
Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 273

Newton Interpolation with

Extremely High Degrees

by Leja Ordering
and Fast Leja Points

Michael Breuß, Oliver Vogel and Kai Uwe Hagenburg

Saarbrücken 2010

Fachrichtung 6.1 – Mathematik Preprint No. 273
Universität des Saarlandes submitted: August 31, 2010

Newton Interpolation with

Extremely High Degrees

by Leja Ordering
and Fast Leja Points

Michael Breuß
Saarland University

Faculty of Mathematics and Computer Science
P.O. Box 15 11 50
66041 Saarbrücken

Germany
breuss@mia.uni-saarland.de

Oliver Vogel
Saarland University

Faculty of Mathematics and Computer Science
P.O. Box 15 11 50
66041 Saarbrücken

Germany
vogel@mia.uni-saarland.de

Kai Uwe Hagenburg
Saarland University

Faculty of Mathematics and Computer Science
P.O. Box 15 11 50
66041 Saarbrücken

Germany
hagenburg@mia.uni-saarland.de

Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/

Abstract

In this paper we perform a numerical study of Newton polyno-
mial interpolation. We explore the Leja ordering of Chebyshev knots
and the Fast Leja knots introduced by Reichel. In all previous pub-
lications we are aware of, the degree of interpolation polynomials in
use is in the order of a few hundreds. We show that it is possible
to employ degrees of up to one million or higher without a numeri-
cal stability problem or excessive computation times. We also show
experimentally that Leja ordering and Fast Leja points enable stable
and meaningful interpolation of functions that are just continuous or
even discontinuous.

Keywords. Polynomial interpolation, Newton interpolation, interpolation
knots, Leja ordering, Fast Leja points

1 Introduction

Polynomial interpolation (PI) is one of the fundamental tasks in numerical
analysis, see e.g. the textbooks [1, 4, 10, 13, 18] for accounts on the subject.
The goal of PI is to compute an approximation of an unknown function f(x)
over some onedimensional real interval of interest [a, b]. This is to be done at
hand of a set of given numbers f (xj) at interpolation knots xj, j = 1, . . . , n,
making use of a polynomial meeting exactly the data (xj, f (xj)). A popular
format of the unique interpolation polynomial is the Newton form as its
computation and evaluation can be done in an efficient way. The computation
of high-degree interpolation polynomials for large numbers of given knots is
a non-trivial task since the process easily becomes numerically unstable, see
e.g. [21] for a useful discussion.
It is well-known that the location of the interpolation knots xj influences the
quality of the computed interpolant. For instance, a subject often discussed
in textbooks such as those cited above is that the use of Chebyshev knots
minimises the amplitude of the knot polynomial kn(x) := Πn

j=1 (x− xj) and
hence the error of PI. In a different setting utilising complex domains, the
Leja points studied first in [7, 17] are known to be an optimal choice, cf.
[3, 19]. In the complex setting also the Fejér points have favorable properties
[9, 21], and it can be shown that these can be reduced to Chebyshev knots
when considering a real interval [9].
However, not only the location but also the ordering of the knots can greatly
affect the solution accuracy. Important works discussing this issue are the
papers of Reichel [19] and Calvetti and Reichel [6]. While the Leja ordering

1

of points is developed mainly for use in the complex domain (and in general
the ordering is not unique), also a version for use with real intervals can be
infered heuristically. The resulting ordering scheme has been used in several
fields of scientific computing, cf. [2, 5, 8]. It puts a fixed set of given points
into a certain ordering, for instance it can be applied as in this paper at a
set of predetermined Chebychev knots. As shown in [15] the Leja ordering
is related to a partial pivoting of the matrix arising in Newton PI.
While it has been proven in the mentioned works that the Leja ordering can
be useful, there is the undesirable property that each time one increases or
decreases the number of knots, the Leja ordering has to be computed com-
pletely anew. As a remedy to this, the Fast Leja (FL) points were proposed
in [3]. Inspired by the Leja point construction, the procedure of constructing
the FL knots involves selecting the location out of a finite set of knot can-
didates that is constructed before the selection step. It also involves a fast
way to determine the ordering during the selection step. In the FL process,
increasing the number of points means to inherit the previously computed
ones in the already determined order.

Our contribution. While it has been shown in previous papers that the
Leja ordering and FL points have some benefits especially with respect to
accuracy, the true potential of these techniques especially for Newton PI
has not been pointed out. In fact, all examples we have seen in previous
papers are just toy examples in comparison to what is possible. Even papers
concerned specifically with high-degree Newton interpolation do not consider
examples with more than a few hundred knots, compare e.g. [19, 21]. In this
paper we show that one can easily use up to one million interpolation knots,
or even more. In the thorough numerical study which is the subject of our
work, we also show that it is experimentally possible to interpolate functions
that are just continuous or even discontinuous with high precision. Let us
note in this context that especially with FL points, the computational times
stay very reasonable so that the effort can readily be justified.

Paper Organisation. In Section 2 we give a brief account on the aspects of
the Newton PI problem, and we recall the Leja ordering and the FL points.
This is followed by a presentation of our computational study in Section 4.
The paper is finished by a conclusion.

2 Mathematical Basis

The purpose of this section is to recall for the convenience of the reader facts
and methods from the already cited literature as employed in this work.

2

2.1 Newton Polynomial Interpolation

Given a discrete data point set {(xj, fj)} for data points at position xj with
function value fj ≡ f(xj) and j ∈ {1, . . . , n}, a polynomial Pn(x) ∈ Πn is
sought. This polynomial should satisfy the interpolation condition

Pn(xj) = fj (1)

in all data points. Gathering the interpolation conditions from all points, a
linear system of equations arises.
It is well known that it is of importance in which basis the interpolation
polynomial is expressed. The Newton basis consists for n interpolation points
of the polynomials

nk(x) := Πk−1
i=1 (x− xi) k = 1, . . . , n (2)

The benefit of using this special basis is that the matrix arising in the linear
system of equations that gathers the interpolation conditions is of a simple
structure, more precisely it is of lower triangular type:

1 0
1 x2 − x1

1 x3 − x1 (x3 − x1)(x3 − x2)
...

...
. . .

1 xn − x1
∏n−1

i=1 (xn − xi)




a1

...

an

 =


y1

...

yn

 (3)

This system of equations can easily be solved via

N(xj) :=

j∑
i=1

ni(xj)ai = yj iterating as by j = 1, . . . , n (4)

Moreover, for the evaluation of the Newton interpolation polynomial N(x)
the efficient Horner scheme [16] can be used. The latter utilises the construc-
tion of N(xj), rewriting it as by

N(xj) = a1 + (xj − x1){a2 + (xj − x2)[. . . an−1 + (xj − xn−1)an]}

This allows to use a stable, recursive O(n)-algorithm to evaluate the poly-
nomial:

Set p := an (5)

for k = n− 1, n− 2, . . . , 0 : p := ak + (x− xk)p (6)

and set p as the result for N(x).

3

2.2 Chebyshev Knots

So far, we did not explicitly mention how the interpolation points xj could be
chosen. The most simple choice of equidistantly spaced points is well known
to lead to numerical instability. One way to cope with this is to consider the
roots of Chebyshev polynomials defined as

Tm(t) = cos(m arccos(t/b)) t ∈ [−b, b] (7)

with m = 0, 1, . . ., and their roots are then given by

tmk := b cos

(
(2k − 1)π

2m

)
k = 1, 2, . . . ,m (8)

This choice of interpolation points appears to reduce the numerical error
problem. See e.g. [1, 4, 18] for some more information on the mentioned
aspects.

2.3 Leja Ordering

For m given interpolation knots in the set Sm, where Sm may for instance be
obtained via (8), one determines the Leja ordering of the knots xj via

|x1| := max
x∈Sm

|x| (9)

j−1∏
k=1

|xj − xk|︸ ︷︷ ︸
’multiplicative distance’

= max
j≤l≤m

j−1∏
k=1

|xl − xk| , 2 ≤ j ≤ m . (10)

In order to implement this ordering, one simply starts with the largest point
in the set of points. Then, one selects the point that has the largest distance
to this point. Usually, these two points will be the endpoints of the inter-
polation interval [a, b]. Of the remaining knots in the set to be sorted, one
tests all for their multiplicative distances to the points selected so far. Then
one chooses the one with the largest multiplicative distance as the next in
the order. This process is repeated until all points are in order.
Note, that sorting the points has a computational complexity worse than
quadratic, but not worse than cubic. We consider as candidate points for the
Leja ordering the Chebyshev knots.

2.4 Fast Leja (FL) Points

FL points [19] represent an alternative to a Leja ordering of Chebyshev knots.
The algorithm to compute the FL points can be described in a simple way.

4

One starts with the limits a and b of the interpolation interval [a, b], these
are the first two points. Then, one chooses the midpoint between these two
points as the first candidate point. Now, one recursively adds the candidate
point with the largest multiplicative distance to all the previous points to
the set of FL points, and one adds the midpoints between this point and its
neighbours to the set of candidate points. Selecting the candidate point as
FL point is done in a similar fashion as for the Leja ordering.
This procedure recursively gives the FL points in their correct order. We
implemented this method in C-code. A working Matlab version of the code
and details on the method can be found in [19].

3 Numerical Experiments

In this section, we will demonstrate that very high degree polynomial in-
terpolation can be done using the numerical techniques presented earlier in
this paper. We will put this in contrast to the näıve way of ordering the
interpolation knots increasingly.

Technical remarks. For the evaluation of Newton interpolation polynomi-
als of very high degree the size of the computational domain may be point of
concern. It can be shown that a scaling of the x-domain to the length four
can be favorable in such a setting since this may prevent some numerical
inaccuracies [21]. Accordingly, we will employ such a scaling in our experi-
ments.
Also, it is necessary to employ high-precision datatypes. All computations
are done in the highest precision floating-point type available with most C-
compilers on standard platforms, which is an 80-bit floating point number.

The interpolated functions. The numerical experiments are done on four
different functions, all on the interval [−2, 2]:

1. The Runge function [20]

f1(x) =
1

1 + 6.25x2
(11)

which is a classic example for a function that is difficult to interpolate
with high degree.

2. The Heaviside function

f2(x) =

{
1 x > 0

0 x ≤ 0 ,
(12)

which has a discontinuity at the origin.

5

3. A sawtooth function
f3(x) = x− [x] (13)

with several discontinuities.

4.
f3(x) =

√
|x| (14)

which is not differentiable at the origin and has a pole in its first deriva-
tive.

See Figure 1 for corresponding plots.

Figure 1: Input functions: Runge function, Heaviside function, sawtooth
function, and

√
|x|.

Evaluation. To evaluate the numerical accuracy of the interpolation, we
sample the interval with m equidistant points and evaluate the polynomial
in each of these points. Then, we take the L2 and L∞ distances between the
interpolated points and the exact function values at these sample points. For
most experiments Chebyshev knots are used, as they result in much more ac-
curate and stable reconstructions than equidistant knots. The only exception
is the part concerned with FL points that are constructed algorithmically.

6

The error computations are done in the same precision as the interpolation
itself.

3.1 Näıve Ordering

In the first experiment, we use the most simple approach for evaluating the
interpolation polynomial, ordering the interpolation points from left to right.
The main advantage of this approach is that it is free, i.e. no computational
effort is necessary to produce this ordering.
As expected, despite the high accuracy of the used data structure and the
favourable choice of Chebyshev knots, the process quickly becomes numeri-
cally unstable. As Table 1 demonstrates, the result starts to become unsta-
ble at polynomial degrees of 50–80 already, where the Sawtooth experiment
proves to be the most challenging. Before even reaching degree 100, though,
all experiments ’explode’ numerically.

3.2 Leja Ordering

The Leja ordering has been stated to be stable at higher polynomial degrees
[19]. However, the computations in the latter work were performed just for
up to one hundred points, and the most difficult test function used there was
the Runge function.
For this paragraph we take the Chebyshev knots as before, Table 2 shows the
errors up to degree 10000. As we can observe, the process remains numeri-
cally stable up to this degree, which is a massive improvement compared to
the näıve approach we used before.
Discussion. A major drawback of this approach is computational complex-
ity. Ordering n points is worse than quadratic in n. Furthermore, having
sorted the Chebyshev knots for degree n does not help at computing the
order for degree n + 1, these have to be computed separately. Consequently,
this means that for being able to use polynomial reconstructions of arbitrary
degrees, it is necessary to precompute a database of orderings for all possi-
ble degrees. As a guideline, with our implementation on standard desktop
hardware, 1000 points can be ordered in several seconds, and 10000 points
take about an hour.

3.3 Fast Leja Points

As indicated, the FL points introduced in [3] can be computed recursively,
and the FL points are automatically ordered. The values of the first n FL
points suffice as a database for all lower amounts of FL points. With our

7

implementation, it is possible to compute the first million FL points in less
than half an hour. Note that this is roughly the same time as for computing
the Leja ordering of a few more than 10000 Chebychev knots. This important
detail has not been pointed out in earlier works where only examples of up to
a few hundred degrees are used. Note also, that the FL points can be simply
saved to a file for later use.
The interpolation results using m = 10001 sample points are summarised
in Figure 2 and Table 3, respectively. It is quite impressive that for very
high degrees, even the interpolation of the sawtooth function is perfect in
this resolution. By Table 3 we observe the reconstruction errors of the four
experiments up to polynomial degree 1000000. Clearly, all interpolations
remain numerically stable.
Further discussion. Finally, let us discuss the effect of discontinuities. For
our standard sampling of m = 10001 points we notice the L∞ difference to
decrease towards zero with increasing degree. Naturally, the interpolating
polynomial does have an actual L∞-error of at least one for the Heaviside
function, and the lower value we obtain is caused by the sparse sampling
of our test domain. Table 4 shows the L∞-errors of the reconstruction of
the Heaviside function for finer samplings, and indeed they approach 1 once
the sampling is fine enough. L∞ errors larger than one can be explained by
Gibbs’ phenomenon, not by numerical instabilities.
It is clear that for every polynomial degree, there is a sampling fine enough
so that the L∞-error is at least close to 1. In the opposite direction, it can be
assumed that for every sampling of the test domain the L∞-error approaches
zero for very high polynomial degrees. However, as Table 4 demonstrates,
this requires extremely high degrees, already at 1000001 samples, a degree
of one million is necessary to get below an L∞-error of 0.5. In Figure 3
we demonstrate the behaviour of the Newton interpolation polynomial for a
sequence of finer sampling rates.

4 Conclusion

Both the Leja ordering and the Fast Leja points enable impressive, extremely
high-degree Newton interpolation results. We think that these techniques
should be a topic mentioned in standard numerical analysis books.

8

References

[1] K. Atkinson, An Introduction to Numerical Analysis, 2nd ed., Wiley,
1989.

[2] J. Baglama, D. Calvetti, L. Reichel, Iterative methods for the computa-
tion of a few eigenvalues of a large symmetric matrix, BIT 36, (1996),
400-421.

[3] J. Baglama, D. Calvetti, L. Reichel, Fast Leja Points, Electronic Trans-
actions on Numerical Analysis 7, (1998), 124-140.

[4] R. Bulirsch, J. Stoer, Introduction to Numerical Analysis, 3rd ed.,
Springer, Berlin, 2002.

[5] D. Calvetti, L. Reichel, Adaptive Richardson iteration based on Leja
points, Journal of Computational and Applied Mathematics 71, (1996),
267-286.

[6] D. Calvetti, L. Reichel, On the evaluation of polynomial coefficients,
Numerical Algorithms 33, (2003), 153-161.

[7] A. Edrei, Sur les déterminants récurrents et les singularités d’une fonc-
tion donnée par son developpement de Taylor, Composito Mathematica
7, (1939), 20-88.

[8] A. Eisinberg, G. Fedele, On the inversion of the Vandermonde matrix,
Applied Mathematics and Computation 174, (2006), 1384-1397.

[9] B. Fischer, L. Reichel, Newton Interpolation in Fejér and Chebyshev
Points, Mathematics of Computation 53, No. 187, (1989), 265-278.

[10] W. Gautschi, Numerical Analysis: An Introduction, Birkhäuser, Boston,
1997.

[11] I. Gohberg, V. Olshevsky, The Fast Generalized Parker-Traub Algo-
rithm for Inversion of Vandermonde and Related Matrices, Journal of
Complexity 13, No. 2, (1997), 208-234.

[12] G. H. Golub, C.F. Van Loan, Matrix Computations, 3rd ed., Johns
Hopkins University Press, Baltimore, MD, 1996.

[13] M. Hanke-Bourgeois, Grundlagen der Numerischen Mathematik und des
Wissenschaftlichen Rechnens, B.G. Teubner, Stuttgart, 2002.

9

[14] N. Higham, A Survey of Condition Number Estimation for Triangular
Matrices, SIAM Review 29, Issue 4, (1987), 575-596.

[15] N. Higham, Stability analysis of algorithms for solving confluent
Vandermonde-like systems, SIAM Journal on Matrix Analysis and Ap-
plications 11, No. 1, (1990), 23-41.

[16] W. G. Horner, A new method of solving numerical equations of all or-
ders, by continuous approximation, Philosophical Transactions of the
Royal Society of London (1819), 308-335.

[17] F. Leja, Sur certaines suits liées aux ensemble plan et leur application
à la representation conforme, Annales Polonici Mathematici 4, (1957),
8-13.

[18] G. Opfer, Numerische Mathematik für Anfänger, 5th ed., Vieweg +
Teubner, Wiesbaden, 2008.

[19] L. Reichel, Newton interpolation at Leja points, BIT 30, Issue 2, (1990),
332-346.

[20] C. Runge, Über empirische Funktionen und die Interpolation zwischen
äquidistanten Ordinaten, Zeitschrift für Mathematik und Physik 46,
(1901), 224-243.

[21] H. Tal-Ezer, High Degree Polynomial Interpolation in Newton Form,
SIAM Journal on Scientific and Statistical Computing 12, Issue 3,
(1991), 648-667.

10

Table 1: Average numerical errors of the interpolation with Chebyshev in-
terpolation knots, ordered from left to right, using m = 10001 sample points
for the evaluation.

degree Runge Heaviside Sawtooth
√
|x|

10 5.5e-03 1.7e-02 1.1e-01 4.7e-03
20 9.7e-05 8.6e-03 4.2e-02 1.2e-03
30 1.8e-06 5.8e-03 1.6e-02 5.3e-04
40 3.4e-08 4.3e-03 2.0e-02 3.0e-04
50 6.5e-10 3.4e-03 2.2e-02 1.9e-04
60 1.3e-09 1.1e-02 6.0e+07 1.6e-04
70 2.5e-05 1.6e+04 1.1e+15 1.0e+02
80 1.2e+01 3.1e+10 5.6e+23 1.5e+09
90 2.6e+06 4.4e+17 2.4e+33 4.8e+15
100 5.5e+12 2.1e+24 1.8e+41 4.4e+23

L2-errors.

degree Runge Heaviside Sawtooth
√
|x|

10 2.6e-01 5.5e-01 1.0e+00 4.7e-01
20 3.6e-02 5.2e-01 8.9e-01 3.4e-01
30 5.0e-03 5.1e-01 5.4e-01 2.7e-01
40 6.8e-04 5.1e-01 8.7e-01 2.4e-01
50 9.3e-05 5.1e-01 1.6e+00 2.1e-01
60 6.8e-04 1.3e+00 9.3e+04 1.9e-01
70 1.3e-01 2.2e+03 8.4e+08 2.8e+02
80 7.8e+01 4.4e+06 1.4e+13 1.0e+06
90 4.3e+04 1.6e+10 7.1e+17 1.5e+09
100 5.3e+07 4.0e+13 9.2e+21 1.0e+13

L∞-errors.

11

Table 2: Average numerical errors of the interpolation with Chebyshev in-
terpolation knots, ordered by Leja ordering, using m = 10001 sample points
for the evaluation.

degree Runge Heaviside Sawtooth
√
|x|

10 5.4e-03 1.7e-02 1.1e-01 4.7e-03
20 1.0e-04 8.6e-03 4.2e-02 1.2e-03
30 1.9e-06 5.8e-03 1.6e-02 5.4e-04
40 2.1e-08 4.3e-03 2.0e-02 3.0e-04
50 1.3e-09 3.4e-03 1.6e-02 1.9e-04
60 7.6e-12 2.9e-03 8.1e-03 1.3e-04
70 1.6e-10 2.4e-03 1.2e-02 9.9e-05
80 6.9e-10 2.2e-03 1.0e-02 7.6e-05
90 8.4e-11 1.9e-03 5.2e-03 6.0e-05
100 1.7e-11 1.7e-03 8.0e-03 4.9e-05
1000 3.3e-12 1.7e-04 8.4e-04 5.6e-07
10000 9.9e-13 5.5e-05 4.3e-03 3.7e-08

L2-errors.

degree Runge Heaviside Sawtooth
√
|x|

10 2.6e-01 5.5e-01 1.0e+00 4.7e-01
20 3.7e-02 5.2e-01 8.9e-01 3.4e-01
30 5.0e-03 5.1e-01 5.4e-01 2.8e-01
40 5.4e-04 5.1e-01 8.7e-01 2.4e-01
50 6.7e-05 5.1e-01 8.6e-01 2.1e-01
60 1.1e-05 5.0e-01 5.6e-01 1.9e-01
70 1.8e-05 5.0e-01 8.9e-01 1.8e-01
80 3.7e-05 5.0e-01 8.7e-01 1.7e-01
90 1.3e-05 5.0e-01 5.1e-01 1.6e-01
100 5.9e-06 5.0e-01 8.6e-01 1.5e-01
1000 2.6e-06 5.0e-01 8.6e-01 4.8e-02
10000 1.4e-06 5.1e-01 8.2e-01 1.5e-02

L∞-errors.

12

Table 3: Interpolation errors with Fast Leja points as interpolation knots,
using m = 10001 sample points for the evaluation.

degree Runge Heaviside Sawtooth
√
|x|

10 5.3e-03 5.4e-02 2.0e-01 2.0e-02
100 1.6e-18 5.9e-03 3.7e-02 2.3e-04
1000 3.7e-36 8.2e-04 3.6e-03 6.6e-06
10000 2.1e-35 3.7e-05 3.2e-04 4.1e-08
100000 5.5e-34 2.2e-05 2.2e-04 3.0e-09
1000000 3.4e-32 6.9e-10 1.9e-04 6.0e-06

L2-errors.

degree Runge Heaviside Sawtooth
√
|x|

10 1.6e-01 1.0e+00 1.0e+00 3.0e-01
100 3.5e-09 1.0e+00 1.0e+00 1.0e-01
1000 2.4e-17 9.8e-01 1.0e+00 5.8e-02
10000 5.0e-17 4.3e-01 1.0e+00 1.7e-02
100000 3.5e-16 2.8e-01 1.0e+00 3.3e-03
1000000 7.8e-15 2.0e-03 1.0e+00 6.1e-15

L∞-errors.

Table 4: Average interpolation errors for the Heaviside function using fast
Leja points, using m = 10001, m = 100001, and m = 1000001 sample points
for the evaluation.

m = 10001 m = 100001 m = 1000001
degree L2 L∞ L2 L∞ L2 L∞

10 5.4e-02 1.0e+00 5.4e-02 1.0e+00 5.4e-02 1.0e+00
100 5.9e-03 1.0e+00 6.0e-03 1.0e+00 6.0e-03 1.0e+00
1000 8.2e-04 9.8e-01 8.6e-04 1.0e+00 8.7e-04 1.0e+00
10000 3.7e-05 4.3e-01 6.8e-05 9.1e-01 7.2e-05 9.9e-01
100000 2.2e-05 2.8e-01 2.4e-05 4.5e-01 2.8e-05 9.5e-01
1000000 6.9e-10 2.0e-03 6.5e-09 1.9e-02 2.5e-07 3.3e-01

13

Figure 2: Polynomial reconstructions with FL points for the Heaviside, saw-
tooth, and

√
|x| functions, using m = 10001 samples. From top to bottom:

Polynomial degree n = 100, 1000, 10000, 100000, 1000000.

14

Figure 3: Polynomial reconstructions of the Heaviside function with different
samplings. From left to right: m = 10001, 100001, 1000001 samples. From
top to bottom: Polynomial degree n = 100, 1000, 10000, 100000, 1000000. All
plots are given for zooming into the interval x ∈ [−0.5, 0.5].

15

