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Abstract

We introduce the space BLD(Ω) consisting of all fields u : Ω → R
n defined on

a domain Ω ⊂ R
n, whose symmetric gradient satisfies

∫
Ω |ε(u)|ℓn(1 + |ε(u)|) dx <

∞. These fields of bounded logarithmic defomation form a proper subspace of the
class BD(Ω) consisting of all functions having bounded deformation. With the
help of Reshetnyak’s representation formulas we prove that BLD(Ω) is compactly
embedded in Lp(Ω; Rn) even for p = n/n−1. The space BLD(Ω) plays in important
role in the theory of plasticity with logarithmic hardening as well as in the modelling
of Prandtl-Eyring fluids.

1 Introduction

As outlined in the paper of Frehse and Seregin [FrSe] spaces of vector fields u : Ω → R
n

defined on a bounded domain Ω ⊂ R
n satisfying (ε(u) denoting the symmetric gradient)

(1.1)

∫

Ω

|ε(u)|ℓn(1 + |ε(u)|) dx < ∞

play an important role in the deformation theory of plasticity with logarithmic hardening.
Another application of fields with the property (1.1) arises in the setting of Prandtl-Eyring
fluids, whose physical background was introduced in Eyring’s paper [Ey]. To be more
precise, let us define the space of fields of bounded logarithmic deformation

BLD(Ω) :=
{
u ∈ L1(Ω; Rn) : |ε(u)| ∈ Lh(Ω)

}
,

where h(t) := t ℓn(1 + t), t ≥ 0. Here Lh(Ω) denotes the Orlicz class generated by the
N–function h equipped with the Luxemburg norm

‖ϕ‖Lh(Ω) := inf

{
k > 0 :

∫

Ω

h

(
1

k
|ϕ|

)
dx ≤ 1

}
.

For further details concerning Orlicz classes and related spaces we refer the reader to
the textbooks of Adams [Ad] or Rao and Ren [RR]. We also remark that the space
Lh(Ω) is just the famous class L log L(Ω) investigated for example in Stein’s deep paper
[St]. By definition a field u ∈ L1(Ω; Rn) belongs to the space BLD(Ω) if and only if
the (distributional) symmetric gradient is generated by a tensor valued function ε(u) for
which (1.1) holds. Letting

‖u‖BLD(Ω) := ‖u‖L1(Ω) + ‖ε(u)‖Lh(Ω)
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BLD(Ω) turns into a Banach space being a proper subspace of the space BD(Ω) of
functions of bounded defomation introduced by Suquet [Su] and by Matthies, Strang and
Christiansen [MSC]. The class BD(Ω) has been widely considered in the literature in
connection with problems from plasticity theory, and we additionally refer to the works
of Suquet [Su], Anzellotti and Giaquinta [AG], Teman and Strang [TS] and Teman [Te],
a historical overview is given in the monograph [FuSe]. A natural norm on BD(Ω) is
defined through

‖u‖BD(Ω) := ‖u‖L1(Ω) +

∫

Ω

|ε(u)| ,

where
∫
Ω
|ε(u)| is the total variation of the tensor measure ε(u). From the above references

it follows that for bounded Lipschitz domains Ω BD(Ω)-functions have a L1(∂Ω; Rn)-
trace denoted by u|∂Ω, and therefore we also have a trace operator in BLD(Ω). If we
define the subspace

BLD0(Ω) := closure of C∞
0 (Ω; Rn) in BLD(Ω) with respect to ‖ · ‖BLD(Ω) ,

then it holds (see, e.g., [FuSe], Lemma 4.1.6)

BDL0(Ω) = {u ∈ BLD(Ω) : u|∂Ω = 0} ,

which means that for fields from BLD(Ω) with vanishing trace there exists an approxi-
mation through smooth functions with compact support.

The main feature of the present paper is the analysis of the problem for which exponents
p the embedding

BLD(Ω) →֒ Lp(Ω; Rn)

is compact. This question naturally arises, when investigating variational problems for
functionals of the form ∫

Ω

h (|ε(u)|) dx +

∫

Ω

f(u) dx

with potential f being of power growth, since then minimizing sequences {uν} under
natural assumptions satisfy

(1.2) sup
ν

‖uν‖BLD(Ω) < ∞ ,

so that (see Theorem 1.1 below) ε(uν) ⇁ ε(u) in L1(Ω; Rn×n) for a subsequence and a
function u ∈ BLD(Ω), and one likes to conclude that

∫

Ω

f(uν) dx →

∫

Ω

f(u) dx .

A related problem occurs for stationary Prandtl-Eyring fluids: in this setting a sequence
{uν} satisfying (1.2) arises for example as solutions of regularized problems, and by in-
terpreting the convective term in the weakest way one now wants to show that

(1.3)

∫

Ω

uν ⊗ uν : ε(ϕ) dx →

∫

Ω

u ⊗ u : ε(ϕ) dx
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as ν → ∞ for all ϕ ∈ C∞
0 (Ω; Rn), div ϕ = 0. In order to discuss the question of com-

pactness, let us recall some facts from the BD-case. There it holds (see, e.g., [AG] or
[TS]):

Lemma 1.1. Let Ω denote a bounded Lipschitz domain.

a) The space BD(Ω) is continuously embedded into Ln/n−1(Ω; Rn). If u|∂Ω = 0, then
‖u‖Ln/n−1(Ω) ≤ c(n, Ω)

∫
Ω
|ε(u)|.

b) For 1 ≤ p < n/n − 1 the embedding BD(Ω) →֒ Lp(Ω; Rn) is compact.

If we look at the Prandtl-Eyring example, we first see from Lemma 1.1a) that we need
n = 2 in order to have |u⊗u| ∈ L1(Ω) for u ∈ BLD(Ω), but even if we assume this, (1.3)
does not follow from the BD-compactness, since we are in the limit case ”p = n/n − 1”.
However it turns out that we have BLD-compactness even for the limit exponent. We
will derive this result with the help of representation formulas due to Reshetnyak [Re]
valid for special domains.

Definition 1.1. Let Ω denote a bounded Lipschitz domain. Ω is called a star region with
respect to a ball B0 ⊂ Ω if every segment x0x connecting an arbitrary point x0 of B0 with
an arbitrary point x of Ω is contained in Ω.

Then we have

THEOREM 1.1. Suppose that the bounded Lipschitz domain is a finite union of domains
as described in Definition 1.1. Then the embedding

BLD(Ω) →֒ Ln/n−1(Ω; Rn)

is compact, more precisely: consider a sequence {uν} from BLD(Ω) such that

sup
ν

{∫

Ω

|uν| dx +

∫

Ω

|ε(uν)|ℓn(1 + |ε(uν)|) dx

}
< ∞ .

Then there exist a subsequence {ũν} and a field u ∈ BLD(Ω) such that

a) ‖ũν − u‖Ln/n−1(Ω) → 0

b) ε(ũν) ⇁ ε(u) weakly in L1(Ω; Rn×n)

as ν → ∞. Moreover, if all fields uν agree on ∂Ω with some function ϕ ∈ L1(∂Ω; Rn),
then also u = ϕ on ∂Ω.

REMARK 1.1. Of course Theorem 1.1 remains valid if h(t) = t ℓn(1 + t) is replaced by

an N-function h̃ of stronger growth. On the contrary, we do not know, if it is possible to
consider N-functions of slower growth.

Our paper is organized as follows: in Section 2 we present an approximation lemma for
functions from BLD(Ω). In Section 3 we combine this lemma with representation formulas
due to Reshetnyak [Re] in order to get a L1 − L log L Korn-type inequality, and Section
4 contains the proof of Theorem 1.1. In Section 5 we collect various other Korn-type
inequalities which can be deduced from the techniques used in Section 3.
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2 Approximation

In order to carry out the calculations in the subsequent sections more easily we need the
following approximation lemma:

Lemma 2.1. Let Ω ⊂ R
n denote a bounded Lipschitz domain. For any u ∈ BLD(Ω)

there exists a sequence {uj} in C∞(Ω; Rn) such that (h(t) := t ℓn(1 + t))

a)
∫
Ω
|uj − u| dx → 0 and

b)
∫
Ω

h(|ε(uj) − ε(u)|) dx → 0, ‖ε(uj) − ε(u)‖Lh(Ω) → 0 and

∫
Ω

h(|ε(uj)|) dx →
∫
Ω

h(|ε(u)|) dx as j → ∞ .

REMARK 2.1. From the first convergence stated in b) it is immediate that

(2.1) ε(uj) → ε(u) in L1(Ω; Rn×n) ,

but we like to remark that (2.1) already follows from the last statement of b): in fact,

since lim
t→∞

h(t)
t

= ∞, we deduce the equi-integrability of the tensors ε(uj), hence by the

Dunford-Pettis theorem (see, e.g. [AFP], Theorem 1.3.8)

(2.2) ε(uj) ⇁ ε(u) in L1(Ω; Rn×n) .

Next we combine (2.2) with Theorem 2, p.92, of [GMS2], to see

(2.3)

∫

Ω

√
1 + |ε(uj)|2 dx →

∫

Ω

√
1 + |ε(u)|2 dx ,

where of course the last claim of b) has been exploited again. Finally, (2.1) is a
consequence of (2.2) and (2.3) on account of Proposition 1, p.95, from [GMS2].

Proof of Lemma 2.1: The main ideas are due to Frehse and Seregin and outlined in
Appendix 2 of their paper [FrSe]. In [FuSe], Lemma 4.1.6a), we gave a formulation of
a density result suitable for the situation at hand. So suppose that we are given a field
u ∈ BLD(Ω). Then according to this lemma from [FuSe] we can find a sequence {uj} in
C∞(Ω; Rn) such that part a) of Lemma 2.1 is satisfied, moreover it holds

(2.4) |||ε(uj) − ε(u)||| → 0 as j → ∞ .

Here we have abbreviated (ϕ ∈ Lh(Ω))

|||ϕ||| :=

∫

Q0

MQ0
ϕ̃ dx ,
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where Q0 denotes an open cube with sides parallel to the axes of R
n containing Ω and

ϕ̃ is the extension of ϕ to Q0 with value 0. MQ0
ϕ̃ stands for the maximal function of ϕ̃.

From Lemma 4.1.1 in [FuSe] we deduce

(2.5)

∫

Ω

|ϕ|ℓn

(
2 +

1

[ϕ]
|ϕ|

)
dx ≤ c|||ϕ|||

for a suitable positive constant e and with [ϕ] :=
∫
−

Q0
|ϕ̃| dx. Letting ϕj := |ε(uj − u)| we

get from (2.4) and (2.5)

(2.6) lim
j→∞

∫

Ω

ϕj ℓn

(
2 +

1

[ϕj ]
ϕj

)
dx = 0 .

(2.6) clearly implies
∫
Ω

ϕj dx → 0 as j → ∞ and in consequence [ϕj ] → 0. For j sufficiently
large it therefore holds

ϕj ℓn(1 + ϕj) ≤ ϕj ℓn

(
2 +

1

[ϕj ]
ϕj

)
,

thus by (2.6) and the definition of ϕj

(2.7) lim
j→∞

∫

Ω

h (|ε(uj) − ε(u)|) dx = 0 .

Quoting for example Lemma 2.1 b) from [FO] we see that (2.7) implies

(2.8) ‖ε(uj) − ε(u)‖Lh(Ω) → 0 ,

which means that we have ε(uj) → ε(u) w.r.t. the Luxemburg norm. Having established
(2.7) and (2.8) it remains to show that

(2.9) lim
j→∞

∫

Ω

h (|ε(uj)|) dx =

∫

Ω

h(|ε(u)|) dx

is true. From (2.7) we get (2.1), hence
∫

Ω

h(|ε(u)|) dx ≤ lim inf
j→∞

∫

Ω

h(|ε(uj)|) dx

by lower semicontinuity. The convexity of h combined with inequality (16), p.234, from
[Ad] implies

∫

Ω

h (|ε(uj)|) dx

≤

∫

Ω

h(|ε(u)|) dx +

∫

Ω

h′(|ε(uj)|)(|ε(uj)| − |ε(u)|) dx

≤

∫

Ω

h(|ε(u)|) dx + 2‖h′(|ε(uj)|)‖Lh∗(Ω)‖|ε(uj)| − |ε(u)|‖Lh(Ω) ,
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h∗ denoting the conjugate function. From (2.8) it follows that ‖|ε(uj)|− |ε(u)|‖Lh(Ω) → 0,
hence our claim (2.9) is established as soon as we can show the validity of

(2.10) sup
j

‖h′(|ε(uj)|)‖Lh∗(Ω) < ∞ .

We have
h∗ (h′(|ε(uj)|)) = |ε(uj)|h

′(|ε(uj)|) − h(|ε(uj)|) ≤ h(|ε(uj)|) ,

and therefore

(2.11) sup
j

∫

Ω

h∗ (h′(|ε(uj)|)) dx < ∞ .

But then (2.10) is an immediate consequence of (2.11) and the elementary estimate

‖Ψ‖Lh∗(Ω) ≤ max

{
1,

∫

Ω

h∗(|Ψ|) dx

}

for the Luxemburg norm of a function Ψ from the Orlicz class Lh∗(Ω). This completes
the proof of Lemma 2.1. �

3 A Korn-type inequality and consequences

We start with a L1 − L log L Korn-type inequality, which might be known (see Remark
5 in the paper [MM] of Mosolov and Mjasnikov), but we could not trace its explicit form
in the literature.

Lemma 3.1. Let Ω ⊂ R
n denote a bounded Lipschitz domain, which is the union of a

finite number of domains, each of them being a star region relative to some ball. Then
there is a constant C = C(n, Ω) such that for all u ∈ C∞(Ω; Rn) we have

(3.1)

∫

Ω

|∇u| dx ≤ C

[∫

Ω

|ε(u)|ℓn(1 + |ε(u)|) dx +

∫

Ω

|u| dx + 1

]
.

Proof: Consider u ∈ C∞(Ω; Rn) and assume for simplicity that Ω is a star region with
respect to a ball B0 ⊂ Ω. From Reshetnyak’s work [Re] we get following his notation

(3.2) u(x) = (P1u)(x) + (R1Q1u)(x) .

Here the operator P1 (= projection on the space of rigid motions) is defined through
formulas (2.33) and (2.34) in [Re], Q1u is just the symmetric gradient of u, and the
definition of R1 is given in equation (2.37) of [Re]. Abbreviating U := ε(u), we see from
[Re], proof of Lemma 2, that

R1(U) = S(U) + T (U) ,
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where (i = 1, . . . , n)

(3.3) S(U)i(x) =

∫

Ω

ωkli(x, e)

|x − y|n−1
Ukl(y) dy ,

(3.4) T (U)i(x) =

∫

Ω

Θkli(x, y)Ukl(y) dy .

In formulas (3.3) and (3.4) the sum is taken from 1 to n with respect to indices repeated
twice, and the quantities ωkli and Θkli are explained after (2.38) in [Re]. Extending Ukl

to the whole space by setting Ukl = 0 outside of Ω, we see - after dropping all indices -
that the right-hand side of (3.3) is of the form

V (x) :=

∫

Rn

K(x − y)U(y) dy , x ∈ R
n ,

with K being essentially homogeneous of degree 1−n in the sense of Morrey [Mo], Theorem
3.4.2. From part (b) of this theorem and the subsequent remark we deduce that almost
everywhere it holds

(3.5) ∂αV (x) = CαU(x) + lim
ρ↓0

∫

Rn−Bρ(x)

(∂αK)(x − y)U(y) dy ,

where α ∈ {1, . . . n} and where Cα denotes a constant. In particular this means, that
lim
ρ↓0

. . . exists for almost all centers x ∈ R
n. Combining (3.4) and (3.5) with Theorem G

(case (ii)) of Calderón’s and Zygmund’s paper [CZ], in which it is noted that this part of
Theorem G was proved by Cotlar [Co], we get

‖∇S(U)‖L1(Ω) ≤ C‖U‖L1(Ω) + AΩ

∫

Rn

|U |ℓn(1 + |U |) dx + BΩ ,

AΩ, BΩ denoting constants depending on n and Ω as introduced after Theorem B in [CZ].
We therefore arrive at

(3.6) ‖∇S(ε(u))‖L1(Ω) ≤ C

[∫

Ω

|ε(u)|ℓn(1 + |ε(u)|) dx + 1

]

for a suitable constant C = C(n, Ω). The right-hand side of (3.4) behaves ”nicely”, i.e.
we have

∂αT (U)i(x) =

∫

Ω

∂

∂xα

Θkli(x, y)Ukl(y) dy

with bounded derivatives ∂
∂xα

Θ(x, y) (see [Re], comments after (2.46)), thus

(3.7) ‖∇T (U)‖L1(Ω) ≤ C‖ε(u)‖L1(Ω) .

Returning to (3.2) we have a bound for the L1-norm of ∇(R1Q1u) by combining (3.6) and
(3.7). Let us finally look at P1u: if we calculate ∇P1u with the help of (2.33) from [Re],
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it is immediate that in order to estimate ‖∇P1u‖L1(Ω) we have to bound the quantities∫
B0

|Sju| dx, j = 1, . . . , n. However, since Siju := 1
2
(∂ju

i − ∂iu
j) is formed of first partial

derivatives of u, this is not very helpful. We therefore use the representation (2.34) of
[Re], where an integration by parts has been performed with the consequence that on the
right-hand side of (2.34) only the function u itself occurs, hence we arrive at

(3.8) ‖∇P1u‖L1(Ω) ≤ C‖u‖L1(B0) .

Note that in (3.8) the constant C also depends on B0. Putting together our results we
have shown (3.1). �

REMARK 3.1. Let Ω denote a domain as described in Lemma 3.1 and assume in
addition that n ≥ 3. Then we have the following stronger variant of inequality (3.1)

(3.1)’
∫
Ω
|∇u| dx ≤ C(n, Ω)

[∫
Ω
|εD(u)|ℓn(1 + |εD(u)|) dx +

∫
Ω
|u| dx + 1

]

valid for u ∈ C∞(Ω; Rn), where εD(u) is the deviatoric part of ε(u), i.e.

εD(u) := ε(u) −
1

n
(div u) 1 ,

1 denoting the unit matrix. For the proof we observe that (3.2) can be replaced by the
representation

u(x) = (P2u)(x) + (R2Q2u)(x)

with operators P2, R2 and Q2 defined in (2.40’), (2.41) and (1.2) of [Re]. Starting from
this formula, the εD-variant of (3.1) is obtained by repeating the arguments from the proof
of Lemma 3.1. It is worth noting that inequalities (3.1) and (3.1)’ are in some sense limit
cases of Korn-type inequalities for functions from Orlicz-Sobolev spaces. We will discuss
this issue in Section 5.

As an application we get

Lemma 3.2. Under the hypothesis of Lemma 3.1 we have that w := ℓn(1 + |u|)u is in
the space BD(Ω) for any function u ∈ BLD(Ω) together with

(3.9)

∫

Ω

|ε(w)| ≤ c(n, Ω)

[∫

Ω

h(|u|) dx +

∫

Ω

h(|ε(u)|) dx + 1

]
.

Proof: We consider first the smooth case, i.e. we choose u ∈ C∞(Ω; Rn). Then it holds
for w := ℓn(1 + |u|)u

ε(w) = ℓn(1 + |u|)ε(u) +
1

2

(
ui∂jℓn(1 + |u|) + uj∂iℓn(1 + |u|)

)
1≤i,j≤n

,

hence

|ε(w)| ≤ ℓn(1 + |u|)|ε(u)|+ c(n)
|u|

1 + |u|
|∇u| .
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From Young’s inequality for the N -function h(t) = t ℓn(1 + t) we get for s, t ≥ 0

h′(t)s ≤ h∗(h′(t)) + h(s) ,

h∗ denoting the conjugate function, moreover we have

h∗(h′(t)) = t h′(t) − h(t) ≤ h(t) .

These inequalities together imply

ℓn(1 + |u|)|ε(u)| ≤ h′(|u|)|ε(u)| ≤ h(|u|) + h(|ε(u)|) ,

hence

(3.10)

∫

Ω

|ε(w)| dx ≤

∫

Ω

h(|u|) dx +

∫

Ω

h(|ε(u)|) dx + c(n)

∫

Ω

|∇u| dx .

To the last integral on the right-hand side of (3.10) we apply (3.1) and immediately
deduce (3.9) from (3.10). Now let u ∈ BLD(Ω) and choose a sequence {uj} in C∞(Ω; Rn)
according to Lemma 2.1. Then uj → u strongly in Lp for any p < n/n − 1, thus

lim
j→∞

∫

Ω

h(|uj|) dx =

∫

Ω

h(|u|) dx ,

and from (3.9) we infer

(3.11) sup
j

∫

Ω

|ε(wj)| dx < ∞ ,

wj = ℓn(1 + |uj|)uj. By (3.11) {wj} is a bounded sequence in BD(Ω), and after passing
to a subsequence we find w̃ ∈ BD(Ω) such that wj → w̃ in L1(Ω; Rn) and a.e., moreover

(3.12)

∫

Ω

|ε(w̃)| ≤ lim inf
j→∞

∫

Ω

|ε(wj)| dx .

Since we may also assume that uj → u a.e., it follows w̃ = w(:= ℓn(1 + |u|)u), and the
desired inequality (3.9) for w follows from the validity of (3.9) for wj in combination with
(3.12). �

REMARK 3.2. If we combine the approximation procedure from Lemma 2.1 with in-
equality (3.1), then we get

(3.13) BLD(Ω) ⊂ BV (Ω; Rn) ,

where BV (Ω; Rn) is the space of functions of bounded variation from Ω into R
n as intro-

duced for example in [Gi].
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REMARK 3.3. From the recent survey paper of Mingione (see [Mi]) it can be deduced
that

(3.14) ‖∇u‖L1(Rn) ≤ c(n)‖ε(u)‖Lh(Rn)

holds for u ∈ C∞
0 (Rn; Rn). In fact, for smooth functions u we have the formula

∆uj = 2∂iε
D(u)ij − 2

(
1

2
−

1

n

)
∂j div u, j = 1, . . . , n ,

where εD(u) := ε(u) − 1
n

div u 1, 1 denoting the unit matrix. This can be rewritten as

∆uj = div F j, F j :=

(
2εD(u)ij − 2

(
1

2
−

1

n

)
div u δij

)

1≤i≤n

,

and (2.28) from [Mi] implies (3.14). An immediate consequence of (3.14) is

(3.15) BLD0(Ω) ⊂
◦

W
1
1(Ω; Rn) .

In fact, if u is in BLD0(Ω), then by definition there exists a sequence {uν} ⊂ C∞
0 (Ω; Rn)

such that ‖ε(uν − u)‖Lh(Ω) → 0. Hence {ε(uν)} is a Cauchy sequence in the space
Lh(Ω; Rn×n) and (3.14) shows that the same is true for the sequence {∇uν} now in the

class L1(Ω; Rn×n). Therefore {uν} converges strongly in
◦

W1
1(Ω; Rn) towards some element

ũ from this class. Since u − ũ has trace zero and since obviously ε(u) = ε(ũ), we obtain
u = ũ on account of Lemma 1.1. This proves the inclusion (3.15).

REMARK 3.4. It would be interesting to know, if (3.13) can be replaced by the stronger
result BLD(Ω) ⊂ W 1

1 (Ω; Rn). We think that this inclusion is true and suggest to prove
the claim in two steps:

i) Given u ∈ BLD(Ω) the construction of the trace u|∂Ω outlined by Temam and Strang
(see [TS], Lemma 1.1) probably gives that u|∂Ω is in L log L(∂Ω).

ii) Applying the arguments used by Gagliardo [Ga] to u|∂Ω we may end up with u ∈
W 1

1 (Ω; Rn) having trace u|∂Ω and satisfying in addition |∇u| ∈ L log L(Ω). Therefore
u− u is in BLD0(Ω) and (3.15) can be applied, hence u is in the space W 1

1 (Ω; Rn).

4 Proof of Theorem 1.1

Suppose that (h(t) := t ℓn(1 + t))

(4.1) sup
ν

∫

Ω

[|uν| + h(|ε(uν)|)] dx < ∞

for the sequence {uν} ⊂ BLD(Ω). The compactness of the embedding

BD(Ω) →֒ L1(Ω; Rn)
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gives the existence of u ∈ L1(Ω; Rn) such that

(4.2) uν → u in L1(Ω; Rn) and a.e. ,

where here and in what follows we always pass to subsequences whenever this is necessary.
From (4.1) and the Dunford-Pettis theorem (see [AFP], Theorem 1.38) we infer

ε(uν) ⇁: σ in L1(Ω; Rn×n) ,

which in combination with (4.2) implies

(4.3) ε(uν) ⇁ ε(u) in L1(Ω; Rn×n) .

Now, using standard theorems on lower semicontinuity of convex variational integrals, we
get from (4.3) ∫

Ω

h(|ε(u)|) dx ≤ lim inf
ν→∞

∫

Ω

h(|ε(uν)|) dx ,

so that in particular u ∈ BLD(Ω). Next we apply arguments of Frehse and Seregin [FrSe]:
on account of (4.3) there exists a sequence {σµ}, σµ being an element of the convex hull
of {ε(uν) : ν ≥ µ}, such that σµ → ε(u) in L1(Ω; Rn×n). We have

σµ =

N(µ)∑

ν=µ

λµ
νε(uν),

N(µ)∑

ν=µ

λµ
ν = 1, 0 ≤ λµ

ν ≤ 1 ,

with suitable coefficients λµ
ν and integers N(µ) ≥ µ. Let

uµ :=

N(µ)∑

ν=µ

λµ
ν uν .

These functions belong to BLD(Ω) and satisfy on account of (4.2)

‖uµ − u‖L1(Ω) ≤

N(µ)∑

ν=µ

λµ
nu‖uν − u‖L1(Ω) → 0

as µ → ∞. Moreover it holds
∫

Ω

|ε(uµ)| dx =

∫

Ω

|σµ| dx →

∫

Ω

|ε(u)| dx, µ → ∞ ,

and according to [AG], remarks after Theorem 1.4, these two convergences imply the L1–
convergence of the traces of uµ towards the trace of u. In other words: if the sequence
{uν} has fixed traces, then also the limit function u has this boundary datum. It remains
to show the validity of

(4.4) lim
ν→∞

‖uν − u‖Ln/n−1(Ω) = 0 .

11



From (4.1) and (3.9) we first obtain

(4.5) sup
ν∈N

∫

Ω

|ε(wν)| < ∞ ,

wν := ℓn(1 + |uν |)uν; clearly {uν} is a bounded sequence in BD(Ω), Lemma 1.1 implies

(4.6) sup
ν

∫

Ω

|uν|
n/n−1 dx < ∞ ,

which yields in combination with (4.5) the BD(Ω)-boundedness of {wν}. Quoting Lemma
1.1 one more time we arrive at

(4.7) sup
ν

‖wν‖Ln/n−1(Ω) < ∞ .

Let Γ(t) := h
(
t

n−1

n

) n
n−1

, t ≥ 0 . Then

Γ(t)

t
=





h
(
t

n−1

n

)

t
n−1

n





n
n−1

−→ ∞

as t → ∞, and from (4.7) it follows
∫

Ω

Γ
(
|uν |

n
n−1

)
dx =

∫

Ω

h(|uν |)
n

n−1 dx =

∫

Ω

|wν |
n

n−1 dx ≤ const < ∞ .

The Dunford-Pettis theorem implies

|uν |
n

n−1 ⇁: g

weakly in L1(Ω), but g = |u|n/n−1 on account of (4.2). This in particular yields

(4.8) ‖uν‖Ln/n−1(Ω) → ‖u‖Ln/n−1(Ω), ν → ∞ .

From (4.6) and uν → u a.e. we get

(4.9) uν ⇁ u in Ln/n−1(Ω) ,

and from (4.8) and (4.9) our claim (4.4) follows by applying the Radon–Riesz lemma (see,
e.g., [GMS1], Proposition 3, p.47). This completes the proof of Theorem 1.1. �

5 Korn-type inequalities in Orlicz-Sobolev spaces

The most important tool for proving Theorem 1.1 evidently is inequality (3.1), which
in principle states that the L1-norm of ∇u is bounded in terms of the L log L-norm of
ε(u) plus the L1- norm of the field u itself. Unfortunately we do not have a version
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of (3.1) now with the L log L-norm of ∇u on the left-hand side, and we do not think
that this actually holds. One formal objection against the validity of this stronger
inequality is the fact that ”our” N -function h(t) = t ℓn(1 + t) has the doubling property
(∆2), but the (∇2)-condition, i.e. the validity of (∆2) for the conjugate function
h∗, does not hold, and as we will show below stronger results can be obtained for
N -functions ϕ of type (∆2) ∩ (∇2). Before we give some details let us remark that
Stein [St] shows that a function f (with compact support) is in L log L if and only if
the maximal function M(f) is in L1. If we take f := |ε(u)|, then the singular integral
occurring in (3.5) shows a behaviour as M(f)(x), so that according to Stein’s charac-
terization of the class L log L we can not hope for an improvement of either (3.1) or (3.1)’.

Now we assume that we are given a N -function ϕ of type (∆2) ∩ (∇2), and let Ω denote

a bounded Lipschitz domain in R
n. Then it holds (W 1

ϕ(Ω; Rn) and
◦

W 1
ϕ(Ω; Rn) denoting

the Orlicz-Sobolev spaces defined in e.g. [Ad] )

THEOREM 5.1. Assume that the N-function ϕ : [0,∞) → [0,∞) is of class C2

satisfying (∆2) ∩ (∇2) and in addition

(H) aϕ′(t)
t

≤ ϕ′′(t)

for all t ≥ 0 with a constant a > 0. Then we have the following statements:

a) There is a constant c = c(n, Ω, ϕ) such that

‖∇u‖Lϕ(Ω) ≤ c‖εD(u)‖Lϕ(Ω)

holds for all fields u ∈
◦

W1
ϕ(Ω; Rn), ‖ · ‖Lϕ(Ω) denoting the Luxemburg norm.

Suppose in addition that Ω is a region as described in Theorem 1.1. Then, with another
constant c = c(n, Ω, ϕ) it holds for all u ∈ W 1

ϕ(Ω; Rn)

b) ‖∇u‖Lϕ(Ω) ≤ c
[
‖ε(u)‖Lϕ(Ω) + ‖u‖Lϕ(Ω)

]

and if n ≥ 3, then we can replace ε(u) on the right-hand side by εD(u),

c) ‖u − r‖Lϕ(Ω) ≤ c‖ε(u)‖Lϕ(Ω),
where r = r(u) is a suitable rigid motion,

d) ‖u − κ‖Lϕ(Ω) ≤ c‖εD(u)‖Lϕ(Ω),
κ = κ(u) being a Killing vector as explained in [Re] and [Da].

REMARK 5.1. For the choice ϕ(t) = tp, 1 < p < ∞, these inequalities are obtained by
e.g. Mosolov-Mjasnikov [MM] and Reshetnyak [Re]. Moreover, in [MM], Remark 5, there
is a comment how to get variants for N-functions.

REMARK 5.2. Inequality a) for n = 2 has been proved in [Fu1], the ε-variant of a) is
discussed in [Fu2] and a proof of d) for domains Ω ⊂ R

2 and ϕ(t) := tp, 1 < p < ∞, is
presented in [Fu3].
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REMARK 5.3. From (H) it easily follows that

inf
t≥0

ϕ′(t)t

ϕ(t)
≥ 1 + a ,

which by Corollary 4, p.26, of [RR] implies that ϕ is already of type (∇2). The reader
should note that for h(t) := t ℓn(1 + t) it is not possible to find a > 0 such that (H) holds.

REMARK 5.4. Condition (H) is a rather strong hypothesis on the N-function ϕ imply-
ing the validity of the inequalities a) - d) stated in Theorem 5.1. It is motivated through
certain recent applications (see, e.g. [BF] and [Fu4]), and as a matter of fact (compare the
statements after (5.3)) condition (H) can be replaced by the assumption that ϕ satisfies
(1.11) - (1.16) from [Ko].

Proof of Theorem 5.1: a) Let B denote the open unit ball in R
n and consider a field

u ∈ C∞
0 (B; Rn). According to Remark 5.2 we may also assume n ≥ 3. Then we quote

Reshetnyak’s representation formula (2.43), i.e.

(5.1) u(x) = (P2u)(x) + R2(Q2u)(x), x ∈ B .

Here P2u is a Killing vector, and in order to get more information on P2u we use formula
(2.20) of [Re] and pass to the mean value

∫
B

− . . . dy with respect to the variable y ∈ B
on the right-hand side. According to the comment given after (2.22) the ith component of
(P2u)(x) is the remaining expression on the right-hand side, in which no integration with
respect to t ∈ [0, 1] is performed. But then it is easy to see (using integration by parts)
that P2u is a constant vector, and (5.1) yields

(5.2) ∇u(x) = ∇R2(Q2u)(x), x ∈ B .

The operator R2 can be decomposed in the same way as done after (3.2) (compare the
proof of Lemma 2 in [Re]) leading to a discussion of the singular integral from (3.5). This
time we quote Theorem 2 of Koizumi [Ko] and deduce from (5.2) the inequality

(5.3) ‖∇u‖Lϕ(B) ≤ c‖εD(u)‖Lϕ(B) .

In fact, the hypotheses (1.12) and (1.15) of Theorem 2 from [Ko] follow along the lines of
Lemma 4.3 in [BF], whereas (1.13) and (1.16) are immediate consequences of inequality

(1.5) from [BF] combined with the fact that t 7→ ϕ′(t)
ta

is increasing, which is implied
by (H). For further details we refer to the Appendix. By scaling we obtain (5.3) now
for functions u ∈ C∞

0 (BR(x0); R
n) with constant c additionaly depending on R. If Ω a

bounded Lipschitz domain, we choose a ball BR(x0) with radius proportional to diam (Ω)
such that Ω ⊂ BR(x0). This yields the inequality from a) now for u ∈ C∞

0 (Ω; Rn), and
from this the general claim follows by approximation.

b) Let us look at the εD-variant, which is only true for n ≥ 3 (compare e.g. [Da]). For
u ∈ C∞(Ω; Rn) we again return to (2.43) of [Re] valid now for x ∈ Ω, where for simplicity
we assume that Ω is a star domain with respect to a ball B0 ⊂ Ω. Then it holds

∇(u − P2u)(x) = ∇R2(Q2u)(x)
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and we deduce as in the proof of a)

(5.4) ‖∇(u − P2u)‖Lϕ(Ω) ≤ c‖εD(u)‖Lϕ(Ω) ,

thus it remains to discuss ∇P2u. This can be done with formula (2.40)’ of [Re], since by
this identity it is immediate how to calculate ∇P2u and to use (5.4) in order to obtain

(5.5) ‖∇u‖Lϕ(Ω) ≤ c
[
‖u‖Lϕ(Ω) + ‖εD(u)‖Lϕ(Ω)

]
.

The general case of fields u ∈ W 1
ϕ(Ω; Rn) follows from (5.5) by approximation.

Finally, we look at d), the proof of c) is similar. Let us assume n ≥ 3 and consider a field
u ∈ C∞(Ω; Rn). The discussion from b) yields

(5.6) u − κ(u) = R2(Q2u)

with Killing vector κ(u) = P2u. This time we do not have to take derivatives, and the
estimate

(5.7) ‖R2(Q2u)‖Lϕ(Ω) ≤ c‖εD(u)‖Lϕ(Ω)

for the non-singular operator R2 is immediate. Combination of (5.6) and (5.7) gives d)
for the smooth case. If we approximate u ∈ W 1

ϕ(Ω; Rn) through a smooth sequence {um},
then it is easy to see that ‖κ(um)‖Lϕ(Ω) stays bounded, and since for n ≥ 3 the space of
Killing vectors is of finite dimension, we arrive at d).

�

A Appendix

We like to show that the set of hypotheses imposed on the N -function ϕ in Theorem 5.1
implies the validity of the conditions (1.11) - (1.16) required in Koizumi’s paper [Ko],
more precisely we claim

Lemma A.1. Let ϕ denote an N-function as described in Theorem 5.1. Then the fol-
lowing statements hold:

a) There is a positive constant k such that

k ϕ′(t)t ≤ ϕ(t) ≤ ϕ′(t)t

holds for all t ≥ 0.

b) The function t 7→ ϕ′(t)/ta is increasing.

c)

∫ u

1

ϕ(t)

t2
dt = O

(
ϕ(u)

u

)
as u → ∞.
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d)

∫ u

0

ϕ(t)

t2
dt = O

(
ϕ(u)

u

)
as u → 0.

e) ∃ r > 1 :

∫ ∞

u

ϕ(t)

tr+1
dt = O

(
ϕ(u)

ur

)
.

f) ∃ r > 1 :

∫ 1

u

ϕ(t)

tr+1
dt = O

(
ϕ(u)

ur

)
.

REMARK A.1. Since we assume that ϕ is of type (∆2), we clearly have the validity of
(1.11) and (1.14) from [Ko]. This observation together with c) - f) of Lemma A.1 shows
that Theorem 2 of [Ko] in fact is applicable.

Proof of Lemma A.1 : a) Since ϕ(0) = 0, convexity of ϕ immediately implies
ϕ(t) ≤ t ϕ′(t). At the same time we have

ϕ(t) =

∫ t

0

ϕ′(u) du ≥

∫ t

t/2

ϕ′(u) du ≥
t

2
ϕ′(t/2) ,

hence uϕ′(u) ≤ ϕ(2u), and the (∆2) property of ϕ yields the claim.

b) This is an immediate consequence of our assumption (H).

c) From a) we get (u > 1)
∫ u

1

ϕ(t)

t2
dt ≤

∫ u

1

ϕ′(t)

t
dt

=

∫ u

1

ϕ′(t)

ta
ta−1 dt

b)

≤
ϕ′(u)

ua

∫ u

1

ta−1 dt =
1

a

ϕ′(u)

ua
(ua − 1) ,

and the first inequality from a) applies.

d) As in c) we have for u > 0
∫ u

0

ϕ(t)

t2
dt ≤

1

a
ϕ′(u)

and again we benefit from a).

e) Let p denote a number ≥ 1/k. Then we get from a)

d

dt

[
ϕ(t)

tp

]
≤ 0 .

Let us fix p := 1/k (> 1) and select some r > p. Then
∫ ∞

u

ϕ(t)

tr+1
dt =

∫ ∞

u

ϕ(t)

tp
1

tr−p+1
dt ≤

ϕ(u)

up

∫ ∞

u

tp−r−1 dt =
1

r − p

ϕ(u)

ur
,
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and e) is established.

f) For u ∈ [0, 1] the claim follows as in e) working with arbitrary exponent r > 1/k. In
case ”u > 1” we prove more general:

∃ s > 1 :

∫ v

0

ϕ(t)

ts+1
dt = O

(
ϕ(v)

vs

)

In fact, we first observe that by (H) it holds

t ϕ′(t) =

∫ t

0

d

du
[uϕ′(u)] du

=

∫ t

0

[ϕ′(u) + uϕ′′(u)] du ≥ (1 + a)

∫ t

0

ϕ′(u) du = (1 + a)ϕ(t) ,

which gives for exponents p ≤ 1 + a

d

dt

[
ϕ(t)

tp

]
≥ 0 .

Let us fix s ∈ (1, 1 + a). Then the monotonicity of ϕ(t)
t1+a implies

∫ v

0

ϕ(t)

ts+1
dt ≤

ϕ(v)

va+1

∫ v

0

1

ts−a
dt =

1

a + 1 − s

ϕ(v)

vs
,

and the proof is complete.
�
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[GMS1] Giaquinta, M., Modica, G., Soucěk, J., Cartesian currents in the calculus of
variations I. Ergebnisse der Mathematik und ihrer Grenzgebiete Vol.37, Springer
Verlag, Berlin–Heidelberg–New York (1997).
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