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Abstract. In this paper we derive a posteriori error estimates for the Hencky plasticity problem.

These estimates are formulated in terms of the stresses and present guaranteed and computable

bounds of the difference between the exact stress field and any approximation of it from the

energy space of the dual variational problem. They consist of quantities that can be considered as

penalties for the violations of the equilibrium equations, the yield condition and the constitutive

relations that must hold for the exact stresses and strains. It is proved that the upper bound

tends to zero for any sequence of stresses that tends to the exact solution of the Haar-Karman

variational problem. An important ingredient of our analysis is a collection of Poincare-type

inequalities involving the L
1 norms of the tensors of small deformation. Estimates of this form

are not new, however we will present computable upper bounds for the constants being involved

even for rather complicated domains.

1. The Hencky plasticity problem

Let Ω be an open bounded set in R
n (n=2 or 3) with Lipschitz boundary ∂Ω, which is the union

of two nonempty measurable nonintersecting parts ΓD and ΓN . By R
n and M

n×n
s we denote the

spaces of real n-vectors and the space of symmetric (n × n) matrices (tensors), respectively. In
what follows, Latin letters are typically used for vectors and the Greek ones for matrices. Tensors
associated with stresses are marked by stars. By I we denote the identity matrix, and the symbols
tr τ and τD = τ − 1

n tr τI are used for the trace and the deviator of a matrix τ . The scalar product of
vectors is denoted by · (e.g., u ·v) and the product of tensors by : (e.g., τ :σ). For the corresponding
Euclidean norms we just write | · |.
The classical statement of the boundary value problem for the Hencky plasticity model is as follows:
find a stress tensor σ∗ and a displacement field u satisfying the following system of equations and
inequalities (compare, e.g., [19, 21, 9]):

Div σ∗ + f = 0, in Ω;(1.1)

σ∗ = F, on ΓN ;(1.2)

u = u0, on ΓD;(1.3)

ε(u) = Aσ∗ + εp in Ω;(1.4)

| σ∗D |≤
√

2k∗, in Ω;(1.5)

εp : (τ − σ∗) ≤ 0 ∀τ ∈ M
n×n
s , | τD |≤

√
2k∗(1.6)

Here Div σ∗ denotes the divergence of σ∗, ν is the unit outward normal to the boundary, u0 is a
given vector valued function determining Dirichlet boundary conditions on ΓD, f and F are the
volume and the surface loads, and A : M

n×n
s → M

n×n
s is the elasticity operator. The quantity

ε(u) = 1
2 (∇u + (∇u)T ) is the tensor of small deformations, where the superscript T denotes matrix

transposition. The relation (1.1) is the equilibrium equation for the stress tensor and (1.4) – (1.6)
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are the constitutive relations of the elasto–plastic medium. In (1.4) εp stands for the plastic part of
the strain tensor, and in (1.5) k∗ is a positive constant determining the yield surface.
For isotropic media the elasticity operator has the form

Aσ∗ =
tr σ∗

n2K0
I +

1

2µ
σ∗D,(1.7)

where K0 and µ are positive constants characterizing the elastic properties of the deformed body.
To give a functional formulation for the classical problem (1.1) – (1.5) we introduce the affine
manifold

V0 + u0 :=
{
v ∈ V := W 1,2(Ω, Rn) || v = w + u0, w ∈ V0

}
,

where V0 is the subspace of V that contains functions vanishing on the boundary part ΓD in the
usual sense of traces. As it follows from (1.1) and (1.4) the admissible stress tensors (which we
denote by Greek letters with stars) should belong to the set of tensor valued functions satisfying
the pointwise yield condition

K∗ :=
{
τ∗ ∈ Y ∗ := L2(Ω, Mn×n

s ) || | τ∗D(x) |≤
√

2k∗ for a.e. x ∈ Ω
}

,

and to the set

Q∗
ℓ =




τ∗ ∈ Y ∗ ||
∫

Ω

τ∗ : ε(v)dx =

∫

Ω

f · v dx +

∫

ΓN

F · vdγ ∀v ∈ V0




 ,

which contains tensors satisfying (in a generalized sense) the equilibrium equations.
The standard norms in the Lebesgue and Sobolev spaces Lp(Ω; Rm), Lp(Ω; Mn×n

s ), W l
p(Ω, Rm) are

denoted by ‖·‖p,Ω , ‖·‖l,p,Ω. For L2 norms we also use the simplified notation ‖ · ‖. Another pair of
equivalent norms in Y ∗ is defined by the relations

||| ε |||2:=
∫

Ω

Aε : ε dx, and ||| η∗ |||2∗:=
∫

Ω

A−1η∗ : η∗ dx,

which are equivalent to the norm ‖·‖Ω.
A natural functional formulation of the classical problem (1.1) – (1.5) is presented by two variational
problems (for displacements and stresses), which we denote P and P∗.
Problem P∗ (Haar–Karman variational principle). Find a tensor-function σ∗ ∈ K∗ ∩ Q∗

ℓ

such that

I∗(σ∗)= sup
τ∗∈K∗∩Q∗

ℓ

I∗(τ∗),

where

I∗(τ∗) :=

∫

Ω

(
ε(u0) : τ∗ − 1

2
Aτ∗ : τ∗)

)
dx − ℓ(u0),

is the complementary energy functional and

ℓ(v) :=

∫

Ω

f · v dx +

∫

∂2Ω

F · v ds.
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In the practically important case of isotropic media, we have

I∗(τ∗)=

∫

Ω

( 1

n
div u0 tr (τ∗) − 1

2n2K0
( tr τ∗)2 + εD(u0) : τ∗D− g∗0(τ∗D)

)
dx − ℓ(u0),

where

g∗0(η∗) =

{ 1
4µ |η∗|2 if |η∗| ≤

√
2k∗

+∞ if |η∗| >
√

2k∗.

Henceforth we assume that

f ∈ L∞(Ω; Rn), F ∈ L∞(ΓN ; Rn),(1.8)

u0 ∈ W 1
2 (Ω; Rn).(1.9)

We note that one can take f ∈ Ln(Ω; Rn), however, to simplify some estimates (related to the
quantity R(τ∗) defined in (2.15)), we select f from a smaller set.
For the Haar-Karman problem, existence and uniqueness of the solution is not difficult to prove
provided that an additional assumption holds. Indeed, the convex and continuous functional (−I∗)
is coercive on Y ∗, and the set K∗ ∩ Q∗

ℓ is convex and closed in Y ∗. If we assume that

K∗ ∩ Q∗
ℓ 6= ∅,(1.10)

then existence and uniqueness of a maximizer σ∗ readily follows from theorems of convex analysis
(cf.,[10]). Further we suppose that the set K∗ ∩ Q∗

ℓ has interior points in the following sense:

∃ ǫ > 0 and ∃ σ∗
0 ∈ Q∗

ℓ : such that | σ∗D
0 |≤

√
2k∗− ǫ a.e. in Ω.(1.11)

Let

E(τ∗, v) :=

∫

Ω

τ∗ : ε(v) dx.

In view of (1.11) it holds

(1.12) ℓ(v) = E(σ∗
0 , v) =

∫

Ω

(
σ∗D

0 : εD(v) +
1

n
trσ∗

0div v

)
dx ≤

≤ (
√

2k∗ − ǫ)‖εD(v)‖1,Ω +
1

n

∫

Ω

tr σ∗
0div v dx,

and we conclude that for any solenoidal field
◦
w,

ℓ(
◦
w) ≤ 1

λ

√
2k∗‖ε(

◦
w)‖1,Ω,(1.13)

where λ :=
√

2k∗√
2k∗−ǫ

> 1.

Remark 1.1. A direct verification of the safe load condition in the form (1.11) may be difficult.
For a wide class of plasticity models (which includes Hencky plasticity [8, 25]), the computation of
a number λ such that (1.13) is true can be performed in a different way, namely one can prove that

λ := inf
w∈bV0

sup
τ∗∈K∗

E(τ∗, w) > 1,(1.14)
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where

V̂0(Ω) := {w ∈ V0 | E(w) = 1}.
Letting

j 0(w) := sup
{
τ∗ : η | τ∗ ∈ M

n×n
s , |τ∗| ≤

√
2k∗

}
,

(1.14) reads

inf
w∈bV0

∫

Ω

j 0(ε(w))dx = λ > 1.(1.15)

For our purposes it is convenient to rewrite (1.15) in form of the inequality

ℓ(w) ≤ 1

λ

∫

Ω

j 0(ε(w)) dx, ∀w ∈ V0,(1.16)

which plays an important role in our analysis. It is easy to see that the functional j0 has the explicit
form

j 0(η) =






√
2k∗|ηD| if tr η = 0,

+∞ if tr η 6= 0,

and it is also easy to verify that (1.16) is equivalent to (1.13) with λ being defined in (1.14).

Problem P∗ has a dual counterpart, which is a variational problem for displacements. We call it
Problem P : find u ∈ V0 + u0 such that

J(u) = inf
v∈V0+u0

J(v), J(v) =

∫

Ω

K0

2 (divv)2 + g0(ε
D(v))dx − ℓ(v),

where

g0(η) =






µ|η|2 if |η| ≤ t0 := k∗√
2µ

µ(2|η|t0 − t20) =
√

2k∗|η| − k2

∗

2µ if |η |> t0.

We note that

g′0(η) =






2µη if |η| ≤ t0

2µη t0
|η| =

√
2k∗

η
|η| if |η |> t0,

and these relations can be rewritten as

g0(η) = µ|η|2 − µ (|η| − t0)
2
⊕ , g′0(η) = 2µη − 2µ

η

|η| (|η| − t0)⊕ ,

( )⊕ being the positive part of the function under consideration.
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Remark 1.2. Since

g0(ε
D(v)) ≥ j0(ε

D(v)) − k2
∗

2µ
,

we find that

J(v) ≥
∫

Ω

(
(K0

2 divv)2 + j0(ε
D(v)

)
dx − ℓ(v) − |Ω| k

2
∗

2µ
,

and in view of (1.16) this implies

J(v) ≥
∫

Ω

(
(K0

2 divv)2 +

(
1 − 1

λ

)
j0(ε

D(v)
)
dx − |Ω| k

2
∗

2µ
.

Hence the condition (1.16) together with λ > 1 guarantees that the energy functional J is coercive.

It follows from the general principles of convex analysis (cf. [10]) that

I∗(τ∗) ≤ J(v), ∀τ∗ ∈ K∗ ∩ Q∗
f , v ∈ V0 + u0.(1.17)

Unfortunately the functional J , which from the physical point of view represents the energy expressed
in terms of strains, has linear growth with respect to the first derivatives of v and it is coercive
only on a nonreflexive space. For this reason, Problem P is ill–posed and may have no solution
despite of the facts that J is convex and bounded from below. The mathematical properties of this
and other variational problems with functionals of linear growth have been investigated in, e.g.,
[1, 11, 17, 18, 22, 41, 45, 48, 50], where correct mathematical statements were obtained in terms of
variational extensions of Problem P . Minimizers of the relaxed problem belong to spaces like BV (Ω)
or BD(Ω) of summable vector-valued functions whose deformation tensors are Radon measures. A
qualitative analysis of variational problems related to functionals with linear growth is presented in,
e.g., [1, 3, 16, 17, 18, 46, 47].
In this paper we derive estimates oriented towards a quantitative study of Hencky’s plasticity prob-
lem. In this context, the Hencky variational problem is much more complicated than, e.g., problems
with quadratic functionals associated with linear elliptic equations and systems. In Hencky plastic-
ity as in other convex variational problems with functionals of linear growth minimizing sequences
may converge to a very irregular function. The topological structure and the location of the set,
where a solution may have jumps is a priori unknown. This produces essential difficulties in the
construction of suitable approximations and requires special methods (see [7, 29, 32, 30, 44]) and
the references therein). It is also rather difficult to obtain a priori rate convergence estimates for
variational-difference methods for Problem P∗, too. To do this we need additional differentiability
of weak solutions such as, e.g., local W 1

2 estimates for the stresses as obtained in [3, 46, 47].
For Hencky plasticity these regularity results were used in [40], where qualified convergence estimates
for the equilibrium finite element approximations of the stresses have been established. In [33], a
priori rate convergence estimates (in terms of stresses) have been derived with the help of a sequence
of regularized problems Pδ and Pδ∗ and a special type of regularity estimates that depend on the
parameter δ explicitly. This gives an opportunity to find a dependence between the parameters of
sampling and regularization that provides qualified convergence to the solution of Problem P∗.
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However, a priori rate convergence estimates provide only a very general information on the quality
of approximate solutions. A posteriori estimates of the difference between exact and the approximate
solutions are necessary to verify the accuracy of a particular approximate solution and to provide an
information of how a finite dimensional subspace should be improved in order to obtain a much better
approximate solution. Therefore, it is not surprising that the subject of a posteriori error estimation
has been in the focus of many researches that study linear (and also nonlinear) models based on
partial differential equations. There are several different approaches to the a posteriori error analysis
of boundary value problems among which we select the so-called functional type a posteriori error
estimates (see [37, 27, 38] for a consequent exposition). These estimates (unlike many others) provide
guaranteed and computable error bounds for a wide class of approximate solutions without such
additional requirements as Galerkin orthogonality or higher regularity of exact solutions or/and
approximations. By this method, first results for deformation plasticity models with hardening
(which belong to the class of nonlinear, but uniformly elliptic problems) have been derived in [43].
It should be said that the corresponding estimates degenerate as the hardening parameter tends
to zero and for this reason they can not be applied to get a posteriori estimates for the Hencky
plasticity problem. A posteriori estimates for the elasto-plastic torsion problem (that is a special
case of the Hencky problem) have been derived in [6] within the framework of the unified technology
that was earlier used for variational inequalities (see [13, 14, 34, 35]). A posteriori estimates for
incremental plasticity problems with hardening have been recently derived in [42].
Despite of the fact that all the above mentioned problems are strongly nonlinear, the error estimation
methods used there can not be applied to the Hencky problem. We recall that the original variational
problem may fail to have a minimizer in a reflexive Sobolev space, so that for the displacements
it is not clear how to to correctly define the error estimation problem. Another way is to study
the dual problem P∗ and try to measure errors in terms of stresses, which from the physical point
of view is quite natural. The dual functional possesses a unique minimizer provided that the safe
load condition is satisfied. However, it is finite only for tensors from the rather complicated set
K∗ ∩ Q∗

ℓ , which involves pointwise restrictions together with differential (equilibrium) equations.
Getting guaranteed error bounds makes it necessary to derive computable majorants of the distance
to this set. All these difficulties are obstacles for the development of a an posteriori error analysis
for the Hencky plasticity problem, and the authors are unaware of publications that contain the
above mentioned majorants and present guaranteed and computable a posteriori error estimates.
In the present paper, we deduce guaranteed and computable bounds for the difference between the
exact maximizer σ∗ and any approximation τ∗ in terms of the dual energy norm (Theorem 2.1).
The derivation is based upon Lemma 2.5 that evaluates the distance to K∗ ∩ Q∗

ℓ . Although the
proof of Lemma 2.5 follows an idea close to that which has been used in [36], there are essential
differences arising from a much more complicated structure of the Hencky variational functional,
which is strongly anisotropic with respect to the spherical and the deviatorical parts of ε(v). In view
of this fact, the safe load inequality (1.16) de facto is defined only for solenoidal fields, otherwise
it does not provide a finite bound of ℓ(v). To avoid this difficulty, we apply Lemma 2.4, which is
a consequence of the well known LBB condition. As a result, the estimate derived in Lemma 2.5
contains the corresponding constant cΩ. In our analysis, Problem P plays a subsidiary role. We
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exploit only the existence of a minimizing sequence {vk} and the fact that

lim
k→+∞

J(vk) = I∗(σ∗).

A minimizing sequence can be constructed by any method, e.g., by using direct minimization of the
functional J or of the corresponding relaxed functional.
A general form of the error majorant is presented in Theorem 2.1. The majorant consists of non-
negative terms that can be thought as measures for the failure in the constitutive relations and
differential equations of the Hencky problem. It is proved, that the majorant computed with the
help of a minimizing sequence vanishes if and only if τ∗ coincides with the exact solution σ∗ of
Problem P∗.

2. The basic error estimate

Assume that τ∗ ∈ K∗ is any approximation of the exact dual solution σ∗. Our final goal is to derive
computable upper bound for σ∗−τ∗. The corresponding result is formulated in Theorem 2.1, which
is based upon the Lemmas 2.1–2.5 below.

Lemma 2.1. For any v ∈ V0 + u0 and any η∗ ∈ K∗ ∩ Q∗
ℓ the following estimate holds

1

2
||| η∗ − σ∗ |||2 ≤ J(v) − I∗(η∗).(2.1)

Proof. For any η∗ ∈ K∗ ∩ Q∗
ℓ , we have

0 ≤ I∗(σ∗) − I∗(η∗) =

=

∫

Ω

(
ε(u0) : (σ∗ − η∗) +

1

2
Aη∗ : η∗ − 1

2
Aσ∗ : σ∗

)
dx =

=
1

2
||| η∗ − σ∗ |||2 +

∫

Ω

(ε(u0) : (σ∗ − η∗) + Aσ∗ : (η∗ − σ∗)) dx.(2.2)

Let η∗ = λζ∗ + (1 − λ)σ∗, where ζ∗ ∈ K∗ ∩ Q∗
ℓ and λ ∈ [0, 1]. Then, we obtain the inequality

0 ≤ 1

2
λ2 ||| σ∗ − ζ∗ |||2 +λ

∫

Ω

(Aσ∗ − ε(u0)) : (ζ∗ − σ∗) dx ,

which shows that ∫

Ω

(Aσ∗ − ε(u0)) : (ζ∗ − σ∗) dx ≥ 0 ∀ζ∗ ∈ K∗ ∩ Q∗
ℓ .(2.3)

Now (2.2) and (2.3) yield the estimate

1

2
||| η∗ − σ∗ |||2 ≤ I∗(σ∗) − I∗(η∗) ∀η∗ ∈ K∗ ∩ Q∗

ℓ ,(2.4)

By (1.11) we find that

1

2
||| η∗ − σ∗ |||2 ≤ inf P − I∗(η∗) ≤ J(v) − I∗(η∗) ∀η∗ ∈ K∗ ∩ Q∗

ℓ , v ∈ V0 + u0,(2.5)

thus we have established (2.1). �
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Remark 2.1. Lemma 2.1 generalizes Mikhlin’s estimate, which was derived in [24] for variational
problems with quadratic functionals, to the case of the Hencky plasticity functional. We see that
in this case the restrictions imposed on the admissible tensors are much stronger than for problems
with quadratic functionals, namely (2.1) is valid only for rather special tensors η∗, which satisfy
simultaneously the pointwise yield condition η∗D ∈ K∗ and the system of equilibrium equations
Divη∗ + f = 0. In practical computations, such classes of tensors are difficult to construct, so that
the estimate (2.1) has in principle only a theoretical meaning. Below, we will find a way to overcome
this drawback and derive estimates that are valid for a much wider class of approximations.

Henceforth, we consider the case of isotropic media.

Lemma 2.2. For any τ∗ ∈ K∗ and β > 0, the following estimate holds

(2.6)
1

2
||| τ∗−σ∗ |||2≤ 1+β

β

(
D(εD(v), τ∗D) + K0

2

∥∥∥div v − 1
nK0

tr τ∗
∥∥∥

2

+

+ inf
η∗∈K∗∩Q∗

ℓ

Υ(v, τ∗, η∗, β)
)
,

where v ∈ V0 + u0,

D(η, η∗) :=

∫

Ω

( g(η) + g∗(η∗) − η : η∗)dx

and

(2.7) Υ(v, τ∗, η∗, β) =

=
1

n

∫

Ω

(
1

nK0
tr τ∗ − div v

)
tr (η∗ − τ∗)dx +

1 + β

2n2K0
‖ tr (η∗ − τ∗) ‖2

+

+
1

2µ

∫

Ω

(
τ∗D − 2µεD(v)

)
: (η∗D − τ∗D)dx +

1 + β

4µ

∥∥ η∗D − τ∗D
∥∥2

.

Proof. Let β be a positive number and fix η∗ ∈ K∗ ∩ Q∗
ℓ . We have

(2.8)
1

2
||| τ∗ − σ∗ |||2≤ 1 + β

2
||| τ∗ − η∗ |||2 +

1 + β

2β
||| η∗ − σ∗ |||2≤

1 + β

2

(
1

n2K0
‖ tr (τ∗ − η∗)‖2 +

1

2µ

∥∥ τ∗D − η∗D
∥∥2
)

+
1 + β

β
(J(v) − I∗(η∗)) .
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Note that

J(v) − I∗(η∗) =

=

∫

Ω

(
K0

2
|divv|2 + g0(|εD(v)|) +

1

2
Aη∗ : η∗ − ε(u0) : η∗

)
dx + ℓ(u0 − v) =

∫

Ω

(
K0

2
|divv|2 + g0(|εD(v)|) +

1

2
Aη∗ : η∗ − ε(v) : η∗

)
dx =

∫

Ω

(
K0

2
|divv|2 +

1

2n2K0
| tr η∗|2 − 1

n
tr (ε(v)) tr η∗

)
dx+

+

∫

Ω

(
g0(|εD(v)|) +

1

4µ
|η∗D|2 − εD(v), η∗D

)
dx.

hence we deduce

J(v) − I∗(η∗) = K0

2

∥∥∥div v − 1
nK0

tr η∗
∥∥∥

2

+ D(εD(v), η∗D),(2.9)

where

D(η, η∗) :=

∫

Ω

(g0(η) + g∗0(η∗) − η : η∗) dx

is the compound functional generated by the mutually conjugate functions g0 and g∗0 . Since η∗ ∈ K∗,
we have g∗0(η

∗) = 1
4µ |η∗D|2 and we find that

D(εD(v), η∗D) −D(εD(v), τ∗D) =
1

4µ

(
|η∗D|2 − |τ∗D|2

)
− εD(v) : (η∗D − τ∗D) =

1

4µ

∥∥ η∗D − τ∗D
∥∥2 − 1

2µ

∥∥ τ∗D
∥∥2

+
1

2µ
η∗D : τ∗D − εD(v) : (η∗D − τ∗D) =

1

4µ

∥∥ η∗D − τ∗D
∥∥2

+

(
1

2µ
τ∗D − εD(v)

)
: (η∗D − τ∗D),

hence (2.9) takes the form

(2.10) J(v) − I∗(η∗) =
K0

2

∥∥∥∥div v − 1

nK0
tr τ∗

∥∥∥∥
2

+ D(εD(v), τ∗D)+

1

n

∫

Ω

(
1

nK0
tr τ∗ − div v

)
tr (η∗ − τ∗)dx +

1

2n2K0
‖ tr (η∗ − τ∗) ‖2

+

+
1

4µ

∥∥ η∗D − τ∗D
∥∥2

+
1

2µ

∫

Ω

(
2µεD(v) − τ∗D

)
: (τ∗D − η∗D) dx.
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Combining (2.8) and (2.10), we obtain

(2.11)
1

2
‖ τ∗ − σ∗ ‖2 ≤ 1 + β

β
D(εD(v), τ∗D)+

+
K0(1 + β)

2β

∥∥∥∥div v − 1

nK0
tr τ∗

∥∥∥∥
2

+ Υ(v, τ∗, η∗, β).

where Υ is defined by (2.7). Since η∗ is an arbitrary tensor in K∗ ∩ Q∗
ℓ , we arrive at (2.6). �

Remark 2.2. Estimate (2.6) can be written in a different (but equivalent) form by noting that

2µ
εD(v)

|εD(v)|
(
|εD(v)| − t0

)
⊕ + g′0(ε

D(v)) − τ∗D = 2µεD(v) − τ∗D.

Remark 2.3. If τ∗ ∈ K∗ ∩ Q∗
ℓ then

inf
η∗∈K∗∩Q∗

ℓ

Υ(v, τ∗, η∗, β) = 0

and (2.6) implies the estimate

1

2
||| τ∗ − σ∗ |||2≤ inf

v∈V0+u0

{
D(εD(v), τ∗D) +

K0

2

∥∥∥∥div v − 1

nK0
tr τ∗

∥∥∥∥
2
}

,(2.12)

which can be considered as a first form of the functional error estimate for the Hencky plasticity
problem.

In our subsequent analysis we use the following result, which is a simple consequence of the
well known Ladyzhenskaya-Babuska-Brezzi condition written in the form of the Ladyzhenskaya-
Solonnikov inequality ([23]). It reads as follows:

Lemma 2.3. Let Ω be a bounded domain with Lipschitz continuous boundary. Then, for any
function f ∈ L2(Ω) with zero mean value, one can find a field wf ∈ V0 such that div wf = f and

‖∇wf‖ ≤ cΩ‖f‖,(2.13)

where cΩ is a positive constant depending only on n and Ω.

For n = 2 this result has been also proved by I. Babuška and A. K. Aziz [2].

Lemma 2.4. For any function v ∈ V0, there exists a solenoidal field v0 ∈ V0 such that

(2.14) ‖∇(v − v0)‖ ≤ cΩ‖div v‖.
Proof. Let f = div v̂. By Lemma 2.3, we find a field wf ∈ V0 such that

div wf = f

and

‖∇wf‖ ≤ cΩ‖div v̂‖.
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Since div (v̂ − wf ) = 0, the function v0 := v̂ − wf is solenoidal. Moreover,

‖∇(v̂ − v0)‖ = ‖∇wf‖ ≤ cΩ‖div v̂‖,
and the estimate (2.14) follows. �

For any τ∗ ∈ Y ∗, we define the quantity

R(τ∗) := sup
w∈V0

∫
Ω

τ∗ : ε(w) dx − ℓ(w)

‖ε(w)‖1,Ω
,(2.15)

which can be thought of as a measure of the residuals associated with the equilibrium equation and
the Neumann boundary condition.
If τ∗ ∈ K∗ this quantity is finite since

| ℓ(w) |≤ ‖f‖∞‖w‖1,Ω + ‖F‖∞‖w‖1,ΓN
(2.16)

and

‖w‖1,Ω ≤ C1(Ω)‖ε(w)‖1,Ω,(2.17)

‖w‖1,ΓN
≤ C2(Ω)‖ε(w)‖1,Ω.(2.18)

Lemma 2.5. Let φ ∈ L2(Ω), κ∗ ∈ L1(Ω, Mn×n
s ), τ∗ ∈ K∗, and let λ > 0 denote the number defined

in (1.14). Then

(2.19) d(τ∗, φ, κ∗, λ, γ̄) := inf
η∗∈K∗∩Q∗

ℓ

{∫

Ω

(φ tr (η∗ − τ∗) + κ∗ : (η∗D − τ∗D) dx+

+ c1 ‖ tr (η∗ − τ∗) ‖2
+ c2

∥∥ η∗D − τ∗D
∥∥2
}
≤

≤ ̺2(τ∗, φ, λ, γ̄)

4c1γ̄2
+ ‖κ∗‖1,Ω

2
√

2k∗rλ(τ∗)

1 + rλ(τ∗)
+ c2

8k2
∗r

2
λ(τ∗)

(1 + rλ(τ∗))2
,

where γ̄ :=
1

2c1n
,

̺(τ∗, φ, λ, γ) := γ‖φ‖ +

(
R(τ∗) +

2
√

2k∗rλ(τ∗)

1 + rλ(τ∗)

)
|Ω|1/2cΩ,(2.20)

rλ(τ∗) :=
λ√

2k∗(λ − 1)
R(τ∗).(2.21)

Proof. For any τ∗ ∈ K∗ and w ∈ V0 + u0 we define the Lagrangian Lφ,κ∗,τ∗(η
∗, w) : Y ∗ × V0 → R

as follows:

Lφ,κ∗,τ∗(η
∗, w) :=

∫

Ω

(φ tr (η∗ − τ∗) + κ∗ : (η∗D − τ∗D) dx+

+ c1 ‖ tr (η∗ − τ∗) ‖2
+ c2

∥∥ η∗D − τ∗D
∥∥2

+ ℓ(w) −
∫

Ω

η∗ : ε(w) dx.
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It is easy to verify that

d(τ∗, φ, κ∗, λ, γ̄) = inf
η∗∈K∗

sup
w∈V0

Lφ,κ∗,τ∗(η
∗, w).(2.22)

In addition, Lφ,κ∗,τ∗(η
∗, w) possesses the following properties:

a) for any η∗ ∈ K∗ the Lagrangian Lφ,κ∗,τ∗(η
∗, w) is an affine continuous function,

b) for any w ∈ V0 the mapping η∗ → Lφ,κ∗,τ∗(η
∗, w) is convex and continuous; moreover, for w = 0

it is coercive with respect to η∗.
c) the set K∗ is a convex, closed and bounded subset of Y ∗.
In view of (a)–(c) and known saddle–point theorems (see, e.g., [50], Chapter IV, 2.2), we conclude
that

d(τ∗, φ, κ∗, λ, γ̄) = sup
w∈V0

inf
η∗∈K∗

Lφ,κ∗,τ∗(η
∗, w).(2.23)

Let w be given. By Lemma 2.4 there exists a solenoidal field
◦
w∈ V0 such that

‖ε(w− ◦
w)‖ ≤ cΩ‖div w‖.

We reorganize the two last terms of the Lagrangian as follows:

ℓ(w) −
∫

Ω

η∗ : ε(w) dx = ℓ(
◦
w) −

∫

Ω

η∗ : ε(
◦
w) dx + ℓ(w− ◦

w) −
∫

Ω

η∗ : ε(w− ◦
w) dx =

ℓ(
◦
w) −

∫

Ω

η∗ : ε(
◦
w) dx + ℓ(w− ◦

w) −
∫

Ω

τ∗ : ε(w− ◦
w) dx +

∫

Ω

(τ∗ − η∗) : ε(w− ◦
w) dx.

Then we observe that

(2.24)
∣∣∣ℓ(w− ◦

w) −
∫

Ω

τ∗ : ε(w− ◦
w) dx

∣∣∣ ≤

≤ R(τ∗)‖ε(w− ◦
w)‖1,Ω ≤ R(τ∗)|Ω|1/2‖ε(w− ◦

w)‖2,Ω ≤
≤ R(τ∗)|Ω|1/2cΩ‖div w‖2,Ω

and

(2.25)

∫

Ω

(τ∗ − η∗) : ε(w− ◦
w) dx =

∫

Ω

((τ∗D − η∗D) : εD(w− ◦
w) +

1

n
tr (τ∗ − η∗)div w)dx.

Now we select η∗ in a special form. We set

ζ∗1 (w) := ( tr τ∗ + γdiv w)I, ζ∗2 (
◦
w) :=






√
2k∗

εD(
◦
w)

|εD(
◦
w)|

if |εD(
◦
w)| > 0,

0 if |εD(
◦
w)| = 0,

(2.26)

and define η∗
αγ as follows:

η∗
αγ :=

1

n
ζ∗1 +

1

1 + α

(
τ∗D + αζ∗2

)
,(2.27)



13

where α is a positive real number and γ ∈ R.
Since τ∗ and ζ∗2 belong to K∗, we find that

|η∗D
αγ | ≤

1

1 + α
|τ∗D| + α

1 + α
|ζ∗D

2 | ≤
√

2k∗ ⇒ η∗
αγ ∈ K∗,

tr (η∗
αγ − τ∗) = γdiv w,

η∗D
αγ − τ∗D =

α

1 + α

(
ζ∗D
2 − τ∗D

)
,

|η∗D
αγ − τ∗D| ≤ 2α

(1 + α)

√
2k∗.

We recall that
◦
w is a solenoidal field, hence

η∗
αγ : ε(

◦
w) =

τ∗D : εD(
◦
w)

1 + α
+

√
2k∗α

1 + α
|εD(

◦
w)|.

Consider the Lagrangian with the function η∗
αγ . It is estimated as follows

Lφ,κ∗,τ∗(η
∗
αγ , w) ≤ I1 + I2,(2.28)

where

I1 =

∫

Ω

(φ tr (η∗
αγ − τ∗) dx + c1

∥∥ tr (η∗
αγ − τ∗)

∥∥2
+

R(τ∗)|Ω|1/2cΩ‖div w‖ +

∫

Ω

1

n
tr (τ∗ − η∗

αγ)div w dx +

∫

Ω

(τ∗D − η∗D
αγ ) : εD(w− ◦

w) dx

and

I2 =

∫

Ω

κ∗ : (η∗D
αγ − τ∗D) dx + c2

∥∥ η∗D
αγ − τ∗D

∥∥2
+ ℓ(

◦
w) −

∫

Ω

η∗
αγ : ε(

◦
w) dx.

We have

I1 =

∫

Ω

φγdiv w dx + c1γ
2 ‖ div w ‖2

+

R(τ∗)|Ω|1/2cΩ‖div w‖ − γ
1

n
‖div w‖2 +

2
√

2αk∗cΩ|Ω|1/2

1 + α
‖div w‖ ≤

≤ ̺(τ∗, φ, λ, γ)‖div w‖ −
(γ

n
− c1γ

2
)
‖div w‖2,

where

̺(τ∗, φ, λ, γ) := γ‖φ‖ +

(
R(τ∗) +

2
√

2αk∗
1 + α

)
|Ω|1/2cΩ.
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Let γ = γ̄ := 1
2c1n . Then the estimate takes the form

(2.29) I1 ≤ ̺(τ∗, φ, λ, γ̄)‖div w‖ − c1γ̄
2‖div w‖2 ≤

≤ ̺2(τ∗, φ, λ, γ̄)

4c1γ̄2
= c1n

2̺2(τ∗, φ, λ, γ̄).

Consider the second term. We have

I2 =

∫

Ω

κ∗ : (η∗D
αγ − τ∗D) dx + c2

∥∥ η∗D
αγ − τ∗D

∥∥2
+ ℓ(

◦
w) −

∫

Ω

η∗
αγ : ε(

◦
w) dx ≤

≤ ‖κ∗‖1,Ω
2
√

2k∗α

1 + α
+ c2

8k2
∗α

2

(1 + α)2
+

1

1 + α

(
ℓ(

◦
w) −

∫

Ω

τ∗ : ε(
◦
w)dx

)
+

+
α

1 + α

(
ℓ(

◦
w) −

√
2k∗

∫

Ω

|εD(
◦
w)|dx

)
,

and by (2.15) it holds
∣∣∣∣
∫

Ω

τ∗ : ε(
◦
w) dx − ℓ(

◦
w)

∣∣∣∣ ≤ R(τ∗)

∫

Ω

|εD(
◦
w)|dx.(2.30)

In view of (1.16) we have

ℓ(
◦
w) ≤ 1

λ

√
2k∗

∫

Ω

|εD(
◦
w)|dx.(2.31)

Hence we deduce an upper bound in the form

I2 ≤

≤ ‖κ∗‖1,Ω
2
√

2k∗α

1 + α
+ c2

8k2
∗α

2

(1 + α)2
+

R(τ∗)

1 + α

∫

Ω

|εD(
◦
w)|dx +

α
√

2k∗
1 + α

1 − λ

λ

∫

Ω

|εD(
◦
w)|dx =

‖κ∗‖1,Ω
2
√

2k∗α

1 + α
+ c2

8k2
∗α

2

(1 + α)2
+

1

1 + α

(
R(τ∗) + α

√
2k∗

1 − λ

λ

)∫

Ω

|εD(
◦
w)|dx

Let λ′ := λ
λ−1 and

α = rλ(τ∗) :=
λ′

√
2k∗

R(τ∗).

Then we obtain

I2 ≤ ‖κ∗‖1,Ω
2
√

2k∗rλ(τ∗)

1 + rλ(τ∗)
+ c2

8k2
∗r

2
λ(τ∗)

(1 + rλ(τ∗))2
,(2.32)

and by (2.28), (2.30)–(2.32) we arrive at (2.20). �

Remark 2.4. It is convenient to introduce the quantity

Rk∗,λ(τ∗) :=
2
√

2k∗rλ(τ∗)

1 + rλ(τ∗)
=

2
√

2k∗λR(τ∗)√
2k∗(λ − 1) + λR(τ∗)

.
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Figure 1. Distance to the set K∗ ∩ Q∗
ℓ .

Then (2.19) has the shorter form

d(τ∗, φ, κ∗, λ, γ̄) ≤ c1n
2̺2(τ∗, φ, λ, γ̄) + ‖κ∗‖1,ΩRk∗,λ(τ∗) + c2R

2
k∗,λ(τ∗),(2.33)

where

̺(τ∗, φ, λ, γ̄) := γ̄‖φ‖ + (R(τ∗) + Rk∗,λ(τ∗)) |Ω|1/2cΩ.(2.34)

We note that

Rk∗,λ(τ∗) ≤ 2λ′R(τ∗), R(τ∗) +
2
√

2k∗rλ(τ∗)

1 + rλ(τ∗)
≤ (1 + 2λ′)R(τ∗),(2.35)

hence, for any θ > 0

̺2(τ∗, φ, λ, γ̄) ≤ (1 + θ)γ̄2 ‖φ ‖2 +
1 + θ

θ
(1 + 2λ′)2c2

ΩR2(τ∗)|Ω|.(2.36)

From (2.34)–(2.36) we deduce another upper bound for the quantity d(τ∗, φ, κ∗, λ, γ̄):

(2.37) d2(τ∗, φ, κ∗, λ, γ̄) ≤ c1n
2

(
(1 + θ)γ̄2 ‖φ ‖2

+

(
1 +

1

θ

)
(1 + 2λ′)2c2

ΩR2(τ∗)|Ω|
)

+

2λ′R(τ∗)‖κ∗‖1,Ω + 4c2λ
′2R2(τ∗).

Remark 2.5. Set φ = 0, κ = 0, c1 = 1/n, c2 = 1, and let θ tend to +∞. Then (2.37) implies an
estimate of the distance to the set K∗ ∩ Q∗

ℓ . If τ∗ ∈ K∗, then

inf
η∗∈K∗∩Q∗

ℓ

‖τ − η∗‖ ≤ C(n, Ω, λ, k∗)R(τ∗),(2.38)

where

C(n, Ω, λ, k∗) =
(
n(1 + 2λ′)2c2

Ω|Ω| + 4λ′2)1/2
.
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We note that C(n, Ω, λ, k∗) tends to +∞ as λ → 1, i.e., the estimate becomes worse if the safe load
condition is satisfied only with λ close to one.
It is worth noting, that the problem of finding a computable upper bound of the distance to K∗ ∩Q∗

ℓ

is quite nontrivial. The geometrical illustration presented in Fig. 1 shows that even if y∗ belongs to
K∗, its projection on Q∗

ℓ may not belong to K∗. Hence, the distance to K∗ ∩ Q∗
ℓ (shadowed set on

Fig. 2.5) can not be estimated through the distance to Q∗
l exclusively. Any estimate that evaluates

the distance between y∗ ∈ K∗ and K∗ ∩ Q∗
ℓ in terms of the distance to Q∗

l must include a factor
essentially depending on the distance of Q∗

ℓ from the center O of the ball K∗. In our relations the
latter factor depends on the value of λ. If λ is close to one, then the distance between O and Q∗

ℓ is
close to one, so that the set K∗ ∩ Q∗

ℓ is small and the constant C is large. In the opposite case (if
O belongs to Q∗

ℓ ), we can take λ = +∞ and minimize the value of C.

Now we will collect all the previous results and deduce a computable upper bound for ||| τ∗−σ∗ |||.
It will be expressed in terms of the quantities

H1(v, τ∗) :=
∥∥∥div v − 1

nK0

tr τ∗
∥∥∥ ,

H2(v, τ∗) :=
∥∥∥ εD(v) − 1

2µτ∗D
∥∥∥

1,Ω
, D(ε(v), τ∗)

that reflects the residuals associated with the constitutive relations, and the quantity R(τ∗) mea-
suring the violation of the equilibrium equation. From Lemmas 2.2 and 2.5, we obtain the following
result:

Theorem 2.1. Let the assumptions of Lemmas 2.2 and 2.5 hold. Then, for any v ∈ V0 + u0 and
τ∗ ∈ K∗ the following estimate holds:

(2.39)
1

2
||| τ∗−σ∗ |||2≤M⊕(τ∗, v, β, θ) :=

1+β

β

(
D(εD(v), τ∗D)+

+ K0

2

(
1 + 1+θ

1+β

)
H2

1 (v, τ∗) + 2λ′R(τ∗)H2(v, τ∗) + ϑR2(τ∗)
)
,

where β and θ are arbitrary positive numbers, and

ϑ = 1+β
µ λ′2 + 1+β

2K0

(
1 + 1

θ

)
(1 + 2λ′)2c2

Ω|Ω|
with λ being defined in (1.14) and λ′ = λ

λ−1 . This majorant is consistent, i.e., for any positive β
and θ

inf
v∈V0+u0

M⊕(τ∗, v, β, θ) = 0,

if and only if τ∗ = σ∗.

Proof. In (2.19) we set c1 = 1+β
2n2K0

, c2 = 1+β
4µ , γ̄ = nK0

1+β ,

κ∗ = εD(v) − 1

2µ
τ∗D, φ =

1

n

(
1

nK0
tr τ∗ − div v

)
.

By (2.6), (2.19), and (2.37) we obtain M⊕ in the above presented form.
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It remains to prove the consistency of M⊕. Let

inf
v∈V0+u0

M⊕(τ∗, v, β, θ) = 0.

Then there exists a sequence {vk} ∈ V0 + u0 such that M⊕(τ∗, vk, β, θ) → 0. Since ϑ > 0, this is
possible only if

R(τ∗) = 0,(2.40)

H1(vk, τ∗) → 0,(2.41)

D(εD(vk), τ∗D) → 0 as k → +∞.(2.42)

In view of (2.40) we have τ∗ ∈ Q∗
ℓ and (2.41) means that div vk → 1

nK0

τ∗ in L2. Using (2.42)
recalling τ∗ ∈ K∗ we obtain

(2.43) J(vk) − I∗(τ∗) =

=

∫

Ω

(
g0(ε

D(vk)) + g∗0(τ
∗) − εD(u0) : τ∗ − 1

ndiv vk tr τ∗ − ℓ(vk − u0)
)
dx+

K0

2

∫

Ω

(div 2vk +
1

n2K2
0

tr 2τ∗)dx =

=

∫

Ω

(g0(ε
D(vk)) + g∗0(τ∗) − εD(vk) : τ∗)dx + K0

2

∫

Ω

(div vk − 1

nK0
tr τ∗)2dx =

= D(εD(vk), τ∗) + K0

2 H2
1 (vk, τ∗) → 0.

Therefore, we conclude that τ∗ realizes the exact upper bound of the dual functional and, therefore,
coincides with the unique solution σ∗ of Problem P∗.
Finally, let τ∗ = σ∗. Again, let {vk} ∈ V0 be a minimizing sequence in Problem P . By (2.43) we
have

D(εD(vk), σ∗) + K0

2 H2
1 (vk, σ∗) = J(vk) − I∗(σ∗) → 0.(2.44)

Since R(σ∗) = 0, D(εD(vk), σ∗) → 0 and H1(vk, σ∗) → 0, we conclude that for any positive numbers
β and θ

inf
v∈V0+u0

M⊕(σ∗, v, β, θ) = 0,

which completes the proof of Theorem 2. �

Let us discuss the meaning of (2.39). First of all, we note that for τ∗ ∈ K∗ the functional
D(τ∗D, εD(v)) has the form

D(εD(v), τ∗D) =

{
1
4µ | τ∗D − 2µεD(v) |2 if | εD(v) |≤ t0 =

√
2k∗
2µ ,

1
4µ | τ∗D |2 +

√
2k∗ | εD(v) | − k2

∗

2µ − εD(v) : τ∗D if | εD(v) |> t0.

It is easy to see that D(εD(v), τ∗D) ≥ 0. If |εD(v)| ≤ t0, then D(εD(v), τ∗D) vanishes if τ∗D =
2µεD(v).
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We represent the second line in the definition of D(εD(v), τ∗D) in the form

1

4µ

(
τ∗D −

√
2k∗

εD(v)

|εD(v)|

)2

+

(
| εD(v) | −

√
2k∗
2µ

)(√
2k∗ −

τ∗D · εD(v)

| εD(v) |

)
.

If |εD(v)| > t0, then D(εD(v), τ∗D) vanishes if and only if τ∗D =
√

2k∗
εD(v)
|εD(v)| . Hence, the compound

functional vanishes if and only if τ∗D = g′0(ε
D(v)) and the condition D(εD(v), τ∗D) = 0 means that

εD(v) and τ∗D are joined by the Henky constitutive relation, which holds for the exact stress σ∗D

and εD(u) (if the corresponding u exists). Thus, we conclude that if M⊕(v, τ∗, β, θ) = 0, then the
primal as well as the dual problem are solvable and v and τ∗ coincide with the respective exact
solutions.

Remark 2.6. Assume that τ∗ 6∈ K∗. Let

τ̄∗ :=
1

n
tr τ∗

I +
√

2k∗
τ∗D

|τ∗D| .

Then it holds

||| τ∗ − τ̄∗ |||2= 1

2µ

∫

Ω

(
|τ∗D| −

√
2k∗
)2

⊕
dx

and

1

2
||| σ∗ − τ̄∗ |||2≤ M⊕(v, τ̄∗, β, θ).

Hence we arrive at the estimate

(2.45)
1

2
||| τ∗ − σ∗ |||2≤ (1 + ξ)

1

4µ

∫

Ω

(
|τ∗D| −

√
2k∗
)2

⊕
dx+

+

(
1 +

1

ξ

)
M⊕(v, τ̄∗, β, θ),

where ξ is a positive constant.

3. Computable bounds for rλ(τ∗)

To have a fully computable estimate, we must suggest a way of computing the quantity R(τ∗). This
subject is strongly related to estimates of the type

‖v‖1,Ω ≤ C1(n, Ω)‖ε(v)‖1,Ω ∀v ∈
◦

W
1,1(Ω, Rn)(3.1)

or

inf
κ∈R(Ω)

‖v − κ‖1,Ω ≤ C2(n, Ω)‖ε(v)‖1,Ω ∀v ∈ W 1,1(Ω, Rn),(3.2)

where R(Ω) denotes the space of rigid motions (i.e., the kernel of the operator ε(v)). These estimates
can be viewed as generalizations of Friedrich’s and Poincaré’s inequalities for vector valued functions
in L1 type norms.
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It should be emphasized, that for our purposes we need more than the fact that the above estimates
hold with ”some” positive constants. We need also computable and realistic bounds of the constants
C1(n, Ω) and C2(n, Ω).
For (3.1) we refer to [49] but it is possible to prove the following stronger estimate (cf. [15])

Theorem 3.1. For any v ∈
◦

W 1,1(Ω, Rn) it holds

‖v‖1,Ω ≤ c1(n) diam(Ω) ‖εD(v)‖1,Ω,

where c1 is a positive constant depending only on n.
Moreover, for any p ∈ [1, n

n−1 ), there exists c1(n, p) such that

‖v‖p,Ω ≤ c1(n, p) (diam(Ω))1−n+ n
p ‖εD(v)‖1,Ω,

Theorem 3.1 states that C1(n, Ω) ≤ c1(n)diam(Ω).

Remark 3.1. We note that if v ∈ BD(Ω), then (see [1])
∫

Rn

|v|dx ≤ c1(n)diam (supp v)

∫

Rn

|ε(v)|dx.

It is not difficult to show that for BD functions with compact support this estimate can be also
rewritten in terms of εD(v) (see [15]).

We can use these Friedrich’s type estimates as follows: assume that

τ∗ ∈ H∞(Ω, div ) := {τ∗ ∈ L∞(Ω, Mn×n
s ) | Div τ∗ ∈ L∞(Ω, Rn)}

and ∂Ω = ΓD. Then V0 =
◦

W 1,1(Ω, Mn×n
s ) and we have

(3.3) R(τ∗) := sup
w∈V0

∫
Ω

(Div τ∗ + f) · w dx

‖ε(w)‖1,Ω
≤ C1(n, Ω)‖Div τ∗ + f‖∞,Ω ≤

≤ c1(n)diam(Ω)‖Div τ∗ + f‖∞,Ω.

Let Ω̂ be a certain ”simple” domain (e.g., square or circle), for which the corresponding constant c1

can be found analytically or computed with high accuracy. It is easy to see that

C1(n, Ω) ≤ C1(n, Ω̂) ≤ ĉ1(n)diam(Ω)

provided that Ω ⊂ Ω̂ and diam(Ω) = diam(Ω̂). Hence we have

R(τ∗) ≤ ĉ1(n)diam(Ω)‖Div τ∗ + f‖∞,Ω.

This estimate and (2.39) yield a guaranteed upper bound for ‖τ∗ − σ∗‖.
However, in more general cases (e.g., for problems with mixed boundary conditions) finding an
explicitly computable upper bound of C1(n, Ω) may be an uneasy task. For this case, we suggest
another way. It is based on the decomposition of Ω into a collection of convex subdomains and
using an analog of the Poincaré inequality (see 3.2). We note that estimates of deviations from
exact solutions of such a type were earlier derived for linear elliptic problems in [38] and some
classes of generalized Newtonian fluids in [14].
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Let Ω be decomposed into N elementary subdomains, i.e.,

Ω =

N⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j.

Assume that τ∗ ∈ Q∗ and

τ∗n = F on ΓN ,(3.4) ∫

Ωi

(Div τ∗ + f) · κ dx = 0 ∀κ ∈ R(Ωi) , i = 1, ...., N ,(3.5)

which means that the residuals generated by τ∗ are orthogonal to the spaces of rigid motions R(Ωi)
related to Ωi. Obviously (3.5) can be rewritten as

(3.6)

∫

∂Ωi

(τ∗n) · κ ds +

∫

Ωi

f · κ dx = 0 ∀κ ∈ R(Ωi), i = 1, ...N .

We note that the condition τ∗ ∈ Q∗ means continuity of τ∗n on Γij := ∂Ω̄i∩∂̄Ωj . If τ∗ is constructed
with the help of standard piecewise polynomial approximations then it is usually satisfied. For
example, if τ∗ is presented on a simplicial mesh by piecewise affine nodal type approximations, then
continuity of τ∗ is guaranteed. In this case, each Ωi is a collection of simpleces (whose amount may

be very large) and (3.6) imposes N n(n+1)
2 algebraic relations on the nodal values that define τ∗.

This number does not depend on the amount of elementary simpleces and it is much lesser then the
amount of nodal values. Hence, satisfying (3.6) does not lead to serious numerical complications
and practically, it means that in the approximation of τ∗ some degrees of freedom must be excluded.
Assume that τ∗ satisfies the above discussed conditions. Then

(3.7)

∫

Ω

(Div τ∗ + f) · w dx =

N∑

i=1

∫

Ωi

(Div τ∗ + f) · (w − κi) dx ≤

≤
N∑

i=1

C2(n, Ωi)‖Div τ∗ + f‖∞,Ωi
‖εw‖1,Ωi

.

Using (3.7), we arrive at the estimate

R(τ∗) ≤ max
i=1,...,N

C2(n, Ωi)‖Div τ∗ + f‖∞,Ωi
,(3.8)

and computable estimates for the constants C2(n, Ωi) are derived in the next section.

4. Estimates of the constant in a Poincaré type inequality for vector valued

functions in L1 type norms

Consider a bounded domain D ⊂ R
n with Lipschitz boundary. Below we derive a computable upper

bound of C2(n, D) under the assumption that D is star-shaped with respect to some subdomain
D0 ∈ D, which means that

x + ρ(y − x) ∈ D ∀x ∈ D, y ∈ D0, ρ ∈ [0, 1].(4.1)
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In our analysis we use the method suggested in [26].

Lemma 4.1. Let f ∈ L1(D) and f(x) ≥ 0 for a. a. x ∈ D. Then it holds
∫

D

∫ 1

0

∫

D0

f(x + ρ(y − x))dydρdx ≤ ̟n (|D| + |D0|)
∫

D

f(z) dz,(4.2)

where ̟n =
2n−1 − 1

n − 1
.

Proof. By the Fubini theorem, we have

∫

D

∫ 1

0

∫

D0

f(x + ρ(y − x))dydρdx =

∫ 1/2

0

∫

D0

∫

D

f(x + ρ(y − x))dxdydρ+

∫ 1

1/2

∫

D

∫

D0

f(x + ρ(y − x))dydxdρ = ı1 + ı2,

and obviously it holds

ı1 =

∫ 1/2

0

∫

D0

(∫

D

f(x + ρ(y − x))(1 − ρ)ndx

)
dy(1 − ρ)−ndρ.

Let ρ and y be fixed. We set

z = Tx := (1 − ρ)x + ρy.

Then we get
∫

D

f(x + ρ(y − x))(1 − ρ)ndx =

∫

T (D)

f(z)dz ≤
∫

D

f(x)dx,

and therefore

ı1 ≤ |D0|
∫

D

f(x)dx

∫ 1/2

0

(1 − ρ)−ndρ.(4.3)

The second term can be treated analogously:

ı2 =

∫ 1

1/2

∫

D

∫

D0

f(x + ρ(y − x))dydxdρ =

=

∫ 1

1/2

∫

D

(∫

D0

f(x + ρ(y − x))ρndy

)
dxρ−ndρ ≤

(∫

D

f(x)dx

) ∫ 1

1/2

∫

D

dxρ−ndρ =

= |D|
(∫

D

f(x)dx

)∫ 1

1/2

ρ−ndρ =
2n−1 − 1

n − 1
|D|
(∫

D

f(x)dx

)
.

Together with (4.3) we arrive at (4.3). �

Remark 4.1. If D is convex, then it is star-shaped with respect to D0 = D and (4.4) holds with
the constant 2̟n|D|.
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Assume that w ∈ C∞(D, Rn). To this function we can apply an integral representation known as
Cesaro’s formula (see, e.g., equation (13) in [26]):

(4.4) wi(x) = wi(y) +

n∑

j=1

ωij(y)(xj − yj)+

+

n∑

j,k=1

∫ 1

0



εik(z) −
n∑

j=1

ρ(yi − xi)

{
∂εik

∂zj
(z) − ∂εkj

∂zi
(z)

}

 (xk − yk)dρ

Here εij := 1
2

(
∂wi

∂xj
+

∂wj

∂xi

)
is the deformation tensor associated with w and

ωij :=
1

2

(
∂wi

∂xj
− ∂wj

∂xi

)

is a skew-symmetric tensor. Let q ∈ C1
0 (D0) be a function satisfying

0 ≤ q(y) ≤ 1, m(D0) :=

∫

D0

q(y)dy > 0.(4.5)

It is not difficult to see that the vector valued function ŵ with the components

ŵi(x) :=
1

m(D0)






∫

D0

wiq(y)dy +

n∑

j=1

∫

D0

ωij(y)q(y)(xj − yj)dy






belongs to the space of rigid motions R. By (4.4), we find that
∫

D

|wi(x) − ŵi(x)|dx ≤ 1

m(D0)
(T1 + T2),(4.6)

where

T1 =

∫

D

∫

D0

∫ 1

0

n∑

k=1

|εik(z)||xk − yk|q(y)dρdydx,

T2 =

n∑

j,k=1

∣∣∣
∫

D

∫

D0

∫ 1

0

q(y) ρ (yi − xi)(yk − xk)

{
∂εik

∂zj
(z) − ∂εkj

∂zi
(z)

}
dρdydx

∣∣∣.

It is clear that

(4.7) T1 ≤ diamD

n∑

k=1

∫

D

∫

D0

∫ 1

0

|εik(z)|dρdydx ≤

≤ ̟n (|D| + |D0|)diamD

n∑

k=1

∫

D

|εik(x)|dx.
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Note that

ρ
∂εik

∂zj
(z) =

∂

∂yj
εik(z),

ρ
∂εkj

∂zi
(z) =

∂

∂yi
εkj(z)

and consider one term of the sum T2 (we denote it by T2jk). Since q has a compact support in D0,
we have

(4.8) T2jk =
∣∣∣
∫

D

∫

D0

∫ 1

0

q(y)ρ (yi − xi)(yk − xk)

{
∂εik

∂zj
(z) − ∂εkj

∂zi
(z)

}
dρdydx

∣∣∣ =

∣∣∣
∫

D

∫

D0

∫ 1

0

q(y) (yi − xi)(yk − xk)

(
∂

∂yj
εik(z) − ∂

∂yi
εkj(z)

)
dρdydx

∣∣∣ =

=
∣∣∣
∫

D

∫

D0

∫ 1

0

{ ∂

∂yj

{
q(y) (yi −xi)(yk −xk)

}
εik(z)− ∂

∂yi

{
q(y) (yi −xi)(yk −xk)

}
εkj(z)

}
dρdydx

∣∣∣.

Note also that
∣∣∣∣
∂q(y)

∂yj
(yi − xi)(yk − xk)

∣∣∣∣ ,
∣∣∣∣
∂q(y)

∂yi
(yi − xi)(yk − xk)

∣∣∣∣ ≤ ess sup
y∈D0

{|∇q |(y)} (diam(D))
2

and

q(y) (δij(yk − xk)εik(z) + δkj(yi − xi)εik(z) − (yk − xk)εkj(z) − δik(yi − xi)εkj(z)) =

q(y) (δij(yk − xk)εik(z) + δkj(yi − xi)εik(z) − 2(yk − xk)εkj(z)) =

q(y) ((yk − xk)εjk(z) + δkj(yi − xi)εik(z) − 2(yk − xk)εkj(z)) =

q(y) (δkj(yi − xi)εik(z) − (yk − xk)εkj(z)) ≤ diam(D)(|εik(z)| + |εkj(z)|).
Let

Θ(q, D) := 1 + ess sup
y∈D

{|∇q |(y)} diam(D).

Then we find that

T2jk ≤ Θ(q, D)diam(D)

∫

D

∫

D0

∫ 1

0

(|εik(z)| + |εkj(z)|)dρdydx.

Now we apply Lemma 4.1 and obtain

T2jk ≤ ̟n (|D| + |D0|)Θ(q, D)diam(D)

∫

D

(|εik| + |εkj |)dx(4.9)

hence it holds

T2 ≤ ̟n (|D| + |D0|)Θ(q, D)diam(D)
n∑

j,k=1

∫

D

(|εik| + |εkj |)dx.(4.10)
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By (4.6), (4.7) and (4.10), we conclude that

(4.11)

∫

D

|wi(x) − ŵi(x)|dx ≤ ̟n(|D| + |D0|)
m(D0)

diam(D)
( n∑

k=1

∫

D

|εik(x)|dx+

Θ(q, D)

n∑

j,k=1

∫

D

(|εik| + |εkj |)dx
)
.

Estimate (4.11) implies

(4.12)

n∑

i=1

∫

D

|wi(x) − ŵi(x)|dx ≤

≤ ̟n(|D| + |D0|)
m(D0)

diam(D)
(
1 + 2Θ(q, D)

) n∑

i,k=1

∫

D

|εik|dx

and we find that

‖w − ŵ‖1,D ≤ n̟n(|D| + |D0|)
m(D0)

diam(D)
(
1 + 2Θ(q, D)

)
‖ε(w)‖1,D.(4.13)

If w ∈ W 1,1(D, Rn), then we use an approximating sequence {wm} that consists of smooth functions
and obtain (4.13) by density arguments. Thus we find that

inf
κ∈R(D)

‖w − ŵ‖1,D ≤ C2(n, D)‖ε(w)‖1,D ∀v ∈ W 1,1(D, Rn),(4.14)

where

C2(n, D) ≤ n̟n(|D| + |D0|)
m(D0)

diam(D)
(
1 + 2Θ(q, D)

)
.(4.15)

Remark 4.2. In case of w ∈ BD(D) we can also derive (4.12), where
∫

D
|εik| is understood as

the variation of the measure and in the definition of ŵ the second integral in the r.h.s. is integrated
by parts in order to put derivatives on q(y)(xj − yj).

Remark 4.3. In the process of deriving (4.14) we have overestimated the right hand side of (4.6),
so that (4.15) gives a general but not very accurate upper bound of C2(n, D). If D has some special
form then a better constant might be derived by using these specifics in the integration formula (4.8).
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