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Abstract
Harmonic weak Maaß forms have recently been shown to

have quite a few interesting arithmetic applications, includ-
ing their connection to Ramanujan’s work on (mock) theta
functions [2, 3, 5, 12].

The peculiar behaviour of these functions under differ-

ential operators suggests that the (g,K)-modules generated

by these functions, viewed as functions on the group SL2(R),

have a simple structure, in spite of being more complicated

than the well-known picture in the case of cusp forms. In

this note we show that this is indeed the case.

1. Preliminaries.

We denote by H the upper half plane in C and by G the group GL+
2 (R).

The matrix g =
(
a b
c d

)
∈ G acts on H by fractional linear trans-

formations z 7−→ gz = az+b
cz+d

and on functions on H by (f |kg)(z) =

det(g)
k
2 (cz + d)−kf(gz) resp. (f [g]k)(z) = (

cz + d

|cz + d|
)kf(gz) with z =

{
(
u 0
0u

)
| u > 0} acting trivially.

We recall that g ∈ G has a decomposition g =

(
u 0
0 u

)(
y

1
2 xy−

1
2

0 y−
1
2

)
κθ

with κθ = r(θ) =
(

cos θ sin θ
− sin θ cos θ

)
∈ K = SO2(R), where x, y, u, θ ∈ R,

y, u > 0, with x, y, u uniquely determined and θ unique modulo 2πZ.

With x, y, u, θ as above as coordinates on G we have the differential
operators

R(G) = e2iθ(iy
∂

∂x
+ y

∂

∂y
+

1

2i

∂

∂θ
)

L(G) = e−2iθ(−iy ∂
∂x

+ y
∂

∂y
− 1

2i

∂

∂θ
)

∆(G) = −y2( ∂
2

∂x2
+

∂2

∂y2
) + y

∂2

∂x∂θ

on C∞-functions on G; the operator ∆(G) is the Laplace-Beltrami op-
erator for G.

We note that sometimes the parametrization of G is considered with
θ replaced by −θ, i.e., κθ above is written as κ(−θ); this leads to sign
changes in the definitions of the differential operators above.
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For k ∈ Z, we have the corresponding differential operators on functions
on H as in [9, 6] given by

R
(R)
k = iy

∂

∂x
+ y

∂

∂y
+
k

2

L
(R)
k = −iy ∂

∂x
+ y

∂

∂y
− k

2

∆
(R)
k = −y2( ∂

2

∂x2
+

∂2

∂y2
) + iky

∂

∂x

(the superscript (R) standing for Roelcke). They satisfy

(Rkf)[g]k+2 = Rk(f [g]k), (Lkf)[g]k−2 = Lk(f [g]k), (∆kf)[g]k = ∆k(f [g]k).

One has moreover: ∆
(R)
k = −L(R)

k+2R
(R)
k − k

2
(
k

2
+ 1) = −R(R)

k−2L
(R)
k +

k

2
(1− k

2
),

R
(R)
k ◦∆

(R)
k = ∆

(R)
k+2 ◦R

(R)
k , L

(R)
k ◦∆

(R)
k = ∆

(R)
k−2 ◦ L

(R)
k . The operators

R(G), R
(R)
k are called raising operators, the operators L(G), L

(R)
k are

called lowering operators.

We consider a discrete subgroup Γ of SL2(R) with a character χ : Γ −→
C× and for k ∈ Z functions f on H satisfying f [γ]k = χ(γ)f for all γ ∈
Γ.
Such an f induces a function F = σk(f) on G given by F (g) =
(f [g]k)(i); the function F = σk(f) satisfies then F (gκθ) = eikθF (g) (θ ∈
R) and F (γg

(
u 0
0u

)
) = χ(γ)F (g) (γ ∈ Γ, u > 0).

The map f 7−→ σk(f) is a bijection between the respective types of
functions on H and G, with inverse given by

F 7−→ f, f(x+ iy) = F

(
x y

0 1

)
.

On C2-functions the bijection commutes with the actions of L
(R)
k , R

(R)
k , ∆

(R)
k

resp. L(G), R(G), ∆(G).

In the theory of modular forms it is more usual to consider functions
f : H −→ C with f |kγ = χ(γ)f (γ ∈ Γ) instead of the transformation
equation f [γ]k = χ(γ)f treated above; for such an f the function f (R)

given by f (R)(x+ iy) = y
k
2 f(x+ iy) satisfies the latter transformation

equation.
If f as above is an eigenfunction of the weight k hyperbolic Laplacian

∆k = −y2( ∂2

∂x2
+ ∂2

∂y2
) + iky( ∂

∂x
+ i∂

∂y
) = ∆

(R)
k − ky ∂

∂y
, the function f (R)

is an eigenfunction of ∆
(R)
k with eigenvalue λ− k

2
(k
2
− 1).

The corresponding lowering and raising operators Lk = y(L
(R)
k +k/2), Rk =

y−1(R
(R)
k + k/2) have the disadvantage of changing the eigenvalue of a
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Laplace eigenfunction and the advantage that the kernel of Lk consists
of the holomorphic functions on H.

2. Weak Maaß forms of integral weight.

We recall from [4]:

Definition 1. A C∞-function f : H −→ C is called a weak Maaß
form of weight k and character (or nebentypus) χ for the congruence
subgroup Γ ⊆ SL2(Z) if it satisfies

a) f |kγ = χ(γ)f for all γ ∈ Γ
b) For γ ∈ SL2(Z) there is a polynomial

Pf,γ =
∑
n≥0

c+f,γ(−n)Xn ∈ C[X]

and an ε = εf,γ > 0 such that (f |kγ)(z) − Pf,γ(e
−2πiz/hγ ) =

O(e−εy) (where hγ is the width of the cusp γ(∞)) as y = Im(z) −→
∞.
Pf,γ(q

−1/hγ ) =
∑

n≤0 c
+
f,γ(n)qn/hγ is called the principal part

of f at the cusp γ(∞).
c) f is an eigenfunction of ∆k.

If the ∆k-eigenvalue in c) is 0, the function f is called harmonic.

Definition and Lemma 2. If f : H −→ C is a weak Maaß form as
above with ∆k-eigenvalue λ, the corresponding function f (R) (satisfying
f (R)[γ]k = χ(γ)f for all f ∈ Γ) is called a weak Maaß-Roelcke form of
weight k (MR-form for short).

With P
(R)
f,γ (z) = y

k
2Pf,γ(e

−2πiz/hγ ) the function f (R) satisfies a cusp con-
dition analogous to the one given in the previous definition, it is an

eigenfunction of ∆
(R)
k with eigenvalue λ(R) = λ− k

2
(k
2
− 1).

The functions L
(R)
k f (R), R

(R)
R f (R) are then weak Maaß-Roelcke forms of

weights k − 2, k + 2 respectively and with the same ∆
(R)
k−2 resp. ∆

(R)
k+2-

eigenvalue λ(R).

Proof. It is easily checked (or deduced from the results of [4]) that

L
(R)
k f (R) and R

(R)
k f (R) satisfy the required cusp conditions.

The rest of the assertion is obvious from the facts stated in Section
1. �

It is well-known that one has compatible actions of the complexified Lie
algebra g of SL2(R) and of the maximal compact subgroupK = SO2(R)
of SL2(R) on analytic functions on G: The action of K is by right
translation, the generators

R =
1

2

(
1 i
i −1

)
, L =

1

2

(
1 −i
−i −1

)
, H = −i

(
0 1
−1 0

)
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of g act by R(G), L(G), HG = −i ∂
∂θ

respectively, and after extension
of this action to the universal eveloping algebra U(g) the Casimir ele-
ment H2+2RL+2LR acts by −4∆(G). It is also well-known that under
this action of g and K a function F ∈ C∞(G) that is both K-finite
and Z(G)-finite generates an admissible (g, K)-module V , i.e., V is
the direct sum of finite dimensional K-invariant subspaces and each fi-
nite dimensional irreducible representation of K occurs only with finite
multiplicity.

The structure of this (g, K)-module is also well-known, if F is the
function on G corresponding to a holomorphic cusp form of weight
k > 0 in the way described in Section 1: One obtains then an irreducible
(g, K)-module which is a (limit of) discrete series representation D+(k)
and in which F is a vector of lowestK-type k. TheK-types occurring in
this representation are the set Σ+(k) = {` ∈ Z | ` ≡ k mod 2, ` ≥ k}
(notations as in [6]), the Laplace eigenvalue is λ = k

2
(1 − k

2
). The

raising and lowering operators push the K-types up and down, acting
injectively with the exception that L(G) annihilates the lowest K-type
k.

Similarly, an antiholomorphic cusp form (i.e., a complex conjugate of a
holomorphic cusp form) of weight k gives rise to a Maaß-Roelcke form
of weight −k and a function on G of K-type −k which generates an
irreducible (g, K)-module of type D−(k) with set of K-types Σ−(k) =
{` ∈ Z | ` ≡ k mod 2, ` ≤ −k}; again L(G) and R(G) act injectively
with the exception that R(G) annihilates the highest K-type −k.

We denote (see [6]) for k ≥ 1 by V (k) the (g, K)-module of K-finite
vectors in the induced representation H(s,−s, k) (with s = k−1

2
) of

GL+
2 (R) which is given by normalized induction from the character

χ

(
y1 x
0 y2

)
= (sgn(y1))

k|y1|s|y2|−s

of the upper triangular subgroup. It is well known (see [6]) that V (k)
is indecomposable with each K-type l ≡ k mod 2 appearing with mul-
tiplicity 1 and contains precisely two irreducible submodules which are
of types D+(k), D−(k).

In contrast to the case of holomorphic cusp forms, the functions on G
corresponding to weak Maaß forms do not embed into L2(Γ\G) so that
one can not expect complete reducibility. Instead, the known results
about the action of the raising and lowering operators on weak har-
monic Maaß forms, see [4], suggest that the (g, K)-module generated
by the function on G corresponding to a weak harmonic Maaß form is
indecomposable, but not irreducible. We have in fact
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Proposition 3. Let f be a harmonic weak Maaß form of weight 2− k
with k ≥ 1 for the congruence subgroup Γ and denote by F the corre-
sponding function on G = GL+

2 (R) (which is an eigenfunction of the
Laplace-Bertrami operator ∆(G) with eigenvalue k

2
(1− k

2
)).

Then L(G)F generates (if it is non-zero) a (g, K)-module of type D−(k)
and corresponds to an antiholomorphic modular form of weight k.

Similarly, (R(G))k−1F generates, if it is non-zero, a (g, K)-module of
type D+(k) and corresponds to a weakly holomorphic (i.e., holomorphic
with possible poles at∞) modular form of weight k. The (g, K)-module
generated by F is indecomposable but not irreducible; it is isomorphic to
V (k) if both L(G)(F ), (R(G))k−1(F ) are non-zero, and to V (k)/D+(k)
resp. V (k)/D−(k) if one (and only one) of them is zero.

Proof. The (g, K)-module structure is completely determined by the
actions of L(G), R(G), ∆(G) and the occurring K-types and their multi-
plicities. The latter are contained in {` ∈ Z | ` ≡ k mod 2} and occur
with multiplicity 1. The ∆(G)-action is given as multiplication with
λ = k

2
(1− k

2
), and L(G), R(G) push the K-type up or down by 2, with

R(G) possibly annihilating a vector of type ` = −k or ` = k − 2, and
L(G) possibly annihilating a vector of type ` = k or ` = 2− k.

Since we are starting at K-type 2 − k, all K-types ≤ k − 2 appear
if L(G)F 6= 0, and all K-types ≥ 2 − k appear if (R(G))k−1F 6= 0.
Moreover, since the Laplace eigenvalue is k

2
(1− k

2
), we see by translating

the identities

∆
(R)
` + L

(R)
`−1 ◦R

(R)
` = − `

2
(
`

2
+ 1)

∆
(R)
` +R

(R)
`−2 ◦R

(R)
` =

`

2
(1− `

2
)

into identities for the action of ∆(G), R(G), L(G) on the respective K-
types that L(G) ◦R(G) annihilates the K-type ` = k− 2 and R(G) ◦L(G)

annihilates the K-type ` = 2− k.
This proves all the assertions. �

Remark 4. a) A similar phenomenon occurs for the non holo-
morphic Eisenstein series of weight 2 for the full modular group
whose (g, K)-module is V (2)/D−(2).

b) The representation theoretic point of view to interpret the (anti)-
holomorphic forms related to a harmonic weak Maaß form as
vectors in the same (g, K)-module should facilitate an adelic
treatment and generalizations to the number field case as well as
generalizations to other (e.g. symplectic or orthogonal) groups
and to vector valued modular forms for these. The fact that
these modules are indecomposable but not irreducible causes some
phenomena which do not occur in the representation theoretic
investigation of cusp forms.
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c) Using the Fourier expansion of f given in [4] one sees that it
cannot happen that both L(G)F and (R(G))k−1F are zero for non
constant F , essentially because these two differential equations
do not have a non trivial periodic solution.

3. Half integral weight.

In order to deal with the case of half integral weight we have to mod-
ify the group theoretic setup, shifting from GL+

2 (R) or SL2(R) to the

metaplectic group S̃L2(R) =: G̃.
We will see that the situation is almost completely parallel to the case
of integral weight, but since the necessary ingredients are somewhat
scattered through the literature we prefer to go through this setup in
some detail.

We recall that the metaplectic group S̃L2(R) is as a set SL2(R)×{±1},
with multiplication given by (g1, ε1)(g2, ε2) = (g1g2, c(g1, g2)ε1ε2), where
c(·, ·) is the cocycle given by

c(g1, g2) = (x(g1), x(g2))R(−x(g1)x(g2), x(g1g2)R,

where (·, ·)R denotes the Hilbert symbol for R and

x(g) =

{
c c 6= 0
d c = 0

for g =

(
a b

c d

)
∈ SL2(R).

G̃, although not linear, is a real Lie group with Lie algebra g = sl2(R)

and maximal compact subgroup K̃ ∼= R/4πZ, an isomorphism being
given by

θ + 4πZ 7−→ r̃(θ) = (r(θ), εθ)

with

εθ =

{
1 −π < θ ≤ π
−1 π < θ ≤ 3π

;

the map
i θ H 7−→ r̃(θ)

coincides with the exponential map

i θ H =

(
0 θ
−θ 0

)
7−→ exp(i θ H) ∈ G̃

(see [1, Sect. 5].

We denote the image of this map by K̃. The elements of G̃ can
be written uniquely as g = b(z)r̃(θ) with z = x + iy ∈ H, b(z) =((

y
1
2 xy−

1
2

0 y
1
2

)
, 1

)
∈ G̃.

With this parametrization we have again the differential operators

R(G̃), L(G̃),∆(G̃) as in Section 1. We also have the same relations to

the action of the Lie algebra sl2 as before, i.e., R acts by R(G̃), L by

L(G̃), H by −i ∂
∂θ

and H2 + 2RL+ 2LR by −4∆(G̃).
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We have a correspondence between functions F on G̃ satisfying

F (gr̃(θ)) = eikθF (g) (g ∈ G̃, θ ∈ R)

and functions on H, given by f 7−→ F = σ̃k(f) with

F (b(z)r̃(θ)) = eikθf(z)

f(z) = F (b(z));

this correspondence commutes with the actions of L(G̃), R(G̃),∆(G̃) on

functions on H on the one side and of L
(R)
k , R

(R)
k ,∆

(R)
k on functions on

H on the other side.

The fact that r̃(θ) = exp(i θ H) is true implies that the sl2-action on

functions on G is compatible with the action of K̃ by right translation.
In particular, functions F satisfying

F (gr̃(θ)) = eikθF (g)

for g ∈ G̃, θ ∈ R are eigenfunctions of H = −i
(

0 1
−1 0

)
∈ sl2(C) with

eigenvalue k, so that the study of (g, K̃)-modules of functions on G̃
becomes completely parallel to that of (g, K)-modules of functions on
G discussed in Section 2.

Although one can not embed SL2(Z) or Γ0(N) for some N ∈ N homo-

morphically into G̃, the group Γ1(4) can be embedded by the map

γ =

(
a b
c d

)
7−→ (γ, χ(γ)) =: γ̃,

where χ(γ) = ( c
d
) with ( c

d
) denoting the extended Jacobi symbol as in

[10] satisfying

(
c

d
) =


( c
|d|) if c 6= 0, c > 0 or d > 0

−( c
|d|) if c < 0, d < 0

1 if c = 0,

see [7, Sect. 2.2]; we write Γ̃1(4) for the image of this map. For

γ ∈ Γ1(4) we write j(γ, z) = ( c
d
)(cz+d)

1
2 with −π

2
< arg(cz+d)

1
2 ≤ π

2
.

For half integral k = κ+1
2

(κ ∈ Z) we write f [γ]k(z) =
( j(γ, z)

|j(γ, z)|
)2k
f(γz)

and f |kγ(z) = j(γ, z)−2kf(γz).As before, if f : H −→ C transforms like
a classical modular form of weight k for Γ1(4N), i.e., satisfies f |kγ = f

for all γ ∈ Γ1(4N), the function f (R) given by f (R)(z) = Im(z)
k
2 f(z)

satisfies f (R)[γ]k = f (R) for all γ ∈ Γ1(4N) and F = σ̃k(f
(R)) satisfies

F (γ̃g) = F (g) for all γ̃ ∈ Γ̃1(4N), g ∈ G̃.
Moreover, defining Lk, Rk,∆k as usual (see Section 1) we obtain as
before that for an eigenfunction f of ∆k with eigenvalue λ the corre-

sponding f (R) is a ∆
(R)
k -eigenfunction of eigenvalue λ− k

2
(k
2
− 1). The
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weight raising and lowering properties and the commutation relations

for L
(R)
k , R

(R)
k have been discussed in [8]; since

L(G̃)σ̃k(f
(R)) = σ̃k−2(L

(R)
k f (R)),

R(G̃)σ̃k(f
(R)) = σ̃k+2(R

(R)
k f (R)),

∆(G̃)σ̃k(f
(R)) = σ̃k(∆

(R)
k f (R))

hold, this discussion carries over to L(G̃), R(G̃),∆(G̃).

Taken together we have

Lemma 5. The assertions of Lemma 2 are true for the case of half
integral weight k = κ

2
+ 1 as well.

Lemma 6. Let k = 1
2

+κ ∈ 1
2

+Z and denote for ν = ±1
2

by B(k−1, ν)

the (induced) representation of G̃ = S̃L2(R) (acting by right transla-

tion) on the space of square integrable functions ϕ : G̃ −→ C satisfying

ϕ((b(z), ε)g̃) = εykϕ(g̃) (z = x+ iy ∈ H)

ϕ(r̃(π)g̃) = eiνπϕ(g̃).

Then the (g, K̃)-module Ṽ (k, ν) of K̃-finite functions in the space of
B(k − 1, ν) is spanned by the functions ϕ̃n for n ∈ ν + 2Z with

ϕ̃n(g̃r̃(θ)) = einθϕ̃n(g̃) (g̃ ∈ G̃, θ ∈ R)

(which condition determines ϕ̃n up to scalar multiples).

The (g, K̃)-module of the discrete series representation π̃+
k of G̃ is for

ν ≡ k mod 2Z realized as the unique nontrivial (g, K̃)-submodule of

Ṽ (k, ν) or equivalently as the unique nontrivial (g, K̃)-quotient of Ṽ (2−
k, ν), its K̃-types are indexed by the n ∈ ν + 2Z with n ≥ k.
If f : H −→ C is a holomorphic cusp form of weight k (for some

congruence subgroup) and f (G̃) the corresponding function on G̃, the

function f (G̃) generates a (g, K̃)-module isomorphic to π̃+
k and is a

vector of the lowest K̃-type k in this module.
Analogous statements hold for antiholomorphic cusp forms and discrete
series respesentations π̃−k .

Proof. This is a reformulation of Proposition 6 in [11]. �

The situation for harmonic weak Maaß forms is now similar to that in
Section 2, except that due to the fact that 2k is odd we cannot get
both holomorphic and antiholomorphic forms by applying raising and
lowering operators.

Proposition 7. Let f be a harmonic weak Maaß form of half integral
weight 2 − k with k ≥ 1, k ∈ ν + 2Z for the congruence subgroup

Γ ⊆ Γ1(4) and denote by F the corresponding function on G̃ = S̃L2(R)



9

(which is an eigenfunction of the Laplace-Beltrami operator ∆(G̃) with
eigenvalue λ = k

2
(1− k

2
)).

Then L(G̃)F generates (if it is non zero) a (g, K̃)-module of type π̃−k
and corresponds to an antiholomorphic modular form of weight k. The

(g, K̃)-module generated by F is isomorphic to Ṽ (k,−ν) if L(G)F 6= 0,
it is isomorphic to the discrete series representation π̃+

2−k if L(G)F = 0.

In both cases the (g, K̃)-module is indecomposable, but it is irreducible
only in the second case.
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