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Abstract

Goss polynomials provide a substitute of trigonometric functions
and their identities for the arithmetic of function fields. We study the
Goss polynomials Gk(X) for the lattice A = Fq[T ] and obtain, in the
case when q is prime, an explicit description of the Newton polygon
NP (Gk(X)) of the k-th Goss polynomial in terms of the q-adic ex-
pansion of k− 1. In the case of an arbitrary q, we have similar results
on NP (Gk(X)) for special classes of k, and we formulate a general
conjecture about its shape. The proofs use rigid-analytic techniques
and the arithmetic of power sums of elements of A.

MSC 2010 Primary 11F52 Secondary 11G09, 11J93, 11T55

Introduction. Throughout, F = Fq will denote a finite field with q elements,
where q is a power of the natural prime p, and A = F[T ] the polynomial ring
over A in an indeterminate T . It is a well-established fact that the arithmetic
of A and its quotient field K := F(T ) is largely similar to that of their number
theoretical counterparts Z and Q. Both Z and A are euclidean rings, discrete
in the completions R (resp. K∞ := F((T−1))) of Q at the archimedean valu-
ation (resp. of K at the place at infinity) with compact quotients R/Z and
K∞/A. The finite abelian extensions of Q and A, described in both cases by
classical abelian class field theory, may be explicitly constructed through the
adjunction of roots of unity or torsion points of the Carlitz module, respec-
tively. Comparable similarities hold for the non-abelian class field theories of
Q and K, presumably governed by the predictions of the Langlands conjec-
tures, and for topics like elliptic curves and (semi-) abelian varieties over Q,
which to some extent correspond to Drinfeld modules and their generaliza-
tions over K. Likewise, there is a strong analogy between classical (elliptic)
modular forms/modular curves and Drinfeld modular forms/curves.

In both cases, the arithmetic behind modular forms is encoded in their series
expansions around cusps and in the action of Hecke operators. The study
of these questions for Drinfeld modular forms requires substitutes for cer-
tain classical, notably trigonometric, functions and their identities, which
are routinely used in elliptic modular forms theory. The required substitute
is provided by the Goss polynomials Gk,Λ = Gk,Λ(X) of F-lattices Λ in C∞,
the completed algebraic closure of K∞, and in particular, the polynomials
Gk := Gk,A for the F-lattice Λ = A. It turns out that the series (Gk)k≥1 of
these is crucial for the understanding of modular forms and modular curves
for the group GL(2, A) and its congruence subgroups, and for many other
topics in the arithmetic of A and K, see, e.g., [3], [4] and [9].

The most important question is about the size and arithmetic nature of their
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zeroes. The behavior of Gk is rather erratic, depending in a complicated
fashion on the p-adic expansion of k − 1 and the vanishing/nonvanishing of
certain multinomial coefficients (mod p), and a general answer, though de-
sirable, is not in sight.

Nevertheless, besides some incomplete results for general q, we succeed to
give an explicit description of the Newton polygon of Gk over the valued
field K∞ (equivalent with the description of the size of its zeroes), in the
important special case where q = p is prime: see Theorem 6.12, which is our
principal result. Its proof uses non-archimedean contour integration and the
arithmetic of power sums of elements of A. In a weakend form, this result
may be (hypothetically) generalized to arbitrary finite fields F = Fq, which
is the contents of Conjecture 3.10. It is compatible with extensive numerical
calculations and may perhaps be approached by means different from those
in this paper.

The research leading to the present result was partially carried out when I
was on sabbatical leave at the Centre de Recerca Matematica CRM at Bel-
laterra, Spain. With pleasure I acknowledge the support of that institution,
and I heartily thank its staff for their hospitality.

Notation.

A = F[T ], where F = Fq, #(F) = q = power of the prime p
K = F(T ), endowed with the valuation v∞ at infinity and the absolute value
| . | normalized such that v∞(T ) = −1 and |T | = q
K∞ = F((T−1)), the completion of K w.r.t. | . |, with ring of integers O∞

and maximal ideal m∞

C∞ = the completed algebraic closure of K∞, with its canonical extensions
of | . | and v∞, denoted by the same symbols
B(z, r) the open ball {w ∈ C∞ | |w − z| < r} around z ∈ C∞ with radius
r ∈ |C∗

∞| and corresponding closed ball B+(z, r) = {w ∈ C∞ | |w − z| ≤ r}.

Review of Goss polynomials (see [4]). An F-lattice (lattice for short) in
C∞ is a discrete F-subspace Λ of C∞. Discreteness means that Λ intersected
with each ball B+(0, qr) in C∞ is finite. Hence

(2.1) Λ =
⋃

r∈N

Λr

with finite lattices Λr = Λ ∩B+(0, qr), and many of the following considera-
tions easily turn over from finite to general lattices. Assume for the moment
that Λ is finite, of dimension d ≥ 1 over F. The exponential function eΛ of Λ
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is defined as

(2.2) eΛ(z) := z
∏

06=λ∈Λ

(1 −
z

λ
),

which is easily seen to be F-linear, of shape

(2.3) eΛ(z) =
∑

0≤i≤d

αiz
qi

with coefficients αi = αi(Λ), α0 = 1, αd 6= 0. Applying logarithmic deriva-
tion, we find

(2.4) tΛ(z) :=
e′Λ(z)

eΛ(z)
=

1

eΛ(z)
=

∑

λ∈Λ

1

z − λ
.

The basic observation, due to David Goss [8], is that the sum

(2.5) Ck,Λ(z) :=
∑

λ∈Λ

1

(z − λ)k
,

a rational function in z, may be expressed as polynomial in tΛ.

2.6 Theorem [8]. There exists a unique series Gk,Λ(X) (k = 1, 2, 3, . . .) of
polynomials with coefficients in F(Λ) such that Ck,Λ(z) = Gk,Λ(tΛ(z)). The
Goss polynomials Gk,Λ satisfy:

(i) Gk,Λ is monic of degree k with Gk,Λ(0) = 0;

(ii) Gk,Λ(X) = X(Gk−1,Λ(X) + α1Gk−q,Λ(X) + · · · + αiGk−qi,Λ(X) + · · · ),
where we formally put Gk,Λ = 0 for k ≤ 0;

(iii) Gpk,Λ = (Gk,Λ)p (p = char(F));

(iv) X2G′
k,Λ(X) = kGk+1,Λ(X).

The recursion (ii) implies

(2.7) Gk,Λ(X) = Xk if k ≤ q,

and it translates to the generating function

(2.8) GΛ(u,X) :=
∑

k≥1

Gk,Λ(X)uk =
uX

1 − XeΛ(u)
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with another indeterminate u. From (2.8) we may derive the following closed
formula ([4] 3.8):

(2.9) Gk,Λ(X) =
∑

0≤j<k

∑

i

(
j

i

)
αiXj+1,

where i = (i0, i1, . . . , is) runs through the set of (s + 1)-tuples (s ≥ 0) that

satisfy i0 + i1 + · · · + is = j and i0 + i1q + · · · + isq
s = k − 1,

(
j
i

)
is the

multinomial coefficient j!
i0!···is!

, evaluated in Fp →֒ C∞, and αi = αi0
0 αi1

1 · · ·αis
s .

The preceding generalizes to arbitrary (not necessarily finite) lattices, where
the exponential function eΛ(z) of (2.2) becomes a convergent possibly infinite
product with an everywhere convergent power series expansion

(2.3′) eΛ(z) =
∑

i≥0

αiz
qi

and Ck,Λ is a meromorphic function on C∞ with poles of order k at Λ. Put
for the moment er := eΛr

, Ck,r := Ck,Λr
and Gk,r := Gk,Λr

with Λr as in (2.1).
Standard estimates show that for r −→ ∞ we have

• er −→ eΛ locally uniformly;

• Ck,r −→ Ck,Λ uniformly on closed balls disjoint from Λ.

As a consequence, the Gk,r converge coefficientwise toward a polynomial Gk,Λ

with the property Ck,Λ(z) = Gk,Λ(tΛ(z)), where tΛ(z) = 1
eΛ(z)

. Hence all the

assertions of Theorem 2.6 along with their consequences (2.7), (2.8), (2.9)
remain valid for Λ.

2.10 Proposition. Let c ∈ C∞ be a non-zero constant. The functions
attached to the lattices Λ and Λ′ = cΛ are related by

(i) ecΛ(cz) = ceΛ(z);

(ii) αi(cΛ) = c1−qi

αi(Λ);

(iii) Ck,cΛ(cz) = c−kCk,Λ(z);

(iv) Gk,cΛ(c−1X) = c−kGk,Λ(X);

(v) if we write Gk,Λ(X) =
∑

i≤k

gk,i(Λ)Xk−i then

gk,i(cΛ) = c−igk,i(Λ).
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Proof. (i), (ii) and (iii) are straightforward from definitions. We have

Gk,cΛ(c−1tΛ(z))
(i)
= Gk,cΛ(tcΛ(cz)) = Ck,cΛ(cz)

(iii)
= c−k(Ck,Λ(z) = c−kGk,Λ(tΛ(z)),

hence (iv), and (v) is a trivial consequence.
Note that (ii) and (v) mean that αi (resp. gk,i) regarded as a function on the
set of lattices has weight qi − 1 (resp. i).

3. The conjecture. Let π ∈ C∞ be the Carlitz period, which is the A-
analogue of the period 2πi of the classical exponential function exp(z). It is
characterized up to (q − 1)-th roots of unity through the fact that L := πA
uniformizes the Carlitz module, the A-analogue of the multiplicative group
scheme Gm. For all of this and its arithmetic significance, see [9]. Several
“classical” formulas for π are known ([4] 4.10–4.12); we will only need the
following facts:

(3.1) |π|q−1 = qq

(3.2) eL(z) =
∑

i≥0

1

Di

zqi

,

where D0 = 1, Di = [i][i− 1]q · · · [1]q
i−1

for i ≥ 1, and [j] = T qj

−T ∈ A. For
arithmetical reasons we are primarily interested in the GK,L, but in view of
(2.10) we may restrict to studying GK,A, which is technically more convenient.

Therefore, from now on Λ = A, and the functions e, t, Ck, Gk without a
subscript Λ will always refer to Λ = A. It is easy to verify directly (and it
follows formally from the conjunction of (3.1), (3.2) and (2.10) (ii)) that

(3.3) e(z) =
∑

k≥0

αkz
qk

with α0 = 1, |α1| = 1 and |αk| < 1 for k ≥ 2.

Next, let

| . |i : C∞ −→ R

z 7−→ |z|i := infx∈K∞ |z − x| = minx∈K∞ |z − x|

5



be the “imaginary part” function on C∞. We define the following subsets
(actually: analytic subspaces) of C∞:

(3.4)
F := {z ∈ C∞ | |z| = |z|i ≥ 1}
Fn := {z ∈ C∞ | |z| = |z|i = qn}, n ∈ N0 = {0, 1, 2, . . .},
Ω1 := {z ∈ C∞ | |z|i ≥ 1}.

Note that always |z|i ≤ |z|, with equality if logq |z| 6∈ Z. The additive group
A acts through shifts z 7−→ z + a on Ω1, and each z ∈ Ω1 is A-equivalent
with at least one and at most finitely many z′ ∈ F . Hence the canonical
map A \ F −→ A \ Ω1 is biholomorphic, and the A-periodic meromorphic
function Ck = Ck,A (cf. (2.5)),

Ck(z) =
∑

a∈A

1

(z − a)k
= Gk(t(z))

is determined through its restriction to F .

3.5 Lemma. The absolute value of tq−1(z) on F is given by:

logq |t
q−1(z)| = q − qn+1(1 − q−1

q
ǫ), if |z| = qn−ǫ, n ∈ N, 0 ≤ ǫ ≤ 1.

In particular, logq |t
q−1(z)| = q − qn+1 for z ∈ Fn. Proof. This follows from

(2.2) and a tedious but straightforward calculation, counting the a ∈ A below
some bound and their degrees. Note that logq |t

q−1
L | = logq |π

q−1|+logq |t
q−1|,

which gives the formula (2.3) in [6]. 3.6 Corollary. The function t provides a
biholomorphic isomorphism between the quotient space A\F and the pointed
closed ball B+(0, 1) \ {0}. The same statement holds for t replaced by tq−1.

Proof. We have A \ F
∼=

−→ A \ Ω1

∼=
−→ B+(0, 1) \ {0}, where the second

isomorphism comes from (3.5) and the surjectivity of e = eA = t−1 as a map
from C∞ onto itself. We also note

(3.7) For a ∈ A, the following are equivalent:

(i) (Fn + a) ∩ F 6= ∅

(ii) Fn + a = Fn

(iii) a ∈ An := {a ∈ A | deg a ≤ n}.

It is obvious that Ck cannot have any zeroes z ∈ C∞ with |z| < 1. Accord-
ingly, all the zeroes x of Gk(X) satisfy |x| ≤ 1.

In what follows, we adopt the notation of [10] II sect. 6 for Newton polygons.
That is:

6



(3.8) If f(z) =
∑

aiz
i is a polynomial (or power series) with coefficients in

C∞, the Newton polygon NP (f) of f is the lower convex hull of the points
(i, v∞(ai)) in R2. Then we have the following equivalent conditions about
the zeroes of Ck and Gk(X):

3.9 Proposition. Let k ∈ N be given. The following assertions are equiva-
lent:

(i) all the zeroes z of Ck satisfy |z| = qn for some n ∈ N0;

(ii) all the zeroes z of Ck in F lie in Fn for some n ∈ N0;

(iii) all the zeroes x 6= 0 of Gk(X) satisfy logq |x| = −q( qn−1
q−1

) for some
n ∈ N0;

(iv) all the slopes of the Newton polygon of Gk(X) are of the form −q( qn−1
q−1

)
for some n ∈ N0.

Proof. The equivalence of (i) and (ii) comes from the A-periodicity of Ck,
the equivalence of (i) or (ii) with (iii) from the definition of Gk(X) and (3.5),
and the equivalence of (iii) and (iv) is the characterizing property of the
Newton polygon ([10] II Theorem 6.3). Based on numerical calculations and
the study of many special cases, we make the following

3.10 Conjecture. For each k ∈ N, the equivalent assertions in Proposition
3.9 hold.

We succeed in proving the conjecture in the case where q = p is prime;
see Theorem 6.12, which provides a neat description of the Newton polygon
NP (Gk(X)). Its proof will occupy the largest part of this paper.

3.11 Remark. The Goss polynomials Gk(X) of Λ = A have their coefficients
in K∞. As elements z ∈ C∞ algebraic over K∞ with |z|i not of the form qn

with some n ∈ N0 generate ramified extensions of K∞, the conjecture would
follow if the splitting field of Gk(X) could be shown to be unramified over
K∞.

4. Contour integration. Our argument will be based on non-archimedean
contour integration as presented in [7] pp. 93–95. We briefly recall the main
ingredients.

Let B = B(z0, q
r) be the “open” ball around z0 ∈ C∞ with radius qr ∈

|C∗
∞| = qQ, B+ = B+(z0, q

r) the corresponding “closed” ball, with boundaray
∂B := {z ∈ C∞ | |z − z0| = qr}. The ring of holomorphic functions O(∂B)
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of ∂B is isomorphic with C∞〈v, v−1〉, the ring of convergent (possibly doubly
infinite) Laurent series in a coordinate v of absolute value 1 on ∂B, for which
we can choose v = z−z0

w0
, where w0 ∈ C∞ has absolute value |w0| = qr. An

invertible element of O(∂B) has the form

(4.1) f = vm
∑

n∈Z

anv
n with |a0| > max

n6=0
|an|.

Conversely, each f with such a Laurent expansion is invertible on ∂B. The
number m is well-defined through the choice of an orientation on ∂B (implicit
in our choice v = z−z0

w0
) and is called the order ord∂B(f) of f at ∂B. If now

f is meromorphic on B+, without zeroes or poles on ∂B, the formula

(4.2)
∑

x∈B

ordx(f) = ord∂B(f)

holds, where ordx(f) is the zero order of f at x ∈ B (negative if f presents
a pole at x).

(4.3) Let w0 be a fixed element of C∞ of absolute value |w0| = qr+ǫ, r ∈ N0,
0 < ǫ < 1, and let v := z/w0 be the coordinate on ∂B, where B = B(0, qr+ǫ).
We calculate the Laurent expansion of Ck(z) on ∂B. We have for z = w0v ∈
∂B, |v| = 1:

Ck(z) =
∑

a∈A

1

(z − a)k
=

∑

a∈A

1

(w0v − a)k
=

∑
1
+

∑
2
,

where the first sum
∑

1 is over those a ∈ A of degree at least r + 1, i.e.,
|a| > |w0|, and

∑
2 the sum over the finite set Ar = {a ∈ A | deg a ≤ r}.

For |a| > |w0| we find

1

(z − a)k

(
−1

a(1 − z
a
)

)k

= (−a)−k
∑

i≥0

(
−k

i

)
a−i(−w0)

ivi,

where the binomial coeffiencients
(
−k
i

)
= (−1)i

(
k−1+i

i

)
must be evaluated

in C∞. As the inner sum converges sufficiently fast, we may change the
summation order and get for the first term

∑
1:

(4.4)

∑

a∈A
|a|>|w0|

1
(z−a)k = (−1)k

∑

a

a−k
∑

i≥0

(
k − 1 + i

i

)
a−iwi

0v
i

= (−1)k
∑

i≥0

(
k − 1 + i

i

)
wi

0

∑

a∈A
|a|>|w0|

a−k−ivi.
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Next, let a ∈ Ar, i.e., |a| < |w0|. Then

1

(z − a)k
= z−k 1

(1 − a
z
)k

= w−k
0 v−k

∑

i≥0

(
k − 1 + i

i

)
aiw−i

0 v−i,

hence the
∑

2-term is

(4.5)
∑

a∈Ar

1

(z − a)k
=

∑

i>0

(
k − 1 + i

i

)
w−k−i

0

∑

a∈Ar

aiv−k−i.

Note that the term corresponding to i = 0 in (4.5) vanishes, since
∑

a∈Ar

a0 is

the sum over a non-trivial F-vector space, and therefore cancels. Together
with (4.4), the wanted Laurent expansion of Ck(z) on ∂B = {z ∈ C∞ | |z| =
qr+ǫ} results:

(4.6)

Ck(z) =
∑

n∈Z

anv
n with

an = (−1)k
(

k−1+n
n

)
wn

0

∑

a∈A

a−k−n (n ≥ 0)

a−k−n =
(

k−1+n
n

)
w−k−n

0

∑

a∈Ar

an (n > 0)

and a−1, . . . , a−k = 0.

It will turn out (see (6.5)) that the contribution of
∑

1 (i.e., of those an with
n ≥ 0) will be negligible for our question. Therefore we focus on studying
the coefficients a−k−n.

5. Power sums. For n, r ∈ N0 we define the power sums

(5.1)

sr(n) :=
∑

a∈A monic
of degree r

an and

Sr(n) :=
∑

a∈Ar−1

an ,

where we adopt the convention that deg 0 = −∞, so A−1 = {0}, S0(n) =
0 if n > 0 and S0(0) = 1. Then the coefficient a−k−n in (4.6) equals
w−k−n

0

(
k−1+n

n

)
Sr+1(n).

Obviously, for r > 0:

Sr(n) = 0 if 6≡ 0 (mod q − 1)

= −
∑

0≤i<r

si(n) if n ≡ 0 (mod q − 1).

9



The sr(n) are studied in [5]. For the moment we need the recursion (loc. cit.
2.3):

(5.3) sr(n) = −
∑

m<n
m≡n ( mod q−1)

( n

m

)
Tmsr−1(m), s0(n) = 1,

which in view of (5.2) translates to the same recursion

Sr(n) = −
∑

m<n
m≡n ( mod q−1)

( n

m

)
TmSr−1(m), S0(n) = 0, n > 0, S0(0) = 1

for the Sr(n).

Let m,n be non-negative integers, written in their p-adic expansions

m = m0,p + m1,pp + m2,pp
2 + X1 · · ·

n = n0,p + n1,pp + · · · with mi,p, ni,p ∈ {0, 1, . . . , p − 1},

from which we get in the obvious way the q-adic expansions

m = m0 + m1q + m2q
2 + · · ·

n = n0 + n1q + · · · with mi, ni ∈ {0, 1, . . . , q − 1}.

Define the p-adic (resp. q-adic) digit sum ℓp(n) := n0,p + n1,p + · · · (resp.
ℓ(n) = n0 + n1 + · · · ). The Lucas congruence

( n

m

)
≡

∏

i≥0

(
ni,p

mi,p

)
(mod p)

with the usual convention that
(

n
m

)
= 0 if n < m implies

(5.4)

(
n
m

)
6= 0 ⇔ (mi,p ≤ ni,p for all i)

⇔ ℓp(n) = ℓp(m) + ℓp(n − m)

⇒ (mi ≤ ni for all i) ⇒ ℓ(m) ≤ ℓ(n),

where we abuse language (as we will do in the sequel) and write “=” for the
congruence of integers in Fp →֒ C∞.

(5.5) Let ρ : N0 ∪ {−∞} −→ N0 ∪ {−∞} be the following operator. Write

n ∈ N0 as a sum
∑

1≤s≤ℓ(n)

qis of ℓ(n) powers of q, where always is ≤ is+1

and qi occurs precisely ni often. Then ρ(n) = −∞ if ℓ(n) < q − 1 and

ρ(n) = n −
∑

1≤s≤q−1

qis otherwise. Further, ρ(−∞) = −∞, ρk = ρ ◦ ρk−1 for
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k ≥ 2. Note that ρ(n) depends only on the q-expansion of n, and therefore
also makes sense for arbitrary p-adic numbers n ∈ Zp. With the conventions
deg(0) = −∞ and −∞ + n = −∞ for n ∈ N0, we have:

5.6 Proposition ([5] Prop. 2.11). For r, n ∈ N,

deg sr(n) ≤ ρ(n) + ρ2(n) + · · · + ρr(n),

with equality if the the following condition is satisfied:

(∗) For 0 < s ≤ r,

(
n

ρs(n)

)
6≡ 0 (mod p).

It follows from (5.4) that (∗) always holds if q = p is prime; therefore, we
have an exact formula for deg sr(n) in this case.

5.7 Corollary. sr(n) = 0 if r > ℓ(n)/(q − 1). In particular, sr(n) = 0 if
n < qr − 1. ¤

5.8 Corollary.

(i) We also have Sr(n) = 0 if r > ℓ(n)/(q − 1).

(ii) If 0 ≤ n ≡ 0 (mod q − 1) then S1(n) = −1.

(iii) Let (n, r) satisfy the condition (∗), n ≡ 0 (mod q − 1), and 2 ≤ r ≤
ℓ(n)/(q − 1). Then deg Sr(n) = ρ(n) + · · · + ρr−1(n).

Proof.

(i) Recall that n ≡ ℓ(n) (mod q − 1). Further, m < n, m ≡ n (mod q − 1)
and

(
n
m

)
6= 0 implies ℓ(m) ≤ ℓ(n) − (q − 1). Therefore the assertion

results via induction from the recursion (5.3) for Sr(n).

(ii) S1(n) =
∑

c∈F

cn = −1.

(iii) By (5.2), Sr(n) =
∑

i<r

si(n). The deg si(n) are given by (5.6), and

deg Sr(n) = deg sr−1(n) = ρ(n) + · · · + ρr−1(n), since ρr−1(n) > 0
excludes cancellation between the si(n).

For later use, we add the following definitions related to ρ. Given k ∈ N, let
the p-adic expansion of k − 1 be given as

k − 1 = k0,p + k1,pp + k2,pp
2 + · · ·
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Put

(5.9) (k − 1)∗ = (p − 1 − k0,p) + (p − 1 − k1,p)p + (p − 1 − k2,p)p
2 + · · ·

5.10 Remarks.

(i) (k − 1)∗ + k − 1 = (p − 1)(1 + p · · · ) = −1, i.e., (k − 1)∗ = −k as a
p-adic number, but we will suppress this identity since it could create
some confusion.

(ii) Instead of the p-adic expansion, we can use the q-adic expansion of k−1
in defining (k−1)∗, which by (i) gives the same number (k−1)∗ = −k.

Consider the q-adic expansion

(k − 1)∗ =
∑

i≥0

ℓiq
i, ℓi = (q − 1 − ki) ∈ {0, 1, . . . , q − 1},

with ℓi = q − 1 for i ≫ 0

=
∑

s≥1

qis with is ≤ is+1, where the term qi occurs

precisely ℓi times as in (5.5).

Given r ∈ N0, define

(5.11) λr(k) :=
∑

1≤s≤r(q−1)

qis

Then λ0(k) = 0 = ρr(λr(k)).

6. The case q = p prime. We now come back to the situation (4.3) and
the Laurent expansion (4.6) of Ck(z).

6.1 Proposition. Assume q = p prime, and let n0 = n0(k, r) be the least
natural number n such that the coefficient a−k−n = w−k−n

0

(
k−1+n

n

)
Sr+1(n) in

(4.6) doesn’t vanish. Then the coefficient a−k−n0 dominates in the Laurent
expansion (4.6), i.e., |a−k−n0| > max

n6=−k−n0

|an|.

6.2 Corollary. The Conjecture 3.10 holds true if q = p. That is, all the

zeroes of Ck(z) in F actually lie in
⋃

r≥0

Fr, and the Newton polygons of the

Goss polynomials Gk(X) have the slopes described in (3.9)(iv).

Proof (modulo (6.1)). This has been described in (4.1). ¤
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Before starting the proof of (6.1), we collect a number of facts and definitions.

(6.3) For r ∈ N0, let γ̃r(k) be the number of zeroes z of Ck(z) in F which
satisfy qr ≤ |z| = |z|i < qr+1. As Ar = {a ∈ A | deg a ≤ r} acts by shifts
z 7−→ z + a on these z, γ̃r(k) = γr(k)qr+1 with γr(k) ∈ N0.

6.4 Lemma. Let for the moment B+(0, R) be the ball in C∞ with radius
R ≥ 1. The number of zeroes minus the number of poles of Ck in B(0, R)
(counted with multiplicities) is always negative. Proof. Let r0 ∈ N0 be
maximal with qr0 ≤ R. The poles of Ck on B+(0, R) are the elements of Ar0 ,
each of order k, which gives k · qr0+1 for the order of the pole divisor. Each
zero z of Ck has absolute value |z| ≥ 1 and is A-equivalent with some z0 ∈ F .

Two such, z0 and z1, are identified under t : A \ F
∼=

−→ B+(0, 1) \ {0} if and
only if they differ by an element of Ar1 , where qr1 ≤ |z0| = |z1| < qr1+1.
Hence

r0∑

r1=0

γr1(k)

is the number of zeroes of Gk on the annulus

{w ∈ C∞ | w = t(z), z ∈ F , 1 ≤ |z| = |z|i ≤ R} →֒ B+(0, 1),

which is strictly less than k since Gk(X) has degree k and is divisible by X.
On the other hand, each zero z ∈ B+(0, R) of Ck is modulo Ar0 represented
by some z0 ∈ F as above with qr1 ≤ |z0| = |z0|i < qr1+1, for which there are
qr1+1 choices.

Hence there are
r0∑

r1=0

γr1(k) ·
qr0+1

qr1+1
< k · qr0+1

many zeroes of Ck on B+(0, R). The lemma implies that, under the assump-
tion that some coefficient am of (4.6) dominates, the corresponding index m
must be negative. We may enforce that conclusion.

Assume that in the situation (4.3) Ck is not invertible on ∂B. Let n0 < n1

be the minimal and the maximal subscript such that |an0| = |an1 | and
|an| ≤ |an0| for n 6= n0, n1. In this case, Ck has n1 − n0 zeroes on ∂B.
Increasing the radius qr+ǫ of B slightly so that we don’t pick up new zeroes
or poles of Ck, we get a slightly larger open ball B′, where Ck restricted to

∂B′ is invertible. In the resulting Laurent expansion
∑

z∈Z

a′
n(v′)n of Ck on

∂B′ the term a′
n1

will dominate. Therefore, again by (6.4), n1 < 0. Thus we
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have shown:

6.5 Lemma. Let m ∈ Z be an index such that in the expansion (4.6) the
inequality |am| ≥ max

n∈Z
|an| holds. Then m ist strictly negative. ¤

In particular, in our attempt to proving (6.1) we may restrict to considering
the coefficients a−k−n in (4.6),

(6.6) a−k−n = w−k−n
0

(
k − 1 + n

n

)
Sr+1(n).

Its nonvanishing requires

(a)

(
k − 1 + n

n

)
6= 0 ; (b) Sr+1(n) 6= 0.

Let k − 1 =
∑

i

ki,pp
i and n =

∑

i

ni,pp
i be the p-adic expansions. Then

(a) is equivalent with ni,p + ki,p < p for each i ≥ 0, which is the same as
n <p (k − 1)∗, where (k − 1)(∗) is defined in (5.9) and a <p b denotes the
ordering on Zp defined by the majorization of the p-adic digits of a by those
of b.

The non-vanishing of Sr+1(n) implies (and for q = p is equivalent with)
ℓ(n) ≥ (r + 1)(q − 1) and ℓ(n) ≡ 0 (mod q − 1), as follows from (5.8).

¿From now on, we assume for the remainder of this section that q = p is prime ,

except for (6.8), (6.9) and (6.15), where we discuss implications for the gen-
eral case. Then the minimal n > 0 such that a−k−n doesn’t vanish is

(6.7) n0(k, r) = λr+1(k)

with λr+1(k) as defined in (5.11), as a moment’s thought shows. (We have
ℓ(n0) = ℓp(n0) = (r+1)(q−1), the minimal value allowed by (b), Sr+1(n0) 6= 0
by (5.8) and the assumption q = p, and the (r + 1)(q − 1) digits of n0

are placed such that n0 is minimal with n0 <p (k − 1)∗ among all n with
ℓ(n) = (r + 1)(q − 1).)

Proof of Proposition 6.1. Let n > n0 be such that a−k−n 6= 0. We must show

that |a−k−n| < |a−k−n0|, which in view of |
(

k−1+n
n

)
| = |

(
k−1−n0

n0

)
| = 1 and

|w0| = qr+ǫ is equivalent with

deg Sr+1(n) − deg Sr+1(n0) < (r + ǫ)(n − n0).

14



Now the left hand side is 0 for r = 0 and equals (ρ(n) − ρ(n0)) + (ρ2(n) −
ρ2(n0)) + · · · + (ρr(n) − ρr(n0)) for r ≥ 1, as follows from (5.8). For each
s = 1, 2, . . . r, the numbers composed of the first s(q − 1) digits of n0 (resp.
n) satisfy

n0 − ρs(n0) ≤ n − ρs(n),

since m := n0 − ρs(n0) is minimal with ℓ(m) = s(q − 1) and m <q (k −
1)∗. Hence, for r ≥ 1 all the ρs(n) − ρs(n0) are less or equal to n − n0,
and deg Sr+1(n) − deg Sr+1(n0) ≤ r(n − n0) < (r + ǫ)(n − n0) as desired.
¤

6.8 Remark. Suppress for the moment the assumption of q = p, and define

n′
0 = n′

0(k, r) by the formula (6.7), i.e., n′
0 = λr+1(k). If

(
k−1+n′

0

n′
0

)
6= 0 6=

Sr+1(n
′
0), then it is obvious from (5.8) that n′

0 is minimal with that property,
that is, n′

0 = n0 as in (6.1). If moreover (n0, r + 1) satisfies condition (∗) of
(5.6), then we have an exact formula for deg Sr+1(n), and the proof of (6.1)
also applies to this case.

On the other hand, if r = 0 and n0 is as in (6.1), then since S1(n0) = −1,
(6.1) also holds in this case. This means, unconditionally (i.e., for general
q):

6.9 Proposition. The function Ck has no zeroes z in F with 1 < |z| <
q, or equivalently, NP (Gk(X)) has no slopes strictly between 0 and −q.
¤

We return to the assumption q = p and have a closer look to the zeroes of

Ck in F . As in (6.3), and taking (6.2) into account, we let γr(k)qr+1 be the
number of zeroes of Ck in Fr. Then γr(k) equals the number of zeroes x of
Gk(X) with logq |x| = −q( qr−1

q−1
), and

(6.10) γ(k) := k −
∑

r≥0

γr(k)

is the multiplicity of 0 as a zero of Gk. We now determine these numbers.

Consider the situation (4.3) with the ball B = B(0, qr+ǫ). As follows from
the proof of (6.4), (γ0(k) + γ1(k) + · · · γr(k))qr+1 is the number of zeroes of
Ck in B, and so

(6.11) (k − γ0(k) − · · · − γr(k))qr+1 = −ord∂B(Ck) = k + n0(k, r),

where n0(k, r) = λr+1(k) is the quantity that occurs in (6.1) and (6.7). This
allows to solve for the γi(k). The result, which englobes all of our knowledge
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of the zero distribution of Ck and Gk(X), is contained in the next theorem.

6.12 Theorem. Suppose that q = p is prime, and let k − 1 be written in
its q-adic expansion k − 1 = k0 + k1q + · · · + kNqN , kN 6= 0, ki = 0 for

i > N = N(k). Let further (k − 1)∗ =
∑

i≥0

ℓiq
i with ℓi = q − 1− ki and λi(k)

be the numbers defined in (5.9) and (5.11).

(i) All the zeroes of Ck in F actually lie in
⋃

r≥0

Fr. Accordingly, all the

slopes of the Newton polygon of Gk(X) are of shape −q( qr−1
q−1

) for some
r ∈ N0.

(ii) The number of zeroes of Ck in Fr is γr(k)qr+1. Accordingly, the length
of the segment with slope −q( qr−1

q−1
) in NP (Gk(X)) is γr(k), where γr(k)

is given by

γr(k) =
(q − 1)k + qλr(k) − λr+1(k)

qr+1
, r ≥ 0.

(iii) Let r(k) be the least integer r such that λr(k) + k ≡ 0 (mod qN). Then
γr(k) = 0 for r ≥ r(k) and γr(k) 6= 0 for 0 ≤ r < r(k).

(iv) Let ℓ(k − 1) =
∑

i≥0

ki be the sum of q-adic digits of k − 1, with repre-

sentative R(k) modulo q − 1 in {0, 1, . . . , q − 2}. Then the multiplicity
γ(k) of 0 as a zero of Gk(X) is given by

γ(k) = (R(k) + 1)q[ℓ(k−1)/(q−1)]

with Gauß brackets [ . ].

Proof. (i) has already been shown, and (ii) comes from solving the system
(6.11) for the γr(k).
(iii) Given k and r, write the q-adic expansion

γr(k) =
∑

i≥0

ℓr,iq
i

and let i(r, k) be the least integer i such that ℓr,i < ℓi = q − 1 − ki. E.g.,
i(0, k) = min{i | ki < q − 1}. Further,

• i(r + 1, k) ≥ i(r, k) + 1 by the construction of λr(k), and
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• ℓr,i = 0 for i > i(r, k).

We have

k + λr(k) = (ki(r,k) + ℓr,i(r,k) + 1)qi(r,k) + ki(r)+1q
i(r)+1 + · · ·

Therefore, q(k+λr(k)) = k+λr+1(k) is equivalent with i(r+1, k) = i(r, k)+1
and the set of identities (with i := i(r, k))

ki + ℓr,i = ki+1 + ℓr+1,i+1

ki+1 = ki+2

ki+2 = ki+3
...

As ki = 0 for i large, the latter holds if and only if ki + ℓr,i = ℓr+1,i+1 and
ki+1 = ki+2 = · · · = 0. Now we have the equivalences:

γr(k) = 0 ⇔ q(k + λr(k)) = k + λr+1(k) (from (ii))
⇔ i(r + 1, k) = i(r, k) + 1 and, with i = i(r, k), ki + ℓr,i = ℓr+1,i+1,

ki+1 = ki+2 = · · · = 0
⇔ i(r, k) ≥ N(k)
⇔ λr(k) + k ≡ 0 (mod qN(k))
⇔ r ≥ r(k)

This shows (iii).

(iv) From (6.10) and (6.11) we see that γ(k) = lim
r→∞

k + λr(k)

qr
, where by

(iii) the limit attained for r = r := r(k). Now r is minimal such that
r(q − 1) ≥ ℓ0 + ℓ1 + · · · + ℓN−1 = N(q − 1) − ℓ(k − 1) + kN , i.e., such that

(N − r)(q − 1) + kN ≤ ℓ(k − 1).

Our λr(k) has q-expansion ℓ0 +ℓ1q+ · · ·+ℓN−1q
N−1 +aqN +bqN+1 with b = 0

if a + kN < q − 1. The remainder a + b satisfies a + b ∈ {0, 1, . . . , q − 2} and

a + b = r(q − 1) − (ℓ0 + ℓ1 + · · · + ℓN−1) = ℓ(k − 1) − kN − (N − r)(q − 1).

Let R := R(k) be the representative ( mod q−1) of ℓ(k−1) in {0, 1, . . . , q−2},
and consider the cases

(I) R ≥ kN and (II)R < kN .

In case (I), a + b = R − kN and N − r = [ ℓ(k−1)
q−1

]. As R − kN ≤ q − 1 − kN ,

a = R − kN and b = 0. We find k + λr(k) = (R + 1)qN and thus γ(k) =
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(R + 1)qN−r = (R + 1)q[ℓ(k−1)/(q−1)].

In case (II), a + b = q − 1 + R − kN , a = q − 1 − kN , b = R, and N −
r = [ℓ(k − 1)/(q − 1)] − 1. In this case, k + λr(k) = (R + 1)qN+1 and so
γ(k) = (R + 1)qN+1−r = (R + 1)q[ℓ(k−1)/(q−1)]. 6.13 Remark. The formula
6.12 (iv) for γ(k) has been found empirically by F. Pellarin, in a slightly
different but equivalent form. The quantity γ(k) plays a crucial role in the
study of Drinfeld modular forms, their expansions around cusps [8], [4], the
geometry of Drinfeld modular curves [3], and presumably for zero estimates
in the transcendence theory of Drinfeld modular forms and related functions
[1], [2], [11].

We present two numerical examples which display all the ingredients of the
theorem.
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6.14 Examples.

(i) Let q = p = 3 and k = 43, k−1 = 2 ·3+32 +33. Then ℓ(k−1) = 4 and
R(k) = 0. Further, (k− 1)∗ = 2+0 · 3+32 +33 +2 · 34 +2 · 35 + · · · , so
λ0(k) = 0, λ1(k) = 2, λ2(k) = 2+32+33, λ3(k) = 2+32+33+2 ·34, · · · .
The formulas of (6.12) imply γ0(k) = 28, γ1(k) = 6, γ2(k) = γ3(k) · · · =
0, γ(k) = 9, which is equivalent to stating that the breakpoints of
NP (G43(X)) are (9, 18), (15, 0), (43, 0).

(ii) Let q = p = 2 and k = 49, k−1 = 24+25. Then ℓ(k−1) = 2 and R(k) =
0, (k−1)∗ = 1+22+23+26+27+· · · , so λ0(k) = 0, λ1(k) = 1, λ2(k) = 3,
λ3(k) = 7, λ4(k) = 15, λ5(k) = 79. Theorem 6.12 gives γ0(k) = 24,
γ1(k) = 12, γ2(k) = 6, γ3(k) = 3, γ4(k) = γ5(k) = · · · = 0, γ(k) = 4.
The breaks of NP (G49(X)) are (4, 102), (7, 60), (13, 24), (25, 0), (49, 0).

6.15 Remark. Suppress again the assumption q = p, and let k − 1 =∑

0≤i≤N

kiq
i, kN 6= 0, be the q-adic expansion. Let k have the following prop-

erty:

(A) For r ≥ 0, the number n′
0 = n′

0(k, r) := λr+1(k) satisfies
(

k−1+n′
0

n′
0

)
6= 0,

that is, λr+1(k) <p (k − 1)∗.
Note that for 0 ≤ s ≤ r + 1 the relation

ρs(λr+1(k)) = λr+1(k) − λs(k)

holds. The identities
(

a
b

) (
b
c

)
=

(
a
c

)
(
(

a−c
a−b

)
and

(
a
b

)
=

(
a

a−b

)
for binomial

coefficients show that also the following condition is satisfied:

(B) For r ≥ 0 and 0 < s ≤ r + 1,
(

n′
0(k,r)

ρs(n′
0(k,r))

)
6= 0 in C∞.

Therefore Remark 6.8 applies, n′
0(k, r) = n0(k, r) as in 6.1, and all the state-

ments of (6.1), (6.2) and also of Theorem 6.12 remain valid for such k even
if q fails to be prime. That is, Gk(X) has only the slopes described in 6.12
(ii), with widths given by the formulas in 6.12 (iii) and (iv).

7. Results for general q. In this last section q is allowed to be an arbitrary
prime power. We first point out that Proposition 6.9, covering a small part
of the assertions of Conjecture 3.10, is established for such general q. Next,
we describe two series of natural numbers k where the condition (A) (thus
also (B)) of (6.15) is fulfilled. In these cases, we have complete control of the
Newton polygon of Gk(X).

7.1 Example. Let k have the shape qr−1 with r ∈ N. In that case, a closed
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expression for Gk(X) is known ([4] (3.10)+(4.3)):

Gk,L(X) = Xqr−1 + β̃1X
qr−q + · · · + β̃r−1X

qr−qr−1

with β̃i = (−1)i

Li
, where Li := [i][i−1] · · · [1] ∈ A has degree q( qi−1

q−1
) (see (3.2)).

Together with L = πA and (2.10) (v), we find

Gk(X) = Gk,A(X) = Xqr−1 + β1X
qr−q + · · · + βr−1X

qr−qr−1

with coefficients βi ∈ C∞ that satisfy |βi| = 1 for 1 ≤ i ≤ r − 1. Hence
we know a priori for such k that γ0(k) = qr−1 − 1, γi(k) = 0 for i > 0, and
γ(k) = qr − qr−1. This may also be seen using Remark 6.15.

Viz, the q-adic expansions for k = qr − 1 are:

k − 1 = (q − 2) + (q − 1)q + · · · (q − 1)qr−1

(k − 1)∗ = 1 + (q − 1)r + (q − 1)qr+1 + · · · ,

so λ1(k) = 1 + (q − 2)qr, λ2(k) = 1 + (q − 1)qr + (q − 2)qr+1, . . . Therefore,
condition (A) is fulfilled, and the formulas of Theorem 6.12 yield γ0(k) =
(q−1)k−λ1(k)

q
= qr−1 − 1, γ1(k) = γ2(k) = . . . = 0, ℓ(k − 1) = r(q − 1) − 1,

R = q − 2, γ(k) = (q − 1)qr−1.

7.2 Example. Let k have the shape qr + 1 with r ∈ N. Then

k − 1 = qr

(k − 1)∗ = (q − 1) + (q − 1)q + · · · + (q − 1)qr−1 + (q − 2)qr + (q − 1)qr+1 + · · ·
λi(k) = (q − 1) + (q − 1)q + · · · + (q − 1)qi−1 (i ≤ r)
λr+s(k) = (q − 1) + · · · (q − 1)qr−1 + (q − 2)qr + (q − 1)qr+1 + · · · (q − 1)qr+s−1 + qr+s

(s > 0)

Obviously, condition (A) is fulfilled, and we get

γ0(k) = (q − 1)qr−1

γ1(k) = (q − 1)qr−2

...
γr−1(k) = q − 1
γr(k) = 0 = γr+1(k) = γr+2(k) = · · ·

Furthermore, ℓ(k − 1) = 1, so R = 1 (resp. 0) if q > 2 (resp. q = 2), and in
both cases γ(k) = 2.

Now we give two formulas for γ0(k) valid for arbitrary k and q.
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7.3 Proposition. Given k, let j = j(k) be the largest integer j such that the

binomial coefficient
(

k−1−j(q−1)
j

)
doesn’t vanish in Fp, and let n0(k, 0) be the

least natural number n divisible by q − 1 and such that
(

k−1+n
n

)
6= 0. Then

(i) γ0(k) = (q − 1)j(k) and (ii) γ0(k) = (q−1)k−n0(k,0)
q

hold.

Remarks.

(i) In view of (5.8) (ii), n0(k, 0) agrees with the quantity defined in (6.1).
By (6.7) it equals λ1(k) if q = p.

(ii) Going through painful case distinctions on the p-expansion of k, we
could directly show the identity of the two expressions for γ0(k). It is
however easier to verify both formulas independently.

Proof of (7.3).

(i) Consider the series expansions (2.3) of eA(z) =
∑

i≥0

αiz
qi

(αi ∈ O∞)

and eF(z) = z − zq. Right from definitions, we have the coefficientwise
congruence eA(z) ≡ eF(z) modulo the maximal ideal m∞ of O∞, which
implies

Gk(X) = Gk,A(x) ≡ Gk,F(X) (mod m∞).

Therefore,

γ0(k) = number of zeroes (counted with multiplicities)
of Gk(X) of absolute value 1

= number of zeroes x 6= 0 of Gk,F(X).

¿From (2.9) we may derive the closed formula (see also [4] 3.7)

Gk,F(X) =
∑

j≥0

(−1)j

(
k − 1 − j(q − 1)

j

)
Xk−j(q−1),

which implies the assertion.

(ii) Due to (6.8) and (6.9), the identity (6.11) is valid for r = 0 and arbitrary
q with our value of n0(k, 0). ¤

The number j(k) may be easily determined for k = qr − 1 or qr +1, which of
course reproduces the results of (7.1) and (7.2), respectively. We finish with
an example (necessarily with q 6= p) where the formulas of (7.3) produce a
result different from the formula in (6.12) (ii), i.e., where n0(k, 0) 6= λ1(k).
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7.4 Example. Let q = p2, and let the q-expansion of k − 1 start with

k − 1 = 1 + (p − 1)q + · · ·
(k − 1)∗ = (q − 2) + (0 + (p − 1)p)q + · · ·

Then λ1(k) = (q − 2) + q, so
(

k−1+λ1(k)
λ1(k)

)
vanishes by the Lucas congruence.

Therefore, n0(k, 0) is strictly larger than λ1(k).

Conclusion. Since the Conjecture 3.10 is of a qualitative nature, there is
some hope for a conceptual proof valid in the general case (q not necessarily
prime), perhaps by rigid-analytic means and using properties of the functions
Ck, or following Remark 3.11. On the other hand, as the behavior (mod p)
of the multinomial coefficients in (2.9) or the binomial coefficients in (4.6)
is difficult to control, it is hardly imaginable that there exists a general
description of NP (Gk(X)) similarly explicit as the one supplied by Theorem
6.9 in the case q = p.
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