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Abstract

We consider local minimizers u : R
2 ⊃ Ω → R

M of the variational integral
∫

Ω H(∇u) dx with density H growing at least quadratically and allowing a very
large scale of anisotropy. We discuss higher integrability properties of ∇u as well as
the differentiability of u in the classical sense. Moreover, a Liouville-type theorem
is established.

1 Introduction

The aim of our note is to give a further analysis of the regularity properties such as
local higher integrability of the gradient or differentiability in the classical sense of local
minimizers u : R

n ⊃ Ω → R
M from a suitable energy space of variational integrals like

(1.1) I[u, Ω] =

∫

Ω

H(∇u) dx ,

provided Ω is a domain in R
2 and H is a density allowing a wide range of anisotropy, but

growing at least quadratically. Let us agree for the moment to the following convention:
H is called an anisotropic energy density, if

(1.2) λ(|Z|)|Y |2 ≤ D2H(Z)(Y, Y ) ≤ Λ(|Z|)|Y |2

holds for all Y , Z ∈ R
nM with functions λ, Λ : [0,∞) → [0,∞), which can not be chosen

in such a way that
c1 ≤ Λ/λ ≤ c2

is true with positive constants c1 and c2. Starting with the pioneering work of Marcellini
[Ma1–4] various authors exhibited sufficient conditions on λ, Λ and H implying
I. full interior regularity, if M = 1 (scalar case)

or if H = H(|∇u|) (dependence on the modulus) and
II. interior partial regularity in case n ≥ 3 together with M ≥ 2.

For I. we again refer to Marcellini’s papers and his recent collaboration with Papi [MP].
We also mention the contributions of Choe [Ch], Fusco and Sbordone [FS] and of Mingione
and Siepe [MS] as well as the references quoted by these authors. Further contributions
to I. are given in [ABF] and [Fu]. In connection with II. the reader should consult for
example the papers of Acerbi and Fusco [AF], Cupini, Guidorzi and Mascolo [CGM],
Esposito, Leonetti and Mingione [ELM1,2] and of Passarelli Di Napoli and Siepe [PS]
together with the references cited by these authors. We further refer to [BF1,2]. One
very popular hypothesis for proving the results stated in I. and II. is the assumption
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of anisotropic (p, q)–growth, which means that the functions λ and Λ occurring in (1.2)
behave like

(1.3) λ(t) ≈ tp−2, Λ(t) ≈ tq−2

with exponents 1 < p ≤ q < ∞. If p and q are too far apart, then Giaquinta’s coun-
terexample [Gi] shows that even in the scalar case singular minimizers can occur. On the
other hand, if we assume (1.3), then I. and II. are true, provided we additionally impose
a bound of the form

(1.4) q < c(n)p ,

where c(n) can be chosen rather large for low dimensions n, but c(n) → 1 as n → ∞. Let
us remark that it is possible to drop (1.4) in the case M = 1 and to weaken this condition
for M ≥ 2, if H is of splitting type and if we restrict ourselves to locally bounded local
minimizers (cf. [BFZ], [BF3-5]).

Up to now the dimension n was arbitrary, but the experience in regularity theory gives
rise to the hope, that in case n = 2 better results for vectorial minimizers can be obtained,
which means that in principle we expect the same behaviour as in the scalar case. In fact,
if (1.2) holds with λ, Λ from (1.3), then in [BF6] we could show interior C1–regularity
under the assumption

(1.5) q < 2p ,

and for the splitting case this is even true for any exponents 2 ≤ p ≤ q < ∞ without
the limitation (1.5), we refer to [BF3]. Further details are presented in [BF7]. In this
note we want to discuss the twodimensional case for densities H : R

2M → [0,∞) of
class C2 assuming that p is equal to 2, but imposing no upper bound on D2H . It turns
out that under these weak assumptions minimizers already belong to the Sobolev class
W 2

2,loc(Ω; RM). If in addition we have (1.2) and (1.3) with p = 2 and q arbitrary large, then
there is an open set Ω0 ⊂ Ω (depending on the minimizer u) such that u ∈ C1(Ω0; R

M)
and H − dim(Ω − Ω0) = 0. Let us now give a precise formulation of our assumptions
imposed on H : without loss of generality let H(0) = 0 and DH(0) = 0. Moreover it
should hold:

(A1) ∃a > 0 : |ξ||DH(ξ)| ≤ aH(ξ), ξ ∈ R
2M ;

(A2) λ0 := inf
ξ∈R2M

|DH(ξ)|

|ξ|
> 0 ;

(A3) ∃A > 0 :
|DH(ξ)|

|ξ|
≤ A inf

|σ|=1
D2H(ξ)(σ, σ), ξ ∈ R

2M .
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REMARK 1.1. From (A2) and (A3) it follows that we have the first inequality in (1.2)
with λ(t) ≡ λ0/A, which corresponds to the case “p = 2”. In particular there exists a
positive constant c such that

(1.6) H(ξ) ≥ c|ξ|2, ξ ∈ R
2M .

On the other hand, hypothesis (A1) provides an upper bound for H(ξ), more precisely we
have

(1.7) H(ξ) ≤ C(|ξ|a + 1), ξ ∈ R
2M ,

for a suitable constant C and with exponent a from (A1). Combining (1.6) and (1.7)
we see that a ≥ 2, and both inequalities show that the density H itself is of anisotropic
(2, a)-growth. In order to prove (1.7) we choose ξ ∈ R

2M such that |ξ| ≥ 1 and let
H0 := sup

|σ|=1

H(σ). Then it holds

ℓnH(ξ) ≤ ℓnH(ξ) − ℓnH

(

ξ

|ξ|

)

+ ℓnH0

=

∫ |ξ|

1

d

dt
ℓnH

(

t
ξ

|ξ|

)

dt + ℓnH0

=

∫ |ξ|

1

1

H
(

t ξ
|ξ|

)DH

(

t
ξ

|ξ|

)

:
ξ

|ξ|
dt + ℓnH0

(A1)

≤

∫ |ξ|

1

a

t
dt + ℓnH0 = aℓn|ξ| + ℓnH0, i.e.

H(ξ) ≤ exp(aℓn|ξ| + ℓnH0) = H0|ξ|
a ,

and (1.7) is established.

REMARK 1.2. With respect to the growth condition (1.6) a natural space for local
minimizers u of the functional I defined in (1.1) is the class

C :=
{

v ∈ W 1
2,loc(Ω; RM) : I[v, Ω′] < ∞ ∀Ω′

⋐ Ω
}

,

where here and in what follows W k
p,loc(. . .) is the Sobolev space of functions as introduced

for example in Adam’s book [Ad]. By definition u ∈ C is a local I–minimizer iff I[u, Ω′] ≤
I[v, Ω′] holds for all subdomains Ω′ ⋐ Ω and any function v ∈ C such that spt(u−v) ⊂ Ω′.

REMARK 1.3. Obviously H is a (strictly) convex function, thus in addition to (A1) we
have the upper bound H(ξ) ≤ |DH(ξ)||ξ| for all ξ ∈ R

2M .

Our results are as follows:

THEOREM 1.1. Let H satisfy (A1-3) and consider a local I–minimizer u ∈ C. Then
it holds:
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a)
∫

Ω′
D2H(∇u)(∂α∇u, ∂α∇u) dx ≤ c(Ω′) < ∞ for any subdomain Ω′

⋐ Ω and for
α = 1, 2.
In particular u is of class W 2

2,loc(Ω; RM), and this is also true in the case Ω ⊂ R
n

with n ≥ 3.

b)
∫

Ω1

H(∇u)2 dx ≤ c(Ω1, Ω2)(
∫

Ω2

H(∇u) dx)2 for arbitrary subdomains Ω1 ⋐ Ω2 ⋐ Ω.

THEOREM 1.2. In addition to (A1-3) suppose that

(A4) D2H(ξ)(σ, σ) ≤ Λ0(1 + |ξ|2)
q−2

2 |σ|2, ξ, σ ∈ R
2M ;

is true for some Λ0 > 0 and an exponent q ∈ [2,∞). Let u ∈ C denote a local minimizer.
Then there is an open subset Ω0 of Ω, whose complement is of zero Hausdorff–dimension,
and u ∈ C1,µ(Ω0; R

M) for any µ < 1.

REMARK 1.4. We conjecture that even under the hypotheses of Theorem 1.1 we have
interior C1–regularity of local minimizers.

From the proof of Theorem 1.1 we will deduce the following Liouville-type result:

THEOREM 1.3. Suppose that H satisfies (A1-3) and let u denote an entire local min-
imizer of the functional I, i.e. u is a local minimizer on the whole plane. Then, if
∫

R2 H(∇u) dx is finite, u is a constant function. If the same situation is considered on
Ω = R

n with n ≥ 3, then u is affine. Moreover, if the condition of the finiteness of
the energy is replaced by the requirement that the entire local minimizer u is a bounded
function, then in the 2D-case u again must be constant.

Our paper is organized as follows: in Section 2 we present some examples of densities
satisfying (A1-4). In Section 3 we will prove Theorem 1.1 and 1.3, and Section 4 is
devoted to the proof of Theorem 1.2.

2 Some examples

We start with a construction borrowed from [BF7]. Let

(2.1) h(t) :=

∫ t

0

sg(s) ds, t ≥ 0 ,

with

(2.2) g(t) := 1 +

∫ t

0

Θ(s) ds, t ≥ 0 ,

where the continuous function Θ : [0,∞) → [0,∞) is given as follows: suppose that we
have fixed an arbitrary large exponent α and a sequence {ai} such that 0 < ai < ai+1,

4



lim
i→∞

ai = ∞. Next we choose small positive numbers εi with the properties Ii := (ai −

εi, ai + εi) ⊂ [0,∞), Ii ∩ Ij = φ for i 6= j and

(2.3)
∞

∑

i=1

εia
α−1
i < ∞ .

Then we let

Θ(t) :=















0 on [0,∞) −
∞
⋃

i=1

Ii ,

affine linear on (ai − εi, ai) and on
(ai, ai + εi) with value aα−1

i at t = ai, i ∈ N .

Lemma 2.1. The function h defined in (2.1) and (2.2) is of class C2([0,∞)), strictly

increasing and convex together with h′′(0) = 1 and lim
tց0

h(t)
t

= 0. With suitable positive

constants cℓ it holds for all t ≥ 0

a) h(2t) ≤ c1h(t);

b) h′(t)
t

≤ h′′(t), and the function h′(t)
t

is increasing;

c) h′(t)t ≤ c2h(t);

d) h′′(t) ≤ c3(1 + t2)
α
2

h′(t)
t

;

e) c4t
2 ≤ h(t) ≤ c5t

2.

Moreover it is not possible to replace α in d) by a smaller number.

REMARK 2.1. With h from above let us introduce the energy density H0 : R
2M →

[0,∞), H0(Z) := h(|Z|). According to e) H0 is of quadratic growth, and from b) and d)

using h′(t)
t

≥ 1 we infer for all Y , Z ∈ R
2M

|Y |2 ≤ D2H0(Z)(Y, Y ) ≤ c3(1 + |Z|2)
α
2 g(|Z|)|Y |2 .

Since g is a bounded function (see below), this estimate shows that H0 is (p, q)–elliptic in
the sense of (1.3) with p := 2 and q := 2 + α.

Proof of Lemma 2.1: We first observe that

h′(t)

t
= g(t) ≤ 1 +

∫ ∞

0

g′(s) ds = 1 +

∫ ∞

0

Θ(s) ds = 1 +
∞

∑

i=1

εia
α−1
i ,

hence by (2.3) we find a number g∞ ∈ (0,∞) such that

(2.4) 1 = g(0) ≤ g(t) ≤ g∞, t ≥ 0 .
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The properties of h stated in front of a) are immediate. For a) we use (2.4), since

this inequality implies g(2t) ≤ g∞g(t), hence h(2t) =
∫ 2t

0
sg(s) ds = 4

∫ t

0
sg(2s) ds ≤

4g∞
∫ t

0
sg(s) ds = 4g∞h(t).

b) is elemantary: h′′(t) = d
dt

(tg(t)) = g(t) + tg′(t) ≥ g(t) = h′(t)
t

.

c) is a consequence of a): we have h(2t) =
∫ 2t

0
h′(s) ds ≥

∫ 2t

t
h′(s) ds ≥ th′(t), hence

th′(t) ≤ c1h(t).

The validity of d) is equivalent to the existence of a constant c6 such that

(2.5) tg′(t) ≤ c6t
αg(t)

holds for all large t. The left–hand side of (2.5) equals tΘ(t), and according to (2.4) the
right–hand side of (2.5) behaves like tα, thus our claim is immediate by the definition of
Θ and we also see that α can not be replaced by a smaller exponent. Finally, the validity
of e) is obvious. �

Now we can state our examples:

Lemma 2.2. Let B : R
2M × R

2M → R denote any symmetric, strictly positive bilinear
function. With h from Lemma 2.1 we let

H1(Z) := B(Z, Z) + h(|Z|) ,

H2(Z) := B(Z, Z) + h
(

√

B(Z, Z)
)

, Z ∈ R
2M .

Then H1 and H2 satisfy (A1-4) with q = α + 2.

With Lemma 2.1 the proof of Lemma 2.2 is immediate. The reader should note that in
these examples condition (1.5) is violated, provided we choose α ≥ 2. In this case we can
not refer to the paper [BF6], however - according to Theorem 1.1 and 1.2 - we still have
some regularity results for local minima.

3 Proof of Theorem 1.1 and 1.3

Let the assumptions of Theorem 1.1 hold and consider a local minimizer u ∈ C. The
following calculations can be made precise by replacing derivatives through difference
quotients. If in addition we have (A4), then we can work alternatively with a local regu-
larization with exponent q (see, e.g. [BF1]) having a sufficient degree of regularity. For the
particular examples involving “the function h” from Section 2 a quadratic regularization
from below can be applied (compare [BF7]). Let η ∈ C∞

0 (Ω). With “ : ” denoting the
scalar product of matrices and using “⊗ ” as symbol for the tensor product of vectors
from R

M we obtain from Euler’s equation valid for u (from now on we use the convention
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of summation with respect to indices repeated twice)

0 =

∫

Ω

∂γ [DH(∇u)] : ∇(η2∂γu) dx

=

∫

Ω

η2D2H(∇u)(∂γ∇u, ∂γ∇u) dx −

∫

Ω

DH(∇u) : ∂γ

[

∇η2 ⊗ ∂γu
]

dx

and in conclusion
∫

Ω

D2H(∇u)(∂γ∇u, ∂γ∇u)η2 dx(3.1)

=

∫

Ω

DH(∇u) : (∂γ∇η2 ⊗ ∂γu) dx +

∫

Ω

DH(∇u) : (∇η2 ⊗ ∆u) dx

=: T1 + T2 .

From (A1) we get

T1 ≤ 2

∫

Ω

|DH(∇u)||∇u|
{

|∇η|2 + |∇2η|
}

dx

≤ 2a
{

‖∇η‖2
L∞(Ω) + ‖∇2η‖L∞(Ω)

}

∫

spt η

H(∇u) dx

=: c(η)

∫

spt η

H(∇u) dx ,

and for T2 we observe

T2 ≤ 2

∫

Ω

η|DH(∇u)||∇2u||∇η| dx

= 2

∫

Ω

η

(

|DH(∇u)|

|∇u|

)1/2

|∇2u||∇η| (|DH(∇u)||∇u|)1/2 dx

≤ ε

∫

Ω

η2 |DH(∇u)|

|∇u|
|∇2u|2 dx + c(ε)

∫

Ω

|∇η|2|DH(∇u)||∇u| dx ,

where ε > 0 is arbitrary. Recalling (A3), choosing ε sufficiently small and applying (A1)
one more time, we deduce from (3.1) and the estimates from above

(3.2)

∫

Ω

η2D2H(∇u)(∂γ∇u, ∂γ∇u) dx ≤ c(η)

∫

spt η

H(∇u) dx .

This proves part a) of Theorem 1.1, since by (A2) and (A3)

D2H(∇u) (∂γ∇u, ∂γ∇u) ≥
λ0

A
|∇2u|2 .

Moreover we note that the right-hand side of (3.2) is finite. We emphasize that up to
now we did not make use of our assumption that Ω is a domain in R

2. For b) we apply
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Sobolev’s inequality and get

∫

Ω

(ηH(∇u))2 dx ≤ c

[
∫

Ω

|∇(ηH(∇u))| dx

]2

≤ c

[
∫

Ω

|∇η|H(∇u) dx +

∫

Ω

η|DH(∇u)||∇2u| dx

]2

≤ c(η)

[
∫

spt η

H(∇u) dx

]2

+ c

[
∫

Ω

η|DH(∇u)||∇2u| dx

]2

.

The last integral on the right-hand side is handled with the help of (A3) and Hölder’s
inequality:

[
∫

Ω

|DH(∇u)||∇2u|η dx

]2

≤ c(η)

(
∫

spt η

|DH(∇u)||∇u| dx

)

·

∫

spt η

|DH(∇u)|

|∇u|
|∇2u|2 dx

≤ c(η)

(
∫

spt η

|DH(∇u)||∇u| dx

)
∫

spt η

D2H(∇u)(∂γ∇u, ∂γ∇u) dx .

Applying (3.2) (with appropriate choice of η) and using (A1), we arrive at our claim

∫

Ω1

H(∇u)2 dx ≤ c(Ω1, Ω2)

(
∫

Ω2

H(∇u) dx

)2

for arbitrary subdomains Ω1 ⋐ Ω2 ⋐ Ω. �

For proving Theorem 1.3 we first observe that (3.2) immediately implies (for all dimensions
n ≥ 2)

(3.3)

∫

BR(0)

D2H(∇u)(∂γ∇u, ∂γ∇u) dx ≤ cR−2

∫

B2R(0)

H(∇u) dx

for any radius R > 0. Therefore, if we assume that

(3.4)

∫

Rn

H(∇u) dx < ∞ ,

we get from (3.3) by passing to the limit R → ∞ that ∇2u = 0. At the same time it is
easy to see that the estimates for the 2D-case stated after (3.2) yield

∫

BR(0)

H(∇u)2 dx ≤ cR−2

(
∫

B2R(0)

H(∇u) dx

)2

thus, under the hypothesis (3.4), we must have
∫

R2

H(∇u)2 dx = 0

8



and therefore the Jacobian matrix of the affine linear function u actually vanishes. Assume
now that in place of (3.4) we have

(3.5) L := ‖u‖L∞(R2) < ∞ .

We first claim that (3.5) implies

(3.6) lim
R→∞

R−2

∫

BR(0)

H(∇u) dx = 0 ,

so that ∇2u = 0 will follow from (3.3) and (3.6). For proving (3.6) let us fix a number
τ > 1 to be specified later. For ξ ∈ R

2M , |ξ| ≥ 1, it holds on account of (A1) and (1.7)

|DH(ξ)|τ ≤ a H(ξ)τ |ξ|−τ = a H(ξ)H(ξ)τ−1|ξ|−τ

≤ c H(ξ)|ξ|a(τ−1)−τ ≤ c H(ξ) ,

provided we choose τ such that a(τ − 1) − τ ≤ 0. In this case we arrive at

(3.7) |DH(ξ)| ≤ c
(

H(ξ)1/τ + 1
)

, ξ ∈ R
2M .

Next consider R > 0, let k ∈ N and choose η ∈ C∞
0 (B2R(0)), η = 1 on BR(0), 0 ≤ η ≤ 1,

|∇η| ≤ c/R.

Starting from

0 =

∫

B2R(0)

DH(∇u) : ∇
(

η2ku
)

dx ,

observing H(ξ) ≤ ξ : DH(ξ) (see Remark 1.3) and using (3.5) we find

(3.8)

∫

B2R(0)

η2kH(∇u) dx ≤ c

∫

B2R(0)

η2k−1|∇η||DH(∇u)| dx

with constant c depending on L and k. On the right-hand side of (3.8) we apply Young’s
inequality in combination with (3.7) and get for all ε > 0

∫

B2R(0)

η2k−1|∇η||DH(∇u)| dx

≤ c

∫

B2R(0)

η2k−1H(∇u)1/τ |∇η| dx + c

∫

B2R(0)

|∇η| dx

≤ ε

∫

B2R(0)

η(2k−1)τH(∇u) dx + c(ε)

∫

B2R(0)

|∇η|
τ

τ−1 dx

+c

∫

B2R(0)

|∇η| dx .

Thus, if ε is small enough and if we choose k so large that (2k−1)τ ≥ 2k, then the ε-term
can be absorbed into the left-hand side of (3.8). Observing that τ/τ − 1 > 1, we deduce
at least for R ≥ 1

∫

BR(0)

H(∇u) dx ≤ c

∫

B2R(0)

|∇η| dx ≤ cR ,
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and (3.6) follows. From the above inequality and the estimate stated after (3.4) we infer
∫

R2 H(∇u)2 dx < ∞, but since ∇u is a constant matrix, this is only possible in the case
that ∇u vanishes. �

4 Proof of Theorem 1.2

Suppose now that in addition to (A1-3) the hypothesis (A4) with q > 2 is valid and fix a
local minimizer u ∈ C. By Theorem 1.1 and Sobolev’s embedding theorem |∇u| belongs
to the space

⋂

1≤s<∞

Ls
loc(Ω), thus the excess function

E(x, r) =:

∫

Br(x)

− |∇u − (∇u)x,r|
2 dy +

∫

Br(x)

− |∇u − (∇u)x,r|
q dy ,

where (g)x,r denotes the mean value of a function g with respect to a disc Br(x) ⋐ Ω, is
well defined. We claim:

Lemma 4.1. Fix L > 0. Then there exists a constant C∗(L) such that for every τ ∈
(0, 1/4) there is an ε = ε(L, τ) satisfying: if Br(x) ⋐ Ω and if we have

|(∇u)x,r| ≤ L, E(x, r) ≤ ε(L, τ) ,

then E(x, τr) ≤ C∗(L)E(x, r)τ 2.

Proof: We argue by contradiction following the ideas of [BF1] assuming that L > 0 is
fixed. The constant C∗(L) will be specified below. If the lemma is wrong, then for some
τ there are discs Brn

(xn) ⋐ Ω such that

(4.1) |(∇u)xn,rn
| ≤ L, E(xn, rn) =: λ2

n → 0, n → ∞ ,

(4.2) E(xn, rnτ) > C∗τ
2λ2

n .

Letting an := (u)xn,rn
, An := (∇u)xn,rn

and

un(z) :=
1

λnrn
[u(xn + rnz) − an − rnAnz] , |z| < 1 ,

we obtain from (4.1) and (4.2)

(4.3) |An| ≤ L,

∫

B1

− |∇un|
2 dz + λq−2

n

∫

B1

− |∇un|
q dz = 1 .

(4.4)

∫

Bτ

− |∇un − (∇un)0,τ |
2 dx + λq−2

n

∫

Bτ

− |∇un − (∇un)0,τ |
q dz > C∗τ

2 .
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From (4.3) we get after passing to subsequences

(4.5)

un ⇁: u in W 1
2 (B1; R

M), An →: A ,
λn∇un → 0 in L2(B1; R

2M) and a.e. ,

λ
1−2/q
n ∇un ⇁ 0 in Lq(B1; R

2M) .

It is easy to verify that u satisfies
∫

B1

− D2H(A)(∇u,∇ϕ) dx = 0, ϕ ∈ C∞
0 (B1; R

M) ,

and thereby is a smooth function for which the Campanato estimate

(4.6)

∫

Bτ

− |∇u − (∇u)0,τ |
2 dx ≤ C∗τ 2

holds with a suitable constant C∗ = C∗(L). Let us choose C∗ := 2C∗. Then (4.4) and
(4.6) are in contradiction, if we can improve the weak convergences from (4.5) to

∇un → ∇u in L2
loc(B1; R

2M) ,(4.7)

λ1−2/q
n ∇un → 0 in Lq

loc(B1; R
2M) .(4.8)

The claim (4.7) follows exactly as (4.16) i) in [BF1] by quoting Proposition 4.3 from this
reference (letting µ = 0 there). For verifying (4.8) we let

Ψn := λ−1
n

[

(1 + |An + λn∇un|
2)1/2 − (1 + |An|

2)1/2
]

and observe that from (Q ∈ R
2M , η ∈ C∞

0 (Ω))

0 =

∫

Ω

∂γ [DH(∇u)] : ∇(η2∂γ[u − Qx]) dx

we obtain the Caccioppoli inequality

(4.9)

∫

Ω

η2D2H(∇u)(∂γ∇u, ∂γ∇u) dx ≤ c

∫

Ω

|∇η|2|D2H(∇u)||∇u− Q|2 dx .

Combining (4.9) with (A2) and (A3) we get after scaling for ρ ∈ (0, 1) (choosing Q = An)

(4.10)

∫

Bρ

|∇Ψn|
2 dz ≤ c(ρ)

∫

B1

|D2H(An + λn∇un)||∇un|
2 dx .

Now, by (4.3), the right-hand side of (4.10) is bounded through a finite constant so that

(4.11) sup
n

∫

Bρ

|∇Ψn|
2 dz ≤ c(ρ) < ∞, 0 < ρ < 1 .

At the same time we have
|Ψn| ≤ c|∇un|
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and therefore in addition to (4.11) (recall (4.3))

(4.12) sup
n

∫

Bρ

|Ψn|
2 dz ≤ c(ρ) < ∞, 0 < ρ < 1 .

With (4.11) and (4.12) it is shown that {Ψn} is a bounded sequence in each space W 1
2 (Bρ),

0 < ρ < 1, and this will imply (4.8): to this purpose we fix a number K ≫ 1. Letting

Un := Un(K, ρ) := {z ∈ Bρ : λn|∇un(z)| ≤ K}

we obtain from q > 2 and (4.7) (using the smoothness of u)

∫

Un

λq−2
n |∇un|

q dz ≤ c

{

λq−2
n

∫

Un

|∇un −∇u|q dz + λq−2
n

∫

Un

|∇u|q dz

}

≤ c

{
∫

Un

λq−2
n

(

|∇un|
q−2 + |∇u|q−2

)

|∇un −∇u|2 dz +

∫

Un

λq−2
n |∇u|q dz

}

→ 0

as n → ∞ .

On the other hand, for K large enough and z ∈ Bρ − Un it holds Ψn(z) ≥ c|∇un(z)|,
hence

λq−2
n Ψq

n(z) ≥ c λq−2
n |∇un(z)|q .

By Sobolev’s embedding theorem we have

sup
n

∫

Bρ

|Ψn|
q dz < ∞ ,

and since we assume q > 2, it follows from the above estimates
∫

Bρ−Un

λq−2
n |∇un|

q dz → 0, n → ∞ .

This proves (4.8) and thereby Lemma 4.1. �

Let us define the set

Ω0 := {x ∈ Ω : sup
r>0

|(∇u)x,r| < ∞ and lim inf
rց0

E(x, r) = 0} .

Then, according to Lemma 4.1, u is of class C1,µ in a neighborhood of each point x ∈ Ω0,
and it remains to check more precisely, which points x ∈ Ω belong to the set Ω0. Since u
is in W 2

2,loc(Ω; RM), we deduce from Poincaré’s inequality

∫

Br(x)

− |∇u − (∇u)x,r|
2 dy ≤ cr2

∫

Br(x)

− |∇2u|2 dy

= c

∫

Br(x)

|∇2u|2 dy → 0, r → 0 ,
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for all points x ∈ Ω. Next let s := 2q
2+q

. The Sobolev-Poincaré estimate gives

(
∫

Br(x)

− |∇u − (∇u)x,r|
q dy

)1/q

≤ cr

(
∫

Br(x)

− |∇2u|s dy

)1/s

,

hence we find after applying Hölder’s inequality

∫

Br(x)

− |∇u − (∇u)x,r|
q dy ≤ crq r−

2

s
q

(
∫

Br(x)

|∇2u|s dy

)q/s

c rq− 2

s
qr2 q

s
−q

(
∫

Br(x)

|∇2u|2 dy

)q/2

→ 0, r → 0 ,

so that lim
r→0

E(x, r) = 0 for all x ∈ Ω. Therefore Ω0 = {x ∈ Ω : sup
r>0

|(∇u)x,r| < ∞} and the

complement of this set is of Hausdorff-dimension zero. This finishes the proof of Theorem
1.2. �
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