function Ψ′

M will be large, yielding a downweighting of this channel. Other
channels that satisfy the constancy assumption then have a dominating in-
fluence on the solution. This will be confirmed by a specific experiment in
Section 5.1.

2.2 Smoothness Term

Following the extensive taxonomy on optic flow regularisers [42], we sketch
some existing smoothness terms that led to our novel complementary regu-
lariser. We rewrite the regularisers in a novel framework that unifies their
notation and eases their comparison.

Preliminaries for the General Framework. We first introduce concepts
that will be used in our general framework.
Anisotropic image-driven regularisers take into account directional informa-
tion from image structures. These information can be obtained by consider-
ing the structure tensor [16]

Sρ := Kρ ∗
[
∇2f ∇⊤

2f
]

=:
2∑

i=1

µi si s
⊤

i , (30)

with an integration scale ρ > 0. The structure tensor is a symmetric, positive
semidefinite 2×2 matrix that possesses two orthonormal eigenvectors s1 and
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s2 with corresponding eigenvalues µ1 ≥ µ2 ≥ 0. The vector s1 points across
image structures, whereas the vector s2 points along them. In the case for
ρ = 0, i.e. without considering neighbourhood information, one obtains

s0
1 =

∇2f

|∇2f |
, and s0

2 =
∇⊥

2f

|∇2f |
, (31)

where ∇⊥

2 f := (−fy, fx)
⊤ denotes the vector orthogonal to ∇2f . For ρ = 0

we also have that |∇2f |2 = tr S0, with tr denoting the trace operator.
Most regularisers impose smoothness by penalising the magnitude of the flow
gradients. As s1 and s2 constitute an orthonormal basis, we can write

|∇2u|2 = u2
x + u2

y = u2
s1

+ u2
s2

, (32)

using the directional derivatives usi
:= s⊤i ∇2u. A corresponding rewriting

can also be performed for |∇2v|2.
To analyse the smoothing behaviour of the regularisers, we will consider the
corresponding Euler-Lagrange equations that can be written in the form

∂uM − α div (D∇2u) = 0 , (33)

∂vM − α div (D∇2v) = 0 , (34)

with a diffusion tensor D that steers the smoothing of the flow components
u and v. More specific, the eigenvectors of D give the smoothing direction,
and the corresponding eigenvalues determine the magnitude of smoothing.

Homogeneous Regularisation. First ideas for the smoothness term go
back to Horn and Schunck [19] who used a homogeneous regulariser. In our
framework it reads as

VH(∇2u,∇2v) := |∇2u|2 + |∇2v|2

= u2
s1

+ u2
s2

+ v2
s1

+ v2
s2

. (35)

The corresponding diffusion tensor is equal to the unit matrix DH = I. The
smoothing processes thus perform homogeneous diffusion that blurs impor-
tant flow edges.

Image-Driven Regularisation. To obtain sharp flow edges, image-driven
methods [1, 27] reduce the smoothing at image edges, indicated by large
values of |∇2f |2 = tr S0.
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An isotropic image-driven regulariser goes back to Alvarez et al. [1] who used

VII(∇2u,∇2v) := g
(
|∇2f |2

) (
|∇2u|2 + |∇2v|2

)

= g(tr S0)
(
u2

s1
+ u2

s2
+ v2

s1
+ v2

s2

)
, (36)

where g is a decreasing, strictly positive weight function. The corresponding
diffusion tensor DII = g(trS0) I shows that the weight function allows to
decrease the smoothing in accordance to the strength of image edges.

The anisotropic image-driven regulariser of Nagel and Enkelmann [27] pre-
vents smoothing of the flow field across image boundaries but encourages
smoothing along them. This is achieved by the regulariser

VAI(∇2u,∇2v) := ∇⊤

2 u P(∇2f) ∇2u + ∇⊤

2 v P(∇2f) ∇2v , (37)

where P(∇2f) denotes a regularised projection matrix perpendicular to the
image gradient. It is defined as

P(∇2f) :=
1

|∇2f |2 + 2κ2

(
∇⊥

2 f
(
∇⊥

2 f
)⊤

+ κ2I
)

. (38)

with a regularisation parameter κ > 0. In our common framework, this
regulariser can be written as

VAI(∇2u,∇2v) =
κ2

tr S0 + 2κ2

(
u2

s
0
1

+ v2
s
0
1

)
+

tr S0 + κ2

tr S0 + 2κ2

(
u2

s
0
2

+ v2
s
0
2

)
. (39)

The correctness of above rewriting can easily be verified and is based on the
observations that s0

1 and s0
2 are the eigenvectors of P, and that the factors

in front of (u2
s
0
1

+ v2
s
0
1

) and (u2
s
0
2

+ v2
s
0
2

) are the corresponding eigenvalues. The

diffusion tensor for the regulariser of Nagel and Enkelmann [27] is identical
to the projection matrix: DAI = P. Concerning its eigenvectors and eigen-
values, we observe that in the limiting case for κ→0, where VAI→u2

s
0
2

+ v2
s
0
2

,

we obtain a smoothing solely in s0
2-direction, i.e. along image edges. In the

definition of the normal flow (7) we have seen that a data term that models
the brightness constancy assumption constraints the flow only orthogonal to
image edges. In the limiting case, the regulariser of Nagel and Enkelmann
can hence be interpreted as a first complementary smoothness term that fills
in information orthogonal to the data constraint direction.

The drawback of image-driven strategies is that they are prone to overseg-
mentation artefacts in textured image regions where image edges do not
necessarily correspond to flow edges.
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Flow-Driven Regularisation. To remedy the oversegmentation problem,
it makes sense to adapt the smoothing process to the flow edges instead of
the image edges.

In the isotropic setting, Simoncelli et al. [33] and Schnörr [31] proposed to
use subquadratic penaliser functions for the smoothness term, i.e.

VIF(∇2u,∇2v) := ΨV

(
|∇2u|2 + |∇2v|2

)

= ΨV

(
u2

s1
+ u2

s2
+ v2

s1
+ v2

s2

)
, (40)

where the penaliser function ΨV (s2) is preferably increasing, differentiable
and convex in s. The associated diffusion tensor is given by

DIF = Ψ′

V

(
u2

s1
+ u2

s2
+ v2

s1
+ v2

s2

)
I . (41)

The underlying diffusion processes perform nonlinear isotropic diffusion,
where the smoothing is reduced at the boundaries of the evolving flow field
via the decreasing diffusivity Ψ′

V . If one uses the convex penaliser [12]

ΨV (s2) :=
√

s2 + ε2 , (42)

one ends up with regularised total variation (TV) regularisation [30] with the
diffusivity

Ψ′

V (s2) =
1

2
√

s2 + ε2
≈ 1

2 |s| . (43)

Another possible choice is the non-convex Perona-Malik regulariser
(Lorentzian) [6, 29] given by

ΨV (s2) := λ2 log

(
1 +

s2

λ2

)
, (44)

that results in Perona-Malik diffusion with the diffusivity

Ψ′

V (s2) =
1

1 + s2

λ2

, (45)

using a contrast parameter λ > 0.

We will not discuss the anisotropic flow-driven regulariser of Weickert and
Schnörr [42] as it does not fit in our framework and also has not been used
in the design of our complementary regulariser.

Despite the fact that flow-driven methods reduce the oversegmentation prob-
lem caused by image textures, they suffer from another drawback: The flow
edges are not as well localised as with image-driven strategies.
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Image- and Flow-Driven Regularisation. We have seen that image-
driven methods suffer from oversegmentation artefacts, but give sharp flow
edges. Flow-driven strategies remedy the oversegmentation problem but give
less pleasant flow edges. It is thus desireable to combine the advantages of
both strategies to obtain sharp flow edges without oversegmentation prob-
lems.
This aim was achieved by Sun et al. [36] who presented an anisotropic image-
and flow-driven smoothness term in a discrete setting. It adapts the smooth-
ing direction to image structures but steers the smoothing strength in accor-
dance to the flow contrast. In contrast to Nagel and Enkelmann [27] who
considered ∇⊥

2 f to obtain directional information of image structures, the
regulariser in [36] analyses the eigenvectors si of the structure tensor Sρ from
(30) to obtain a more robust direction estimation. A continuous version of
this regulariser can be written as

VAIF(∇2u,∇2v) := ΨV

(
u2

s1

)
+ ΨV

(
v2
s1

)
+ ΨV

(
u2

s2

)
+ ΨV

(
v2
s2

)
. (46)

Here, we again obtain two diffusion tensors, that for p ∈ {u, v} read as

Dp
AIF = Ψ′

V

(
p2
s1

)
s1 s⊤1 + Ψ′

V

(
p2
s2

)
s2 s⊤2 . (47)

We observe that these tensors allow to obtain the desired behaviour: The
regularisation direction is adapted to the image structure directions s1 and
s2, whereas the magnitude of the regularisation depends on the flow contrast
encoded in ps1

and ps2
. As a result, one obtains the same sharp flow edges as

image-driven methods but does not suffer from oversegmentation problems.

2.2.1 Our Novel Complementary Regulariser

In spite of its sophistication, the anisotropic image- and flow-driven model
[36] given in (46) still suffers from a few shortcomings. We introduce three
amendments that we will discuss now.

Regularisation Tensor. A first remark w.r.t. the model from (46) is that
the directional information from the structure tensor Sρ is not consistent
with the imposed constraints of our data term (27). It is more natural to
take into account directional information provided by the motion tensor (19)
and to steer the anisotropic regularisation process w.r.t. “constraint edges”
instead of image edges. To this end we propose to analyse the eigenvectors
r1 and r2 of the regularisation tensor

Rρ :=
3∑

i=1

Kρ∗
[
θi
0

(
∇2f

i ∇⊤

2f
i
)

+ γ
(
θi

x

(
∇2f

i
x ∇⊤

2f
i
x

)
+ θi

y

(
∇2f

i
y ∇⊤

2f
i
y

))]
,

(48)
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which can be regarded as a generalisation of the structure tensor (30). Note
that the regularisation tensor differs from the motion tensor J̄c from (19)
by the facts that it (i) integrates neighbourhood information via the Gaus-
sian convolution, and (ii) uses the spatial gradient operator ∇2 instead of
the spatio-temporal operator ∇3. The latter is due to the spatial regularisa-
tion. In Section 2.3 we extend our regulariser to the spatio-temporal domain,
yielding a regularisation tensor that also uses the spatio-temporal gradient
∇3. Further note that a Gaussian convolution of the motion tensor leads to
a combined local-global (CLG) data term in the spirit of [11]. Our experi-
ments in Section 5.1 will analyse in which cases such a modification of our
data term can be useful.

Rotational Invariance. The smoothness term VAIF from (46) lacks the
desirable property of rotational invariance, because the directional derivatives
of u and v in the eigenvector directions are penalised separately. We propose
to jointly penalise the directional derivatives, yielding

VAIFRρ,RI
(∇2u,∇2v) := ΨV

(
u2

r1
+ v2

r1

)
+ ΨV

(
u2

r2
+ v2

r2

)
, (49)

where we use the eigenvectors ri of the regularisation tensor.

Single Robust Penalisation. The above regulariser (49) performs a
twofold robust penalisation in both eigenvector directions. However, the data
term mainly constraints the flow in direction of the largest eigenvalue of the
spatial motion tensor, i.e. in r1-direction. We hence propose a single ro-
bust penalisation in r1-direction. In the orthogonal r2-direction, we opt for
a quadratic penalisation to obtain a strong filling-in effect of missing infor-
mation. The benefits of this design will be confirmed by our experiments in
Section 5.2. Incorporating the single robust penalisation finally yields our
complementary regulariser

VCR(∇2u,∇2v) := ΨV

(
u2

r1
+ v2

r1

)
+ u2

r2
+ v2

r2
, (50)

that complements the proposed robust data term from (27) in an optimal
fashion. For the penaliser ΨV , we propose the to use the Perona-Malik
regulariser (44).
The corresponding joint diffusion tensor is given by

DCR = Ψ′

V

(
u2

r1
+ v2

r1

)
r1r

⊤

1 + r2r
⊤

2 , (51)

with Ψ′

V given in (45). The derivation of this diffusion tensor is presented in
the Appendix A.
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Discussion. To understand the advantages of the complementary regu-
lariser compared to the anisotropic image- and flow-driven regulariser (46),
we compare our joint diffusion tensor (51) to its counterparts (47), which
reveals the following innovations: (i) The smoothing direction is adapted to
constraint edges instead of image edges, as the eigenvectors of the regularisa-
tion tensor ri are used instead of the eigenvectors of the structure tensor. (ii)
We achieve rotational invariance by coupling the two flow components in the
argument of Ψ′

V . (iii) We only reduce the smoothing across constraint edges,
i.e. in r1-direction. Along them, always a strong diffusion with strength 1 is
performed, resembling edge-enhancing anisotropic diffusion [41].
Furthermore, when analysing our joint diffusion tensor, the benefits of the
underlying anisotropic image- and flow-driven regularisation become visible.
The smoothing strength across constraint edges is determined by the expres-
sion Ψ′

V (u2
r1

+ v2
r1

). Here we can distinguish two scenarios: At a flow edge
that corresponds to a constraint edge, the flow gradients will be large and
almost parallel to r1. Thus, the argument of the decreasing function Ψ′

V will
be large, yielding a reduced diffusion which preserves this important edge.
At “deceiving” texture edges in flat flow regions, however, the flow gradi-
ents are small. This results in a small argument for Ψ′

V , leading to almost
homogeneous diffusion. Hence, we perform a pronounced smoothing in both
directions that avoids oversegmentation artefacts.
Finally note that our complementary regulariser has the same structure, even
if other data terms are used. Only the regularisation tensor Rρ has to be
adapted to the new data term.

2.2.2 Summary

To conclude this section, Table 1 summarises the discussed regularisers
rewritten in our framework. It also compares the way directional information
is obtained for anisotropic strategies, and it indicates if the regulariser is ro-
tationally invariant. Note that despite the fact these regularisers have been
developed within almost three decades, our taxonomy shows their structural
similarities.

2.3 Extension to a Spatio-Temporal Smoothness Term

The smoothness terms we have discussed so far model the assumption of a
spatially smooth flow field. As image sequences in general encompass more
than two frames, yielding several flow fields, it makes sense to also assume a
temporal smoothness of the flow fields, leading to spatio-temporal regulari-
sation strategies.
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Table 1: Comparison of regularisation strategies. The next to last column names the tensor that is analysed to obtain
directional information for anisotropic strategies, and the last column indicates if the corresponding regulariser is
rotationally invariant.

Strategy Regulariser V Directional Rotationally
Adaptation Invariant

Homogeneous u2
s1

+ u2
s2

+ v2
s1

+ v2
s2

— X

[19]

Isotropic image-driven g(tr S0)
(
u2

s1
+ u2

s2
+ v2

s1
+ v2

s2

)
— X

[1]

Anisotropic image-driven u2
s
0
2

+ v2
s
0
2

, for κ→0 S0 X

[27]

Isotropic flow-driven ΨV

(
u2

s1
+ u2

s2
+ v2

s1
+ v2

s2

)
— X

[33, 31]

Anisotropic image and flow-driven ΨV

(
u2

s1

)
+ ΨV

(
v2
s1

)
+ ΨV

(
u2

s2

)
+ ΨV

(
v2
s2

)
Sρ —

[36]

Anisotropic complementary ΨV

(
u2

r1
+ v2

r1

)
+ u2

r2
+ v2

r2
Rρ X

image- and flow-driven

20



A spatio-temporal (ST) version of the general energy functional (1) reads as

EST(u, v) = (52)∫

Ω×[0,T ]

[
M(u, v) + α V ST(∇3u,∇3v)

]
dx dy dt .

Compared to the spatial energy (1) we note the additional integration over
the time domain and that the smoothness term now depends on the spatio-
temporal flow gradient.
To extend our complementary regulariser from (50) to the spatio-temporal
domain, we define the spatio-temporal regularisation tensor

R
ST

ρ := Kρ ∗ J̄c . (53)

For ρ = 0 it is identical to the motion tensor J̄c from (19). The Gaussian
convolution with Kρ is now performed in the spatio-temporal domain, which
also holds for the presmoothing of the image sequence. The spatio-temporal
regularisation tensor is a 3×3 tensor that possesses three orthonormal eigen-
vectors r1, r2 and r3. With their help, we define the spatio-temporal comple-
mentary regulariser (ST-CR)

V ST
CR (∇3u,∇3v) := ΨV

(
u2

r1
+ v2

r1

)
+ u2

r2
+ v2

r2
+ u2

r3
+ v2

r3
. (54)

The corresponding spatio-temporal diffusion tensor reads as

DST
CR = Ψ′

V

(
u2

r1
+ v2

r1

)
r1 r⊤1 + r2 r⊤2 + r3 r⊤3 . (55)

3 Automatic Selection of the Smoothness

Weight

The last step missing for our OFH method is a strategy that automatically
determines the optimal smoothness parameter α for the image sequence un-
der consideration. This is especially important in real-world applications of
optic flow where no ground truth flow is known. Note that if the latter would
be the case, we could simply select the smoothness weight that gives the flow
field with the smallest deviation from the ground truth.

3.1 A Novel Paradigm

We propose an error measure that allows to judge the quality of a flow field
without knowing the ground truth. This error measure bases on a novel
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paradigm, the optimal prediction principle (OPP). The OPP states that the
flow field obtained with an optimal smoothness weight allows for the best
prediction of the next frames in the image sequence. This makes sense as a
too small smoothness weight would lead to an overfit to the first two frames
and consequently result in a bad prediction of further frames. For too large
smoothness weights, the flow fields would be too smooth and thus also lead
to a bad prediction.
Following the OPP, our error measure needs to judge the quality of the
prediction achieved with a given flow field. To this end, we evaluate the
imposed data constraints between the first and the third frame of the image
sequence, resulting in an average data constancy error (ADCE) measure. To
compute this measure, we assume that the motion of the scene objects is of
more or less constant speed and that it describes linear trajectories within
the considered three frames. Under these assumptions, we simply double the
flow vectors to evaluate the data constraints between first and third frame.
Following this strategy, we can define the ADCE between frame 1 and 3 as

ADCE1,3(wα) :=
1

|Ω|

∫

Ω

[
3∑

i=1

ΨM

(
θi
0

(
f i(x+2wα)−f i(x)

)2
)

(56)

+ γ

(
3∑

i=1

ΨM

(
θi

x

(
f i

x(x+2wα)−f i
x(x)

)2

+θi
y

(
f i

y(x+2wα)−f i
y(x)

)2
))]

dx dy ,

where wα denotes the flow field obtained with a smoothness weight α. The
integrand of above expression is (apart from the doubled flow field) a variant
of our final data term (27) where no linearisations of the constancy assump-
tions have been performed. To evaluate the images at the subpixel locations
f i(x+2wα) we use Coons patches based on bicubic interpolation [13].

3.2 Determining the Best Parameter

In general, the relation between α and the ADCE is not convex, which ex-
cludes the use of gradient descent-like approaches for finding the optimal
value of α w.r.t. our error measure.
We propose a brute-force method similar to the one of Ng and Solo [28]: We
first compute the error measures for a “sufficiently large” set of flow fields
obtained with different α values. We then select the α that gives the smallest
error. To reduce the number of α values to test, we propose to start from a
given, standard value α0, say. This value is then incremented/decremented
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nα times by multiplying/dividing it with a stepping factor a > 1, yielding in
total 2nα +1 tests. This strategy results in testing more values of α that are
close to α0 and, more important, tests less very small or very large values of
α that hardly give reasonable results.

4 Implementation

The solution of the Euler-Lagrange equations for our method comes down to
solving a nonlinear system of equations. We solve the system by a nonlinear
multigrid scheme based on a Gauß-Seidel type solver with alternating line
relaxation [10].

4.1 Warping Strategy for Large Displacements

The derivation of the optic flow constraint (4) by means of a linearisation
is only valid under the assumption of small displacements. If the temporal
sampling of the image sequence is too coarse, this precondition will be vi-
olated and a linearised approach fails. To overcome this problem, Brox et
al. [8] proposed a coarse-to-fine multiscale warping strategy. To obtain a
coarse representation of the problem, we downsample the input images by
a factor η ∈ [0.5, 1.0). Prior to downsampling, we apply a low-pass filter to
the images by performing a Gaussian convolution with standard deviation√

2/(4η). This prevents aliasing problems.
At each warping level, we split the flow field into an already computed solu-
tion from coarser levels and an unknown flow increment. As the increments
are small, they can computed by the presented linearised approach. At the
next finer level, the already computed solution serves as initialisation, which
is achieved by performing a motion compensation of the second frame by
the current flow, known as warping. For warping with subpixel precision we
again use Coons patches based on bicubic interpolation [13].

Adapting the Smoothness Weight to the Warping Level. The in-
fluence of the data term usually becomes smaller at coarser levels of our
multiscale framework. This is due to the smoothing properties of the down-
sampling that leads to smaller values of the image gradients at coarse levels.
Such a behaviour is in fact desireable as the data term might not be reliable
at coarse levels. Our proposed data term normalisation leads, however, to
image gradients that are approximately in the same range at each level. To
recover the previous reduction of the data term at coarse levels, we propose
to adapt the smoothness weight α to the warping level k. This is achieved

23



by setting α(k) = α/ηk which results in larger values of α and an emphasis
of the smoothness term at coarse levels.

4.2 Discretisation

We follow [10] for the discretisation of the Euler-Lagrange equations. The
images and the flow fields are sampled on a rectangular pixel grid with grid
size h and temporal step size τ .
Spatial image derivatives are approximated via central finite differences using
the stencil 1

12h
(1,−8, 0, 8,−1), resulting in a fourth order approximation. The

spatial flow derivatives are discretised by second order approximations with
the stencil 1

2h
(−1, 0, 1). For approximating temporal image derivatives we use

a two-point stencil (−1, 1), resulting in a temporal difference. Concerning
the temporal flow derivatives, we use the stencil (−1, 1)/τ . In the spatial
regularisation case, we set τ = 1, yielding the same temporal difference as
for the image derivatives. In the spatio-temporal case, however, it makes
sense to adapt the value of τ to the given image sequence [43]. This allows
for an appropriate scaling of the temporal direction compared to the spatial
directions.
When computing the motion tensor, occurring derivatives are averaged from
the two frames at time t and t + 1 to obtain a lower approximation error.
For the regularisation tensor, the derivatives are solely computed at the first
frame as we only want to consider directional information from the reference
image.

5 Experiments

In our experiments we show the benefits of the OFH approach. The first
experiments are concerned with our robust data term and the complementary
smoothness term in the spatial and the spatio-temporal domain. Then, we
turn to the automatic selection of the smoothness weight. After a small
experiment on the importance of anti-aliasing in the warping scheme, we
finish our experiments by presenting the performance at the Middlebury optic
flow benchmark [2] (http://vision.middlebury.edu/flow/eval/).
As all considered sequences exhibit relatively large displacements, we use
the multiscale warping approach described in Section 4.1. The flow fields
are visualised by a colour code where hue encodes the flow direction and
brightness the magnitude, see Figure 3 (d). Throughout our experiments we
use constant values for the following parameters: ζ = 0.1, ε = 0.001, λ = 0.1.
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5.1 Robust Data Term

Benefits of Normalisation and the HSV Colour Space. We proposed
two main innovations in the data term: constraint normalisation and using
an HSV colour representation. In our first experiment, we thus compare
our method against variants (i) without data term normalisation. (ii) using
the RGB instead of the HSV colour space. For the latter we only separately
robustify the brightness and the gradient constancy assumption, as a separate
robustification of the RGB channels makes no sense. In Figure 3 we show
the results for the Snail sequence that we have created. Note that it is a
rather challenging sequence due to severe shadows and large displacements
up to 25 pixels. When comparing the results to our result in Figure 3 (i),
the following drawbacks of the modified versions become obvious: Without
data term normalisation (Figure 3 (e)), unpleasant artefacts at image edges
arise, even when using a large smoothness weight α. When relying on the
RGB colour space (Figure 3 (f)), a phantom motion in the shadow region at
the right border is estimated.

Effect of the Separate Robust Penalisation. This experiment illus-
trates the desireable effect of our separate robust penalisation of the HSV
channels. Using the Rubberwhale sequence from the Middlebury database,
we show in Figure 4 the data term weights Ψ′

M(w⊤̄J i
0 w) for the bright-

ness constancy assumption on the hue, the saturation and the value channel
(i=1, .., 3). Here, brighter pixels correspond to a larger weight and we only
show a zoom for better visibility. As we can see, the weight of the value
channel is reduced in the shadow regions (left of the wheel, of the orange
toy and of the clam). This is desireable as the value channel is not invariant
under shadows, see Figure 2.

A CLG Variant of Our Method. Our next experiment is concerned
with a CLG variant of our data term where we, as for the regularisation
tensor, perform a Gaussian convolution of the motion tensor entries.
First, we compare our method against a CLG variant for some Middlebury
sequences, see Table 2. To evaluate the quality of the flow fields compared
to the given ground truth, we use the average angular error (AAE) measure
([3]). We find that the CLG variant always leads to worse results and con-
clude that for the considered test sequences, this modification seems not to
be useful.
The flow fields for our proposed method are visualised in Figure 5. Together
with the parameter settings, the resulting error measures can be found in the
caption of the figure. To ease comparison with other methods, we give the
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Figure 3: Results for our Snail sequence with different variants of our method.
First row, from left to right: (a) First frame. (b) Zoom in marked region
of first frame. (c) Same for second frame. Second row, from left to right:
(d) Colour code. (e) Flow field in marked region, without normalisation
(α = 5000.0). (f) Same for RGB colour space (α = 300.0). Third row, from
left to right: (g) Same for TV regularisation (α = 50.0). (h) Same for image-
and flow-driven regularisation [36] (α = 2000.0). (i) Same for our method
(α = 2000.0). All results used the fixed parameters σ = 0.5, γ = 20.0, ρ =
4.0, η = 0.95
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Figure 4: Effect of our separate robust penalisation of the HSV channels.
First row, from left to right: (a) Zoom in first frame of the Rubberwhale se-
quence. (b) Visualisation of the corresponding hue channel weight. Brighter
pixels correspond to a larger weight. Second row, from left to right: (c) Same
for the saturation channel. (d) Same for the value channel

AAE and also the alternative average endpoint error (AEE) measure ([2]).
Concerning the the Rubberwhale sequence in the first row of Figure 5, we
wish to note that using the HSV colour space prevents unpleasant artefacts
in the shadow regions, e.g. left of the wheel.
Altough we have seen that a CLG variant of our method does not improve the
results on the Middlebury data set, this modification can actually be useful
in a certain scenario, namely in the presence of severe noise in the image
sequence. To prove this, we compare in Table 3 the performance of our
method to its CLG counterpart on noisy versions of the Yosemite sequence.
As it turns out, the CLG variant improves the results at large noise scales,
but deteriorates the quality for low noise scenarios. This also explains the
experienced behaviour on the Middlebury data sets, which hardly suffer from
noise.

5.2 Complementary Smoothness Term

Comparison with Other Regularisers. In Figure 3, we compare our
method against two results obtained when using another regulariser in con-
junction with our robust data term: (i) Using the popular TV regulariser; see
(40) and (42). (ii) Using the anisotropic image and flow-driven regulariser
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Table 2: Comparison of our method to a CLG variant (using the AAE)

Sequence Rubberwhale Dimetrodon Grove2 Urban2

CLG 3.00◦ 1.59◦ 2.20◦ 2.67◦

Proposed 2.77◦ 1.54◦ 2.16◦ 2.49◦

Figure 5: Results for some Middlebury sequences with ground truth. First
column: Reference frame. Second column: Ground truth (white pixels mark
locations where no ground truth is given). Third column: Result with our
method. From top to bottom: Rubberwhale (α = 850.0, σ = 0.3, γ = 20.0, ρ =
2.0 =⇒ AAE = 2.77◦, AEE = 0.083), Dimetrodon (α = 2500.0, σ = 0.7, γ =
25.0, ρ = 2.0 =⇒ AAE = 1.54◦, AEE = 0.079), Grove2 (α = 35.0, σ =
0.5, γ = 0.2, ρ = 1.0 =⇒ AAE = 2.16◦, AEE = 0.151), and Urban2 (α =
125.0, σ = 0.5, γ = 1.0, ρ = 1.5 =⇒ AAE = 2.49◦, AEE = 0.245). The
downsampling rate was set to η = 0.95 for all sequences
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Table 3: Comparison of our method to a CLG variant on noisy versions of
the Yosemite sequence (using the AAE). We have added Gaussian noise with
zero mean and standard deviation σn

σn 0 10 20 40

CLG 1.75◦ 4.01◦ 5.82◦ 8.14◦

Proposed 1.64◦ 3.82◦ 6.08◦ 8.55◦

from [36], which built the basis of our complementary regulariser. Here, we
use a rotationally invariant formulation that can be obtained from (49) by
replacing the eigenvectors ri of the regularisation tensor by the eigenvectors
si of the structure tensor. Comparing the obtained results to our result in
Figure 3 (i), we see that TV regularisation (Figure 3 (g)), leads to blurred
and badly localised flow edges. Using the regulariser from [36] (Figure 3 (h)),
unpleasant staircasing artefacts deteriorate the result.

Optic Flow in the Spatio-Temporal Domain. Let us now turn to the
spatio-temporal extension of our complementary smoothness term. As most
Middlebury sequences consist of 8 frames, a spatio-temporal method would in
general be applicable. However, the displacements between two subsequent
frames are often rather large there, resulting in a violation of the assumption
of a temporally smooth flow field. Consequently, spatio-temporal methods
do not improve the results. In our experiments, we use the Marble sequence
(available at http://i21www.ira.uka.de/image sequences/) and the Yosemite
sequence from the Middlebury datasets. These sequences exhibit relatively
small displacements and our spatio-temporal method allows to obtain notably
better results, see Figure 6 and Table 4–5. Note that when using more than
two frames, a smaller smoothness weight α has to be chosen and that a too
large temporal window may also deteriorate the results again.

5.3 Automatic Selection of the Smoothness Weight

Performance of our Proposed Error Measure. We first show that our
proposed data constancy error between frame 1 and 3 (ADCE1,3) is a very
good approximation of the popular angular error (AAE) measure. To this
end, we compare the two error measures for the Grove2 sequence in Figure
7. It becomes obvious that our proposed error measure (Figure 7 (b)) indeed
exhibits a shape very close to the angular error shown in Figure 7 (a). As
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Figure 6: Results for the Marble sequence with our spatio-temporal method.
First row, from left to right: (a) Reference frame (frame 16). (b) Ground
truth (white pixels mark locations where no ground truth is available). Sec-
ond row, from left to right: (c) Result using 2 frames (16–17). (d) Same for
6 frames (14–19)

Table 4: Smoothness weight α and AAE measures for our spatio-temporal
method on the Marble sequence, see Figure 6. All results used the fixed
parameters σ = 0.5, γ = 0.5, ρ = 1.0, τ = 1.5, η = 0.5. When using more
than two frames, the convolutions with Kσ and Kρ are performed in the
spatio-temporal domain

Number of frames 2 4 6 8
(from – to) (16–17) (15–18) (14–19) (13–20)

Smoothn. weight α 75.0 50.0 50.0 50.0
AAE 4.85◦ 2.63◦ 1.86◦ 2.04◦
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Table 5: Smoothness weight α and AAE measures for our spatio-temporal
method on the Yosemite sequence from Middlebury. All results used the
fixed parameters σ = 1.0, γ = 20.0, ρ = 1.5, τ = 1.0, η = 0.5. Here, better
results could be obtained when disbaling the temporal presmoothing

Number of frames 2 4 6 8
(from – to) (10–11) (9–12) (8–13) (7–14)

Smoothn. weight α 2000.0 1000.0 1000.0 1000.0
AAE 1.65◦ 1.16◦ 1.05◦ 1.01◦

our error measure reflects the quality of the prediction with the given flow
field, our result further substantiate the validity of the proposed OPP.

Benefits of an Automatic Parameter Selection. Next, we show that
our automatic parameter selection works well for a large variety of different
test sequences. In Table 6, we summarise AAE obtained when (i) setting
α to a fixed value (α = α0 = 400.0), (ii) using our automatic parameter
selection method, and (iii) selecting the (w.r.t. the AAE) optimal value of α
under the tested proposals. As we can see, estimating α with our proposed
method allows to improve the results compared to a fixed value of α in almost
all cases. Just for the Grove 3 sequence, the fixed value of α by accidently
coincides with the optimal value. Compared to the results achieved with an
optimal value of α, our results are on average 3% and at most 10% worse
than the optimal result.

5.4 Importance of Anti-Aliasing in the Warping
Scheme

We proposed to presmooth the images prior to downsampling in order to
avoid aliasing problems. In most cases, the resulting artefacts will not sig-
nificantly deteriorate the flow estimation, which can be attributed to the
robust data term. However, for the Urban sequence from the official Middle-
bury benchmark, anti-aliasing is crucial for obtaining reasonable results, see
Figure 8. As it turns out, the large displacement of the building in the lower
left corner can only be estimated when using with anti-aliasing. We explain
this by the high frequent stripe pattern on the facade of the building.
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Figure 7: Automatic selection of the smoothness weight α at the Grove2
sequence. From left to right: (a) Angular error (AAE) for 51 values of α,
computed from α0 = 400.0 and a stepping factor a = 1.1. (b) Same for the
proposed data constancy error (ADCE1,3). Remaining parameters were set
fixed to σ = 0.5, γ = 20.0, ρ = 4.0, η = 0.95

Table 6: Results (AAE) for some Middlebury sequences when (i) fixing the
smoothness weight (α = 400.0), (ii) estimating α, and (iii) with the optimal
value of α

Sequence Fixed α Estimated α Optimal α

Rubberwhale 3.43◦ 3.00◦ 3.00◦

Grove2 2.59◦ 2.43◦ 2.43◦

Grove3 5.50◦ 5.62◦ 5.50◦

Urban2 3.22◦ 2.84◦ 2.66◦

Urban3 3.44◦ 3.37◦ 3.35◦

Hydrangea 1.96◦ 1.94◦ 1.86◦

Yosemite 2.56◦ 1.89◦ 1.71◦

Marble 5.73◦ 5.05◦ 4.94◦

32



Figure 8: Importance of anti-aliasing on the example of the Urban sequence.
Top row, from left to right: (a) Frame 10. (b) Frame 11. Bootom row,
from left to right: (c) Our result without anti-aliasing. (d) Same with anti-
aliasing. All results used the fixed parameters α = 500.0, σ = 0.5, γ =
20.0, ρ = 4.0, η = 0.95. Please note that for this sequence, no ground truth
is publically available

5.5 Comparison to State-of-the-Art Methods

To compare our method to the state-of-the-art in optic flow estimation, we
submitted our results to the popular Middlebury benchmark (available at
http://vision.middlebury.edu/flow/eval/).
We found that for the provided benchmark sequences, using a HSV colour
representation is not as beneficial as seen in our experiment from Figure 3. As
the Middlebury sequences hardly suffer from difficult illumination conditions,
we cannot profit from the photometric invariances of the HSV colour space.
On the other hand, some sequences even pose problems in their HSV repre-
sentation. As an example, consider the results for the the Teddy sequence
in the first row of Figure 9. Here we see that the small white triangle be-
neath the chimney causes unpleasant artefacts in the flow field. This results
from the problem that greyscales do not have a unique representation in the
hue as well as the saturation channel. Nevertheless, there are also sequences
where a HSV colour representation is beneficial. For the Mequon sequence
(second row of Figure 9) a HSV colour respresentation removes artefacts in
the shadows left of the toys. The bottom line is, however, that for the whole
set of benchmark sequences, we obtain slightly better results when using the
RGB colour space. Thus, we use this variant of our method for evaluation
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Table 7: Estimated values of the smoothness weight α, using our automatic
parameter selection method

Sequence Smoothness weight α

Army 277.8
Grove 277.8
Mequon 277.8
Schefflera 691.2
Urban 480.0
Wooden 995.3
Yosemite 1433.3

at the Middlebury benchmark.
For our submission we used in accordance to the guidelines a fixed set of
parameters: σ = 0.5, γ = 20.0, ρ = 4.0, η = 0.95. The smoothness weight
α was automatically determined by our proposed method with the settings
nα = 8, α0 = 400.0, a = 1.2. For the Teddy with only two frames, we set
α = α0, as our parameter estimation method is not applicable in this case.
The resulting running time for the Urban sequence (640×480 pixels) was 620 s
on a standard PC (3.2 GHz Intel Pentium 4). For the parameter selection
we computed 2 · 8 + 1 = 17 flow fields, corresponding to approximately 36 s
per flow field. As recently shown by Gwosdek et al. [18], these runtimes can
be significantly lowered by a parallel implementation on modern GPUs.
At the time of submission (August 2010), we achieve the 4th place w.r.t. the
AAE and the AEE measure among 39 listed methods. Note that our previous
Complementary Optic Flow method [46] only ranks 6th for the AAE and 9th
for the AEE, which demonstrates the benefits of the proposed novelties in
this paper, like the automatic parameter selection and the anti-aliasing.
In Table 7 we additionally summarise the estimated values of α resulting from
our automatic parameter selection method. As desired, for sequences with
small details in the flow field (Army, Grove, Mequon) a small smoothness
weight is chosen. On the other hand, sequences like Wooden and Yosemite
with a rather smooth flow yield significantly larger values for the smoothness
weight.

34



Figure 9: Comparison of results obtained with HSV or RGB colour repre-
sentation. First row, from left to right: (a) Frame 10 of the Teddy sequence.
(b) Frame 11. (c) Result when using the HSV colour space (AAE = 3.94◦).
(d) Same for the RGB colour space (AAE = 2.64◦). Second row, from left
to right: (e) Frame 10 of the Mequon sequence. (f) Frame 11. (g) Result
when using the HSV colour space (AAE = 2.28◦). (h) Same for the RGB
colour space (AAE = 2.84◦)

6 Conclusions and Outlook

In this paper we have shown how to harmonise the three main constituents of
variational optic flow approaches: the data term, the smoothness term and
the smoothness weight. This was achieved by two main ideas: (i) We devel-
oped a smoothness term that achieves an optimal complementary smoothing
behaviour w.r.t. the imposed data constraints. (ii) We presented a simple,
yet well performing method for determining the optimal smoothness weight
for the given the image sequence. To this end, we came up with a novel
paradigm, the optimal prediction principle (OPP).
Our optic flow in harmony (OFH) method bases on an advanced data term
that combines and extended successful concepts like normalisation, photo-
metric invariant colour representation, higher order constancy assumptions
and robust penalisation. The anisotropic complementary smoothness term
incorporates directional information from the motion tensor occurring in the
data term. The smoothing in data constraint direction is reduced to avoid
interference with the data term, while a strong smoothing in the orthogonal
direction allows to fill-in missing information. This yields an optimal com-
plementary between both terms. Furthermore, our smoothness term unifies
the benefits of image- and flow-driven regularisers, resulting in sharp flow
edges without oversegmentation artefacts. The proposed parameter selec-
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tion method bases on the OPP that we introduced in this paper. It states
the flow field obtained with an optimal smoothness weight allows for the
best prediction of the next frames in the image sequence. Under mild as-
sumptions, the quality of the prediction can be judged by evaluating the
data constraints between first and third frame of the sequence and using the
doubled flow vectors. Due to its simplicity, our method can easily be used in
all variational optic flow approaches and additionally gives surprisingly good
results.
The benefits of the OFH idea are demonstrated by our extensive experimen-
tal validation an the competitive performance at the Middlebury optic flow
benchmark. Our paper thus shows that a careful design of data and smooth-
ness term together with an automatic choice of the smoothness weight allows
to outperform other well-engineered methods that incorporate many more
processing steps, e.g. segmentation [22], or the integration of an epipolar
geometry prior [39].
We hope that our work will give rise to more “harmonised” approaches in
other fields where energy-based methods are used, e.g. image registration.
Our current research is concerned with exploring further improvements in
the data and smoothness term. For the latter, incorporating recent non-local
smoothing strategies [35, 44] into our framework can be interesting. Finally,
further investigations on the presented novel parameter selection approach
seem promising.
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A Appendix: Derivation of the Diffusion

Tensor for the Complementary Regu-

lariser

Consider the complementary regulariser from (50):

V (∇2u,∇2v) = ΨV

(
u2

r1
+ v2

r1

)
+ u2

r2
+ v2

r2
. (57)

Its contributions to the Euler-Lagrange equations are given by

∂x (∂ux
V ) + ∂y

(
∂uy

V
)

, (58)

and
∂x (∂vx

V ) + ∂y

(
∂vy

V
)

, (59)
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respectively. We exemplify the computation of the first expression (58). The
second one then follows analogously. Let us first define the abbreviations

ri := (ri1, ri2)
⊤, and ψ′

V (ri) := Ψ′

V

(
u2

ri
+ v2

ri

)
, (60)

for i = 1,.., 2. With their help, we compute the expressions

∂ux
V = 2 (ψ′

V (r1) ur1
r11 + ur2

r21) , (61)

∂uy
V = 2 (ψ′

V (r1) ur1
r12 + ur2

r22) . (62)

from (58). Using the fact that

∂x (∂ux
V ) + ∂y

(
∂uy

V
)

= div (∂ux
V, ∂uy

V )⊤ , (63)

we obtain by plugging (61) and (62) into (58):

∂x (∂ux
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(
∂uy

V
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= 2 div

(
ψ′

V (r1) ur1
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)
. (64)

By multiplying out the expressions inside the divergence expressions one ends
up with

∂x (∂ux
V ) + ∂y

(
∂uy

V
)

= (65)

2 div
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We can write above equation in diffusion tensor notation as

∂x (∂ux
V ) + ∂y

(
∂uy

V
)

= 2 div (D ∇2u) , (66)

with the diffusion tensor

D :=

(
ψ′

V (r1) · r2
11 + 1 · r2

21 ψ′
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ψ′

V (r1) · r11r12 + 1 · r21r22 ψ′

V (r1) · r2
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22

)
. (67)

We multiplied the second term of each sum by a factor of 1 to clarify that the
eigenvalues of D are ψ′

V (r1) and 1, respectively. The corresponding eigen-
vectors are r1 and r2, respectively, which allows to rewrite the tensor D as

D =

(
r11 r21

r12 r22

)(
ψ′

V (r1)·r11 ψ′

V (r1)·r12

1·r21 1·r22

)
= (r1 | r2)

(
ψ′

V (r1) 0
0 1

) (
r⊤1

r⊤2

)
.

(68)
This shows that D is identical to DCR from (51), as it can be written as

D = ψ′

V(r1) r1 r⊤1 + r2 r⊤2 = Ψ′

V

(
u2

r1
+ v2

r1

)
r1 r⊤1 + r2 r⊤2 . (69)
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