
Universität des Saarlandes

U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Fachrichtung 6.1 – Mathematik

Preprint Nr. 279

Representation of Quadratic Forms by
Integral Quadratic Forms

Rainer Schulze-Pillot

Saarbrücken 2010, revised April 2012





Fachrichtung 6.1 – Mathematik Preprint No. 279
Universität des Saarlandes revision submitted: April 4, 2012

Representation of Quadratic Forms by
Integral Quadratic Forms

Rainer Schulze-Pillot

Saarland University
Department of Mathematics

P.O. Box 15 11 50
66041 Saarbrücken

Germany
schulzep@math.uni-sb.de

To appear in the proceedings of the conferences on quadratic forms at
the University of Florida and the University of Arizona 2009.



Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/



1

1. Introduction.

It is a classical problem to study the solvability and the number of
integral solutions of the quadratic diophantine equation

m∑
i,j=1

aijxixj = t

for an integral symmetric matrix A = (aij) and an integer t. Already
Gauß studied more generally systems of such equations of the form

tXAX = T

where now T is another (half-) integral symmetric matrix of size n ≤
m. If one looks for rational instead of integral solutions, the Hasse-
Minkowski theorem states the validity of the local-global principle for
this problem, i.e., a rational solution exists if and only if solutions
exist over R and over all p-adic fields Qp. That the local-global prin-
ciple fails for integral solutions is already seen in simple examples like
Q(x1, x2) = 5x2

1+11x2
2 which represents 1 over R and over all Zp but not

over Z. Whereas the integral local-global principle can be saved with
some modifications for indefinite A by the theory of spinor genera, the
best possible results in the definite case prove that local representabil-
ity implies global representability for T that are sufficiently large in a
suitable sense and yield asymptotic formulas for T which are locally
represented. The case of one equation (n = 1) is already classical,
and considerable effort has been spent in the last sixty years on the
case of n > 1, using both analytic and purely arithmetic methods.
The introduction of ergodic theory as a new tool in [16] by Ellenberg
and Venkatesh in 2008 has brought dramatic progress, it builds on the
arithmetic approach of Eichler and Kneser and is also inspired by work
of Linnik on representation of integers by ternary quadratic forms.

In this survey we sketch all three approaches (arithmetic, analytic,
ergodic) and compare their results. At present each of the methods
gives results which cannot be achieved by one of the others.
I thank G. Harcos and the referee for the proceedings of the conferences
on quadratic forms at the University of Florida and the University of
Arizona for some helpful remarks.

2. Statement of the problem and notations.

An integral valued quadratic form Q = QA on Zm is given as QA(x) =
1
2
txAx, where A ∈M sym

m (Z) is an integral symmetric matrix with even
diagonal. Associated to it are the symmetric bilinear forms b(x,y) =
Q(x + y) − Q(x) − Q(y) = txAy and B = 1

2
b with B(x,x) = Q(x).

One says that the symmetric matrix T of size n is represented by QA

or that Q2T is represented by QA over Z (resp. over Q) if there is
X ∈Mm,n(Z) (resp. ∈Mm,n(Q)) with QA(X) = 1

2
tXAX = T .
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An integral representation is called primitive if all elementary divi-
sors of X are 1, in particular for n = 1 this says that the coefficients
x1, . . . , xm of the representing vector x ∈ Zm are relatively prime. If
the matrix A is positive definite the matrix equation QA(x) = T has
only finitely many solutions over Z and one calls

r(A, T ) := #{X ∈Mm,n(Z) | QA(X) = T}

the number of representations of T by A. The matrices A1, A2 ∈
M sym

m (Z) and their associated quadratic forms QA1 , QA2 are called ra-
tionally resp. integrally equivalent if the equations A1 = tX1A2X1,
A2 = tX2A1X2 are solvable with X1, X2 ∈ GLm(Q) resp. in GLm(Z).
Clearly, integrally equivalent forms represent the same numbers and
matrices and have the same representation numbers. The forms QA1 ,
QA2 (or their associated symmetric matrices) are said to be locally ev-
erywhere integrally (resp. rationally) equivalent, if tXA1X = A2 is
solvable with X ∈ GLm(Zp) (resp. ∈ GLm(Qp)) for all primes p and
A1 and A2 have the same signature (i.e., tXA1X = A2 is solvable in
GLm(R)). Forms which are locally everywhere integrally equivalent
are said to belong to the same genus. Analogously one defines the
notion that T is locally everywhere representable by QA (integrally or
rationally). The Hasse-Minkowski theorem [17] asserts that rational
representation locally everywhere is equivalent to representation (over
Q); this is not true for integral representation, where representation
over Z is stronger than representation locally everywhere.

Since it is in principle easy to determine the numbers or matrices which
are represented locally everywhere by determining the solvability of
finitely many congruences, the problem to determine all T which are
represented by QA is reduced to

Problem 1. Given A ∈M sym
m (Z) determine conditions on T ∈M sym

n (Z)
(with n ≤ m) such that T meeting these conditions is represented in-
tegrally by QA if it is represented locally everywhere integrally by QA.

Similarly, determine conditions under which primitive representability
locally everywhere implies (primitive) representability over Z.

For many purposes it is convenient to use the equivalent but slightly
more flexible language of quadratic spaces and lattices in them which
has been introduced by Witt; in particular for generalizations to forms
over number fields and their integers it is the more natural framework:

Definition 1. Let F be a field. A quadratic space (V,Q) over F is a
finite dimensional vector space V over F equipped with a map Q : V →
F satisfying

a) Q(ax) = a2Q(x) for all x ∈ V, a ∈ F
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b) b(x, y) := Q(x + y) − Q(x) − Q(y) defines a symmetric bilinear
form on V .

The map Q is called the quadratic form on V and b is called its asso-
ciated bilinear form.

If B = (e1, . . . , em) is a basis of V we call the matrix MB(Q) :=
(b(ei, ej)) ∈ M sym

m (F ) the Gram matrix of (V,Q) (or just of Q) with
respect to B.

If (V ′, Q′) is another quadratic space over F a linear isomorphism f :
V → V ′ is called an isometry if Q′(f(x)) = Q(x) holds for all x ∈ V .
If an isometry f : (V,Q)→ (V ′, Q′) exists one says that the spaces are
isometric or equivalent or that they belong to the same class.
If the mapping f above is just injective but may fail to be surjective it
is called an isometric embedding of (V,Q) into (V ′, Q′) and one says
that (V,Q) is represented by (V ′, Q′).

The geometric formulation of integral quadratic forms is obtained by
considering lattices on quadratic spaces. In the most classical case we
have:

Definition and Lemma 2. Let (V,Q) be a quadratic space over the
field Q of rational numbers.
A Z- lattice (or simply lattice) on V is a finitely generated Z-submodule
L of V which generates V over Q.
Equivalently, L =

⊕m
i=1 Zei for some basis (e1, . . . , em) of the space V

(which is then also a basis of the Z-module L). We also call (L,Q) a
quadratic lattice.
The lattice L is called integral if Q(L) ⊆ Z.
If (L,Q) is an integral Z-lattice and B = (e1, . . . , em) is a basis of L,
the quadratic polynomial PQ,B(x1, . . . , xm) = Q(

∑m
i=1 xiei) has integral

coefficients; this polynomial is then what is usually called an integral
valued quadratic form (see [9]). One obtains a classically integral qua-
dratic form in the sense of [9] if in addition the bilinear form B = b/2
assumes integral values.

Since we will also consider the number field situation we need the fol-
lowing more general definition:

Definition 3. Let F be a number field and R its ring of integers or let
F be the completion of a number field at a non-archimedean place and
again R its ring of integers.
A finitely generated R-submodule L of V is called an R-lattice on V if
L generates V over F . We also call (L,Q) a quadratic lattice over R.
The lattice L is called integral (with respect to R) if Q(L) ⊆ R.
If the lattice L is free with basis B = (e1, . . . , em) over R the matrix
A = (b(ei, ej)) ∈M sym

m (Z) is called its Gram matrix with respect to B.
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Lattices L on (V,Q) and L′ on (V ′, Q′) are called isometric or equiva-
lent if there is an isometry f : (V ′, Q′) → (V,Q) with f(L′) = L; one
writes L′ ∈ cls(L) and also says that L and L′ belong to the same class.
The lattice L′ is said to be represented by L if there is an isometric
embedding f : (V ′, Q′)→ (V,Q) with f(L′) ⊆ L. We write r(L,L′) for
the number of such representations if this number is finite.
The representation f is called primitive if f(L′) = L∩f(V ′). For a ∈ R
it is called of imprimitivity bounded by a if a(L ∩ f(V ′)) ⊆ f(L′).
If F is totally real and L is (totally) positive definite we denote by
min(L) := min{NF

Q (Q(x)) | x ∈ L, x 6= 0} the minimum of the lattice
L. (For the question which lattices have large minimum it does not
matter whether we chose this definition or min{TrFQ(Q(x)) | x ∈ L, x 6=
0} instead, see the remark in [20, p.139].)

Remark. a) If one wants to use the language of matrices instead
of that of lattices and R is no principal ideal domain, one has
to consider Gram matrices with respect to linearly dependent
generating sets (see [48]); this is one of the reasons why lattices
give the more convenient framework.

b) An equivalent characterization of a lattice on V is: L is an R-
submodule of F , and for some basis (x1, . . . , xm) of V and some
c ∈ R one has cL ⊆ Rx1 + . . . + Rxm ⊆ L. If R is a principal
ideal domain we can instead require L = Rx1 + . . . + Rxm for
some basis of V as before. If R is no PID one admits non free
lattices as well.

c) If R is the ring of integers of the number field F and S = Rv

its completion at some place v we write (Lv, Q) for the extension
of (L,Q) to Rv and call it the completion of L at v; if v is
archimedean we have Rv = Fv and Lv = Vv.

In the sequel we let F be a number field with ring of integers R.

The R-lattices Λ, Λ′ are in the same genus (Λ′ ∈ gen(Λ)) if Λv is
isometric to Λ′v for all places v of F . The R-lattice N is represented by
Λ locally everywhere if Nv is represented by Λv for all places v of F .
If the lattices in question are free and have Gram matrices A, T with
respect to bases B of Λ and B′ of Λ′ resp. N , the notions of equivalence,
genus, (primitive) representation (locally everywhere) for lattices given
above translate into those for symmetric matrices described earlier in
this section.

Problem 1 from above becomes

Problem 1’. Given an R-lattice Λ of rank m describe conditions on
an R-lattice N of rank n ≤ m such that N satisfying these conditions
is represented by Λ (primitively) if it is represented by Λ (primitively)
locally everywhere. If possible give (approximate) formulas for the
numbers or measures of representations.
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3. Siegel’s theorem.

Although a strict local-global principle is not valid for representation
of numbers or forms by integral quadratic forms, the Hasse-Minkowski
theorem for quadratic forms over a number field has the consequence
that a lattice N which is represented by the lattice Λ locally every-
where (primitively) is represented by some lattice Λ′ in the genus of
Λ (primitively), see [38, 9]. Siegel’s celebrated theorem in fact gives
the so-called mass formula (German: Maßformel, verbal translation to
English: measure formula) for the average number of representations
of K by Λ.

Theorem 4. Let {L1, . . . , Lh} be a set of representatives of the classes

of lattices in the genus of Λ. If Q is definite put w =
∑h

i=1
1

|O(Li)|
(where O(Li) is the group of isometries of L onto itself with respect to
Q) and write

r(gen Λ, N) =
1

w

h∑
i=1

r(Li, N)

|O(Li)|
for Siegel’s weighted average of the representation numbers of N by the
lattices Li in the genus of Λ.
If Q is not definite and neither the space FΛ nor the orthogonal comple-
ment of a representation of FM in FΛ is a hyperbolic plane the measure
(mass) w = µ(Λ) of Λ and the representation measures µ(Li, N) of N
by the Li can be defined as in [48] and one puts

r(gen Λ, N) =
1

w

h∑
i=1

µ(Li, N).

Then r(gen L,N) can be expressed as a product of local densities over
the non-archimedean places v of F ,

r(gen Λ, N) = c · (NF
Q (detN))

m−n−1
2 (NF

Q (det Λ))−
n
2

∏
v

αv(Λ, N)

with some constant c.

Here by NF
Q (det(Λ)) resp. NF

Q (det(N)) we denote the norm of the
ideal generated by the determinants of the Gram matrices with respect
to linearly independent subsets of the respective lattice, the local density
αv(Λ, N) is for a non-archimedean place v of F with residue field of
order qv and local prime element ωv ∈ Rv given as

αv(Λ, N) = αv(Sv, Tv)

= q
j·(n·(n+1)

2
−mn)

v #Aj(Sv, Tv),

for sufficiently large j with an additional factor 1
2

if m = n, where
Sv, Tv denote Gram matrices of the local lattices Λv, Nv and where we
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write

Aj(Sv, Tv) = {X = (xij) ∈Mm,n(Rv)/ω
j
vMm,n(Rv) | tXSvX ≡ T mod ωjv}

with the congruence being required modulo integral symmetric matrices
with even diagonal.

An analogous formula holds for averaged primitive representation num-
bers resp. measures and primitive local densities α∗v(Λ, N) counting con-
gruence solutions as above but with the representing matrix X being
primitive.

The (primitive) local densities in Siegel’s theorem are nonzero if N is
represented (primitively) locally by Λ and their product converges, so
the theorem implies that (as mentioned above) such an N is represented
(primitively) by at least one class of lattices in the genus of Λ; it gives
a quantitative version of this qualitative result.

If Λ happens to be in a genus of one class, as is the case e.g. for the lat-
tice over Z corresponding to the sum of k integral squares with k ≤ 8,
Siegel’s theorem gives an exact formula for r(Λ, N) resp. the measure
µ(Λ, N). Since one can give closed formulae for αv(Λ, N) for almost
all v (where the exceptional set depends on Λ) the average represen-
tation numbers or measures can be determined explicitly for given Λ
by determining the numbers of solutions of finitely many congruence
systems.

In the asymptotic formulas to be discussed later the average represen-
tation number r(gen Λ, N) will be the main term.

4. The indefinite case.

For the rest of this article we restrict attention to quadratic spaces and
lattices with non-degenerate quadratic form Q, as usual we will often
suppress the quadratic form Q in the notation.

The case that Λv is isotropic (i.e., represents zero nontrivially) for at
least one archimedean place v of F has been solved as completely as
possible:

Theorem 5 (Eichler [15], Kneser [35], Weil [51], Hsia [19]). Let Λ be a
non-degenerate quadratic R-lattice of rank m such that Λv is isotropic
for at least one archimedean place v of F .

a) If the non-degenerate quadratic R-lattice N of rank n ≤ m − 3
is represented by Λ locally everywhere it is represented by Λ, and
the measure of representations (Darstellungsmaß) of N by Λ′ is
the same for all lattices Λ′ in the genus of Λ.

b) If N is as above with n = m − 2 then either the measure of
representations of N by a lattice Λ′ is the same for all Λ′ in the
genus of Λ or the genus of Λ splits into two half genera consisting
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of equally many classes such that the measure of representations
of N by Λ′, Λ′′ is the same if Λ′, Λ′′ belong to the same half
genus.

The latter case occurs only for N for which the discriminant
of the space FN (i.e., the determinant of a Gram matrix of that
quadratic space) belongs to one of finitely many square classes
depending on Λ which can be explicitly determined.

Remark. a) The proof uses the theory of spinor genera, a modi-
fied version of it plays a role in the arithmetic and the ergodic
approach to problem 1’ for definite lattices, see Lemma 13 below.

b) The measure of representations has been defined by Siegel in
[47]; an equivalent definition using measures on adelic orthogonal
groups is given e.g. in [35].

c) In the case n = 1, m = 3, the difference between the represen-
tation measures of the half genera occurring in part b) of the
theorem has been calculated in [43]. The integers represented
(primitively) locally everywhere but not globally by all classes
in the genus have been determined explicitly in [42] without the
primitivity condition and in [14] for the primitive case; they are
called (primitive) spinor exceptions.

d) Some further results for the case n = m− 2 have been obtained
in [52, 53].
The cases n = m − 1 and m = n do not admit clean solutions;
what can be done is shown in [52, 53].

e) The determination of the square classes in part b) of the theorem
is achieved by computing the spinor norms of the local orthogonal
groups of the lattices Nv. This computation is given in [34],
[18, 13].

f) An analytic proof of the result for n = 1, m = 4 has been given
by Siegel in [49].

5. Representation of integers (n = 1).

By the results of the previous section we can restrict attention from
now on to the case that F is totally real and Λ is totally (positive)
definite. In this case the representation numbers

r(Λ, N) = #{ϕ : N −→ Λ | ϕ linear isometry}

are finite. The first general result here is the following theorem. It has
been proven with the help of the Hardy Littlewood circle method in
[32] by Kloosterman for diagonal forms and in [33] for general forms
using both modular forms and the Hardy Littlewood method in 1927;
Kloosterman’s first proof has been generalized in [50] by Tartakovskii
to general forms in 1929.
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Theorem 6 (Kloosterman, Tartakovskii). Let Λ be a positive definite
Z-lattice of rank m ≥ 5. Then Λ represents all sufficiently large num-
bers t which are represented by it locally everywhere. The same is true
for m = 4 if one restricts attention to t which are represented locally
everywhere primitively or which satisfy at least for some fixed a that
for each p there is x ∈ Λp with Q(x) = t and a−1x 6∈ Λp (one also says
that t is represented locally everywhere with imprimitivity bounded by
a).

In both cases one has an asymptotic formula

r(Λ, t) = r(gen Λ, t) + O(t
m
4
−δ)

for any δ < 5
16

for odd m and δ < 1
2

for even m, where the main term

r(gen Λ, t) grows at least like t
m
2
−1−ε for all ε > 0 for t satisfying the

conditions given.

Remark. a) The condition on bounded imprimitivity for the lo-
cal representations is automatically satisfied for all primes p for
which Λp is isotropic (represents zero nontrivially), hence in par-
ticular for all p not dividing the determinant of Λ.

b) The exponents in the error terms are better than the original
ones; the bound for even m is the Ramanujan-Petersson bound
(proven by Deligne), the bound for odd m is the bound from [4,
(1.3)].

c) In the Hardy Littlewood method the main term appears as the
singular series.

This result already contains some essential features of the general sit-
uation (i.e., arbitrary n):

• Instead of an exact formula one has an asymptotic formula whose
main term is determined by the local arithmetic of N and Λ.
• The asymptotic formula is unconditional for m = 5 = 2 · n + 3

(with n = 1) and needs an additional primitivity assumption for
m = 4 = 2 · n+ 2 = n+ 3.
• Results for representation of sufficiently large integers follow di-

rectly from the asymptotic formula and can be made explicit.

The result has been generalized to the number field case and (as far
as possible) to m = 3, for details see the survey [44] and notice that
the bound in the error term for odd m has meanwhile been improved
in [5]. All these results can be generalized to representations with
congruence conditions and to statements about the equidistribution of
lattice points on (higher dimensional) ellipsoid surfaces, see [12].

Remark. There are several results about representation of numbers
by an integral quadratic form that don’t fit well into this survey but
should at least be mentioned:

• The 15-theorem of Conway and Schneeberger [2] states that a
classically integral quadratic form represents all natural numbers
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if it represents all natural numbers up to 15. A modification of
this result is the 290-conjecture, stating that an integral valued
quadratic form represents all natural numbers if it represents all
natural numbers up to 290; a proof of this conjecture has been
announced by Bhargava and Hanke in 2008. A generalization of
both these results to representation of quadratic forms has been
proven by B. M. Kim, M.-H. Kim and Oh in [23].
• In several recent articles the representation of numbers by a qua-

dratic form with restricted variables is investigated, e.g. [3] treats
the number of representations of t as a sum of four squares whose
largest prime factor is bounded (“smooth squares”).

6. Representation of forms (n > 1), analytic method.

We continue to assume Λ to be positive definite (and F totally real),
so that the representation number r(Λ, N) is finite.

All results obtained for r(Λ, N) with n = rk(N) > 1 obtained so far by
analytic methods are for the case R = Z, F = Q and use the fact that
the theta series of degree n of Λ is a Siegel modular form with respect
to a suitable congruence subgroup of the modular group Spn(Z).

To fix some notation let

Spn(R) = {g ∈ GL2n(R) | tg
(

0n −1n
1n 0n

)
g =

(
0n −1n
1n 0n

)
}

be the real symplectic group of rank (degree, genus) n andHn the Siegel

upper half space of degree (genus) n, with g =

(
A B
C D

)
∈ Spn(R)

acting by

Z 7−→ g〈Z〉 := gZ := (AZ +B)(CZ +D)−1.

A Siegel modular form of weight k for the congruence subgroup Γ ⊆
Spn(Z) is a holomorphic function F : Hn −→ C satisfying F (g〈Z〉) =

det(CZ + D)kF (Z) for all g =

(
A B
C D

)
∈ Γ. If χ : Γ −→ C×

is a character we will also use Siegel modular forms with character
(nebentype) χ, where one has F (g〈Z〉) = χ(g) det(CZ + D)kF (Z) for
g ∈ Γ. (If n = 1, one has to add a holomorphy condition at the cusps.)
The theta series of degree (genus) n of the positive definite lattice Λ is
given as

ϑ(n)(Λ, Z) =
∑

x=(x1,...,xn)∈Λn

exp(2πitr(Q(x)Z))
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with Q(x) = (B(xi, xj)) ∈ M sym
n (1

2
Z), if S is a Gram matrix of Λ we

can also write

ϑ(n)(Λ, Z) = ϑ(n)(S,Z) =
∑

X∈Mm,n(Z)

exp(πi tr(tXSXZ))

=
∑
T

r(S, T ) exp(2πi tr(TZ))

where T runs over half integral positive semidefinite symmetric matri-
ces with integral diagonal.

Proposition 7. Let Λ as above have even rank and Gram matrix S,
let M be an integer such that MS−1 is integral with even diagonal and
write

χ

(
A B
C D

)
=

(
(−1)

m
2 detS

detD

)
(generalized Jacobi symbol)

for(
A B
C D

)
∈ Γ

(n)
0 (M) = {g =

(
A B
C D

)
∈ SpnZ) | C ≡ 0 mod M}.

Then ϑ(n)(Λ, ·) is a Siegel modular form of weight k = m
2

with character

χ for the group Γ
(n)
0 (M).

In particular, if detS = 1 (Λ and S are then called even unimodular),
ϑ(n)(Λ, ·) is a Siegel modular form for the full modular group Spn(Z).

Proof. A proof can e.g. be found in [1], where also a similar formula is
given for the case of odd rank m. �

For a Siegel modular form F of degree n for some congruence subgroup
Γ the φ-operator is defined by

(F |φ)(t) = (φF )(Z) = lim
t→∞

F

(
Z 0
0 it

)
(Z ∈ Hn−1),

the function F |φ is then a Siegel modular form of degree n− 1 for the
group

{γ =

(
A B
C D

)
|


(
A 0
0 1

) (
B 0
0 0

)
(
C 0
0 0

) (
D 0
0 1

)
 ∈ Γ}.

F is a cusp form if F |γ|φ = 0 for all γ ∈ Spn(Z), it is said to vanish in
all zero-dimensional cusps if

(F |γ) | Φn−1 = 0 for all γ ∈ Spn(Z)

(i.e., if the constant term in the Fourier expansion of F |γ vanishes for
all γ ∈ Spn(Z)). A well-known fact is:
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Proposition 8. If Λ, Λ′ are lattices in the same genus, the function
ϑ(n)(Λ, ·) − ϑ(n)(Λ′, ·) vanishes in all zero dimensional cusps. If we
define

ϑ(n)(gen(Λ), Z) =
∑
T

r(gen Λ, NT ) exp(πi tr(TZ))

with NT denoting a lattice with Gram matrix T , then also

ϑ(n)(Λ, ·)− ϑ(n)(gen(Λ), ·)

vanishes in all zero dimensional cusps.

Proof. In the case n = 1 this has been noticed in [46, p. 376], the
general case is an immediate consequence. The reason is that Spn(Z)

is generated by

(
0n −1n
1n 0n

)
and matrices not changing the Fourier

expansion of ϑ(n)(Λ, ·) and that F |
(

0n −1n
1n 0n

)
can be expressed with

the help of the Poisson summation formula as a sum of terms whose
constant term in the Fourier expansion depends only on the congruence
properties of S. �

The analytic approach to Problem 1’ can now be formulated as follows.

Write r(Λ, N) = r(gen Λ, N) + (r(Λ, N) − r(gen Λ, N)) and try to
estimate the main term r(gen Λ, N) from below and the error term
r(Λ, N)−r(gen Λ, N) from above, using the fact that the latter expres-
sion is a Fourier coefficient of a Siegel modular form which vanishes
in all zero dimensional cusps. In the case n = 1 we have to estimate
the Fourier coefficients of a cusp form, which allows to use Deligne’s
theorem (i.e., the truth of the Ramanujan-Petersson conjecture) if m
is even. For n > 1, the difference ϑ(Λ, ·) − ϑ(gen Λ, ·) will in general
not be a cusp form; this makes the estimation of the error term from
above considerably more difficult.

The first result for our problem in the case n > 1 is due to Raghavan:

Theorem 9 ([39], 1959). Let N run through positive definite integral
lattices of rank n with 2n+ 3 ≤ m and (detN)→∞ satisfying one of
the equivalent conditions

a) min(N) ·min(N#) < c1 for some fixed c1 > 0

b) min(N#) ≥ c1(detN)−
1
n for some fixed c2 > 0

c) min(N) ≥ c3(detN)
1
n for some fixed c3 > 0

Then one has

r(Λ, N) = r(gen Λ, N) + O((detN)
m−n−1

2 · (min(N))(n+1−m
2

)/2).
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Proof. The idea of the proof is to compute the Fourier coefficient at T
of g(Z) := ϑ(n)(Λ, Z)− ϑ(n)(gen Λ, Z) as∫

E

g(Z) exp(−2πi tr(TZ))dX,

where the variable Z = X + iT−1 runs over a cube E of side length
1 with one corner in T−1, using a generalized Farey dissection of this
cube which has been introduced by Siegel in [49].

Raghavan proves in fact more generally an estimate for the Fourier
coefficient of F−ϕ, where F is a Siegel modular form of weight k > n+1
and ϕ the associated Eisenstein series; the analytic version of Siegel’s
theorem states that ϑ(n)(gen(Λ), ·) is the Eisenstein series associated to
ϑ(n)(Λ, ·).
Raghavan shows that the formula given above is indeed an asymptotic
formula for the number of representations of N by Λ in the case n = 2;
this is achieved by estimating the local densities (and hence the main
term r(gen(Λ), N)) from below; we will see a more general version of
that below. �

Remark. Minkowski’s reduction theory of positive definite quadratic
forms implies that the minimum of N grows at most like a constant
multiple of (det(N))

1
n , so the condition of the theorem roughly says

that the minimum of N grows as fast as it can.

Since Λ represents (by the case n = 1) only all sufficiently large num-
bers that it represents locally everywhere, there are in general some
small numbers which are represented by Λ locally everywhere but not
globally. It is then easy to construct a sequence of lattices N of growing
determinant and one of these exceptional numbers as minimum which
are represented locally everywhere but not globally (since their mini-
mum is not represented globally). The most common example of this
type is to take the Leech lattice for Λ and the number 1 as minimum
of N . It is therefore clear that an asymptotic formula for r(Λ, N) can
not rely on the growth of det(N) alone.

Raghavan’s result was further improved by Kitaoka in [24, 25].

Theorem 10 (Kitaoka, 1982). a) If m ≥ 2n + 3 holds, the prod-
uct

∏
p αp(Λ, N) is bounded from below and above by constants

depending only on Λ for all N which are represented locally ev-
erywhere by Λ.

In particular, one has

r(gen Λ, N) > c4(detN)
m−n−1

2

for all N which are represented locally everywhere by Λ , with c4

depending only on Λ.
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b) The formula in Raghavan’s theorem is an asymptotic formula for
N which are represented locally everywhere by Λ and for which
min(N) ≥ c3(detN)

1
n with some constant c3 > 0 independent of

N .
If N runs through lattices of rank n with min(N) > c3(detN)

1
n ,

any N of sufficiently large minimum which is represented locally
everywhere by Λ is represented globally by Λ.

c) If n = 2, m = 7, there is a constant c5 depending only on Λ such

that the condition min(N) ≥ c3(detN)
1
2 above can be replaced by

min(N) ≥ c5.
In particular, any N which is represented locally everywhere by
Λ and has minimum ≥ c5 is represented globally by Λ.

The method of proof here is essentially the same as for Raghavan’s
theorem, but considerably refined.

Another interesting result of Kitaoka is proved in [26].

Theorem 11 (Kitaoka, 1988). Let n = 2, m = 6. Let N0 have Gram
matrix T0 and be represented by Λ locally everywhere. Then for t→∞
with gcd(t, det(Λ)) = 1 and such that tT0 is represented by Λp for all p
dividing det(Λ) one has

r(Λ, tT0) = r(gen(Λ), tT0) +O(t
5
2

+δ) for all δ > 0,

where the main term r(gen(Λ), tT0) grows at least like t3−ε for all ε > 0.

In particular, for t large enough and satisfying the conditions above the
matrix tT0 is represented by Λ.

For the case that Λ is even unimodular (i.e., the Gram matrix S of
Λ has even diagonal and determinant 1), the estimation of the error
term has also been investigated by Kitaoka using instead of the circle
method as above the decomposition of ϑ(n)(Λ, ·) − ϑ(n)(gen Λ, ·) into
a cusp form and Klingen-Eisenstein series associated to cusp forms of
degree r < n. The result is a similar asymptotic formula as above for
the range m ≥ 4n+ 4, namely

r(Λ, N) = r(gen Λ, N) + O((min(N))1−m
4 (detN)

m−n−1
2 .

In particular, in exchange for the restriction on Λ and the stronger con-
dition m ≥ 4n+ 4 one gets rid of the condition min(N) > c3(detN)

1
n .

In all of the above results one can deduce global representability from
local representability only for lattices N of large minimum, a condition
which excludes many cases of interest in which the determinant of N
grows but the minimum remains small.
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The examples which show its necessity are lattices N of large deter-
minant which have small minimum or more generally a sublattice N ′

of small determinant, so that it can happen that N ′ is not represented
globally by Λ. On the other hand, a lattice N ′ of rank n′ < n and small
determinant of which one already knows that it is represented globally
by Λ may have extensions to lattices N of rank n which are represented
locally everywhere. A result towards the global representation of such
N by Λ has been obtained in [8]

Theorem 12 (Böcherer, Raghavan 1988). Let T1 be positive definite
symmetric Minkowski reduced of rank n1 and Λ be even unimodular.

Then for Minkowski reduced symmetric n×n-matrices T =

(
T1 T2
tT 2 T4

)
with m > 4n and sufficiently large min(T4) the primitive representation
number r∗(Λ, T ) satisfies

r∗(Λ, T ) = c6r
∗(Λ, T1) · (detT4)

m−n−1
2

+O((detT4)
m−n−1

2 min(T4)−
m
4

+v(n1)

for some constant c6 6= 0, with v(n1) < m
4

.

The proof uses again the decomposition of ϑ(n)(Λ) − ϑ(n)(gen Λ) into
a sum of Klingen-Eisenstein series associated to cusp forms of degrees
≤ n. Notice that for even unimodular Λ and m ≥ 2n+ 3 the condition
of local representability is satisfied automatically.

In the case n1 = 1 Böcherer has shown in [6] that for a square free
integer t1 = T1 this problem can also be treated using the theory of
Jacobi forms; a generalization of that result to general t1 and to not
necessarily unimodular Λ will be the subject of the PhD thesis of T.
Paul in Saarbrücken.

7. Representation of forms, arithmetic method.

In order to present the arithmetic method we need some terminology.
We denote by OV (F ) the group of isometries of V with respect to Q
(the orthogonal group of the quadratic space (V,Q)), by OV (A) its
adelization, and by SOV (F ) resp. SOV (A) their subgroups of elements
of determinant 1. For a lattice Λ on V we denote its automorphism
group (or unit group) {σ ∈ OV (F ) | σ(Λ) = Λ} by OΛ(R) and similarly
for the local or adelic analogues. SpinV (A) is the adelic spin group and
O′V (A) its image in OV (A), i.e., the subgroup of adelic transformations
of determinant and spinor norm 1.

The orbit of a fixed lattice Λ under OV (A) consists then of all lattices
on V in the genus of Λ, the lattices on V in the spinor genus of Λ
comprise the orbit under OV (F )O′V (A).
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The proof of the theorem of section 4 on representation by indefinite
lattices rests on the strong approximation theorem for the spin group
with respect to an archimedean place of F at which Q is indefinite.

In the case of a definite lattice one can, following Eichler [15], consider
it as “arithmetically indefinite” if there is an archimedean place w of F
for which Λw is isotropic (i.e., represents zero nontrivially). The strong
approximation theorem gives then

Lemma 13. Let w be a non-archimedean place of F for which Λw is
isotropic.

a) Each class in the spinor genus of Λ has a representative Λ′ such
that Λ′v = Λv for all places v 6= w.

b) If the genus of Λ consists of only one spinor genus there is an
integer s such that Λ represents every R-lattice N for which Nv

is represented by pswΛv for all finite places v of F (where pw is
the ideal of R corresponding to w).

c) If m ≥ n+3 and N is represented (primitively) locally everywhere
by Λ there is a lattice Λ′ in the spinor genus of Λ with Λ′v = Λv

for all places v 6= w and Λ′w in the Spin(Fw)-orbit of Λw, such
that N is represented (primitively) by Λ.

The lemma alone is not sufficient to deduce global representability of
N by Λ from representability locally everywhere since in the definite
situation the spinor genus consists in general of more than one class.
We will see in the next section that it provides the starting point for
the ergodic method of Ellenberg and Venkatesh. It is also basic for the
purely arithmetic method of Hsia, Kitaoka and Kneser.

For N which is represented by Λ locally everywhere they construct in
[20], using the local arithmetic of lattices, a finite set of sublattices
K(J) of rank n and L(J) of rank m − n ≥ n + 3 of Λ which are
orthogonal to each other and such that for each finite place v of F the
lattice Nv is represented either by K(J)v or by psvL(J)v. With the help
of b) of the Lemma and some additional rather tricky approximation
arguments they can then deduce that N is represented by one of the
K(J) + L(J) and hence by Λ if the minimum of N is large enough.
The final result is

Theorem 14 (Hsia, Kitaoka, Kneser, 1978). There is a constant c7 =
c7(Λ) such that for m ≥ 2n + 3 every lattice N which is represented
locally everywhere by Λ and has minimum ≥ c7 is represented by Λ.

The constant in the theorem can in principle be made effective; such an
effective version (with a rather large constant) has been given by Chan
and Icaza in [10] for m ≥ 3n + 3 and for n = 2,m = 7. It has been
shown by Jöchner and Kitaoka in [22] that the proof of the theorem can
be modified to give the same result for representations with additional
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congruence and primitivity conditions and by Hsia and Prieto-Cox in
[21] that it can also be generalized to hermitian forms.

Kitaoka has further noticed (see [8][p. 95]) that a version of the result
on extensions of representations in Theorem 12 can also be obtained by
the arithmetic method, the result given in [8] has been further improved
by Chan, B. M. Kim, M.-H. Kim, and Oh in [11] to give

Theorem 15 (Chan, B. M. Kim, M.-H. Kim, Oh 2008). Let F = Q,
let K be a lattice of rank k on the space of Λ, let σ : K −→ Λ be a
representation. Then there is a constant c8 > 0 such that one has:

If N ⊇ K is a lattice of rank n with m ≥ k+2(n−k)+3 on the space of Λ
such that for all primes p the local representation σp : Kp −→ Λp can be
extended to a representation ρp : Np −→ Λp and such that the minimum
of the orthogonal projection π(N) on the orthogonal complement of
QK in QΛ is larger than c8, the representation σ can be extended to a
representation ρ : N −→ Λ. One can in addition specify congruence
conditions modulo an integer prime to 2 det(K) det(Λ).

8. Representation of forms, ergodic method.

The result of c) of Lemma 13 can be rephrased group theoretically:

There exists an isometric embedding of N into Λ′ = uΛ with

u ∈ OV (F )(
∏
v 6=w

OΛ(Rv))SpinV (Fw).

Representability of N by Λ is equivalent to being able to choose u ∈
OV (F )OΛ(A) instead with OΛ(A) =

∏
v OΛ(Rv).

If we consider N as a sublattice of Λ′ we can clearly modify u by a
suitable element of OW1(Fw), where W1 = (FN)⊥.

Ellenberg and Venkatesh show in [16] that the necessary modification
of u is indeed possible for N of sufficiently large minimum if one has
m ≥ n + 3, the lattice N has square free determinant, and N satisfies
some additional conditions; their proof uses ergodic theory, in partic-
ular results of Ratner and Margulis/Tomanov (see [40, 37]). In view
of the fact that before their work it was generally considered to be
possible that m = 2n + 2 is the natural barrier for the validity of a
representability result this represented a dramatic breakthrough. That
their conditions on the lattice N (but not on its dimension) can be
further relaxed has been shown in [45], where also the arithmetic parts
of their proof were reformulated in a way closer to previous work in the
arithmetic theory of quadratic forms.

The final result is:

Theorem 16. Let (V,Q),Λ be as before, fix a finite place w of F and
j ∈ N, a ∈ R.
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Then there exists a constant c9 := c9(Λ, j, w, a) such that Λ represents
all R - lattices N of rank n ≤ m− 3 satisfying

a) N is represented by Λ locally everywhere with imprimitivity bounded
by a and with isotropic orthogonal complement at the place w.

b) ordw(det(Nw)) ≤ j
c) The minimum of N is ≥ c9.

The representation may be taken to be of imprimitivity bounded by a.
The isotropy condition is satisfied automatically if n ≤ m − 5 or if w
is such that the determinants of the local lattices Λw and Nw are units
in Rw.

It is not difficult to adapt the method in order to obtain a version for
extensions of representations:

Corollary 17. Let (V,Q),Λ be as before, fix a finite place w of F and
j ∈ N, a ∈ R.
Let K ⊆ Λ be a fixed R-lattice of rank k, σ : K −→ Λ a representation
of K by Λ and assume that Kw is unimodular.
Then there exists a constant c10 := c10(Λ, R, j, w, a) such that one has:
If N ⊇ K is an R-lattice of rank n ≤ m− 3 and

a) For each place v of F there is a representation τv : Nv −→
Λv with τv|Kv = σv with imprimitivity bounded by a and with
isotropic orthogonal complement in Λ at the place w

b) For the w-adic order ordw(det(Nw)) of the determinant of a
Gram matrix of Nw one has ordw(det(Nw)) ≤ j

c) The minimum of N ∩ (FK)⊥ is ≥ c10,

then there exists a representation τ : N −→ Λ with τ |K = σ.
The representation may be taken to be of imprimitivity bounded by a.
The isotropy condition is satisfied automatically if n ≤ m − 5 or if w
is such that the local lattices Λw and Nw are unimodular.

Ellenberg and Venkatesh prove the theorem in [16] under the stronger
restriction that the determinant of N is square free; the version of it
given here and the corollary are proven in [45].
For the reader’s convenience we add a matrix version of the main result
for the case F = Q:

Theorem 18. Let S ∈M sym
m (Z) be a positive definite integral symmet-

ric m×m-matrix, fix a prime q and positive integers j, a.
Then there is a constant c11 such that a positive definite matrix T ∈
M sym

n (Z) with n ≤ m − 3 is represented by S (i.e., T = tXSX with
X ∈Mmn(Z)) provided it satisfies:

a) For each prime p there exists a matrix Xp ∈ Mmn(Zp) with
tXpSXp = T such that the elementary divisors of Xp divide a
and such that the equations tXqSy = 0 and tySy = 0 have a
nontrivial common solution y ∈ Zmq
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b) qj - det(T )
c) min{tyTy | 0 6= y ∈ Zn} > c11

The matrix X may be chosen to have elementary divisors dividing a.

As remarked earlier the primitivity (or bounded imprimitivity) condi-
tion is satisfied automatically in the range m ≥ 2n+ 3 covered by the
analytic and arithmetic results. Kitaoka has proved in [27, 28, 30, 31]
some lemmas which imply that one can drop or weaken the primitiv-
ity conditions in some lower dimensional cases; the original purpose of
those lemmas was to obtain improved estimates for the main term in
the analytic method which could be used once the analytic estimate for
the error term in the asymptotic formula could be improved sufficiently
much. This leads to the following corollaries, proven in [45]:

Corollary 19. Let F = Q, let (V,Q),Λ be as before and fix a prime q
and j ∈ N.

a) Let n ≥ 6 and m = dim(V ) ≥ 2n. Then there exists a constant
c12 := c12(Λ, j, q) such that Λ represents all Z - lattices N of rank
n which are represented by Λ locally everywhere, have minimum
≥ c12 and satisfy ordq(det(N)) ≤ j.

b) Let n ≥ 3 and m = dim(V ) ≥ 2n + 1. Then there exists a
constant c13 := c13(Λ, j, q) such that Λ represents all Z - lattices
N of rank n which are represented by Λ locally everywhere, have
minimum ≥ c13, satisfy ordq(det(N)) ≤ j and which are in the
case n = 3 such that the orthogonal complement of Nq in Λq is
isotropic.

c) Let n = 2 and m = dim(V ) ≥ 6. Then there exists a constant
c14 := c14(Λ, j, q) such that Λ represents all Z - lattices N of rank
n which are represented by Λ locally everywhere, have minimum
≥ c14, satisfy ordq(det(N)) ≤ j and which are such that the
orthogonal complement of Nq in Λq is isotropic.

d) Let a positive definite Z-lattice N0 of rank n0 ≤ m−3 with Gram
matrix T0 be given. Let S be a finite set of primes with q ∈ S
such that one has

i) Λp and (N0)p are unimodular for all primes p 6∈ S and for
p = q.

ii) Each isometry class in the genus of Λ has a representative
Λ′ on V such that Λ′p = Λp for all primes p 6∈ S.

Then there exists a constant c15 := c15(Λ, T0, S) such that for all
sufficiently large integers t ∈ Z which are not divisible by a prime
in S, the Z-lattice N with Gram matrix tT0 is represented by Λ
if it is represented by all completions Λp.

9. Comparison of results.

Concerning dimension bounds the theorem of Ellenberg and Venkatesh
is clearly superior to the results obtained by other methods, and it
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should not be difficult to show that it is best possible in this respect.
The method makes it necessary to impose a bound on the power to
which some fixed prime is allowed to divide the determinant of the
lattice N ; this is not necessary for the arithmetic and the analytic
results in the dimension range where they are valid. At least at present
the ergodic method gives neither an effective bound on the “sufficiently
large” minimum of the lattice N nor an asymptotic formula for the
number of representations. This may of course change with further
refinements of the results from ergodic theory which make the proof
possible.

Results of Kitaoka (see [27, 25, 29]) on estimates of local densities show

that at least the main term r(genΛ, N) is still growing like (det N)
m−n−1

2

in the range n+ 3 < m ≤ 2n+ 2 if one puts suitable restrictions on N ,
e.g., if one supposes a Gram matrix of N to have square free determi-
nant.

On the other hand, even for a Siegel cusp form of weight k the best
known estimtes for the Fourier coefficient a(F, T ) at T bound it by a
term of the type (det T )r where r is not much smaller than k

2
, see [7]

for some results in that direction. The famous conjecture of Resnikoff
and Saldaña [41] (for which meanwhile counterexamples are known, see
[36]) predicts an estimate

|a(F, T )| = O((det(T ))
k
2
−n+1

4
+ε),

hence (with m = 2k) an exponent m−n−1
4

+ ε at det(T ), which, like the
exponent in the main term, depends only on the difference m− n but
not on m itself.
An asymptotic formula for r(Λ, N) valid in a range m ≥ n + n0 for

some fixed n0 would have a main term growing like (det(T ))
n0−1

2 (with
some restrictions on T ), in particular the exponent would be indepen-
dent of the weight of the theta series. Its validity would therefore
in particular require that the Fourier coefficients of the modular form
ϑ(n)(Λ)− ϑ(n)(gen(Λ)), which in general is not cuspidal, satisfy an es-
timate similar to that of the Resnikoff-Saldaña conjecture for Fourier
coefficients of cusp forms.
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quadratischer Formen, J. Reine Angew. Math. 352 (1984), 114–132
[44] R. Schulze-Pillot: Representation by integral quadratic forms—a survey.

Algebraic and arithmetic theory of quadratic forms, 303–321, Contemp.
Math., 344, Amer. Math. Soc., Providence, RI, 2004

[45] R. Schulze-Pillot: Local conditions for global representations of quadratic
forms, Acta Arith. 138 (2009), 289–299
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