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Abstract

In this paper we study a modern, perspective model for shape from shading and
its numerical approximation. We show that a new form of the classic concave/convex
ambiguity is still present, although the model has been shown to be well-posed under
particular assumptions. This analytical result is confirmed by various numerical tests.
Moreover, we present convergence results for two iterative approximation schemes
recently introduced in the literature. The first one is based on a finite difference
discretization, whereas the second one is based on a semi-Lagrangian discretization.
The convergence results are obtained in the general framework of viscosity solutions
of the underlying partial differential equation. We also show that it is possible to
obtain even in complex scenes results of reasonable quality. To this end we solve
the constituting equation on a previously-segmented input image, where we use state
constraints boundary conditions at the segment borders.

1 Introduction

The shape-from-shading (SFS) problem amounts to the reconstruction of the 3-D structure
of objects at hand of a single given 2-D grey value image of them. For this task, the SFS
process relies on information on the illumination and the light reflectance in the scene. It
has been introduced by Horn [15], and it is a classic inverse problem in computer vision
with many potential applications, see e.g. [12, 16, 17, 34] and the references therein for an
overview.
In this paper we deal with a modern SFS model proposed by Prados and Faugeras [24, 27].
This SFS model has gained some attention in the recent literature. It combines desirable
theoretical properties with a reasonable quality of results compared to other approaches in
SFS. One of its good theoretical properties is the well-posedness given under some assump-
tions. However, the question arises whether the notorious concave/convex ambiguity [15]
has entirely been vanquished by using the SFS model of Prados and Faugeras. For the case
that the answer is negative, it would be of interest if there is a way to avoid ambiguities.
Concerning the numerical realization of the model, a number of iterative solvers has been
proposed. However, while the two most efficient schemes have been identified [4], their
mathematical validation is lacking.
In this paper we address these open issues. By a thorough investigation, we show that a
concave/convex ambiguity still arises and appears in practical computations. We propose a
way how such ambiguities can be avoided by making use of a segmentation step combined
with suitable boundary conditions at the segment borders. In this way, also shapes in
relatively complex scenes can be reconstructed. Moreover, we prove that the two currently
best iterative solvers converge to the viscosity solution of the considered equation.

Models and ambiguities Perspective SFS models are distinguished by the assumption
that the camera performs a perspective projection of the 3-D world to the given 2-D
image. Recently, a number of perspective SFS models have been considered [8, 24, 30],
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with promising applications to face reconstruction [24], reconstruction of organs [30, 31],
and digitization of documents [8, 9].
Within the class of perspective SFS models, the one of Okatani and Deguchi [20] is distin-
guished by the lighting model. This consists of a point light source located at the optical
center combined with a light attenuation term. Okatani and Deguchi proposed a method
to resolve their model which is an extension of the level set method designed by Kimmel et
al. [18] for solving the classic SFS problem. They claim that their method could be derived
from a PDE of the form H(x, y, r, rx, ry) = 0, where r is the distance to the point light
source, but do not explicitly state it. Prados and Faugeras [27] stated the first PDE derived
from this model that we call here the PSFS model (’P’ for ’perspective’). A number of
papers by Prados and his coauthors have dealt with its theoretical basis, cf. [22, 23, 26, 27].
Especially, the PSFS model has been shown to be well-posed under mild assumptions.
The well-posedness of SFS models has been a point of continuous interest in computer
vision research. This already begins with Horn [15] who mentions the concave/convex
ambiguity in his classic orthographic SFS model; see [6, 17] for extensive discussion. Two
main features for proofs of existence and uniqueness of the solution are the singular points
and the edges [2, 5, 6, 13, 21], since the surface normal in such points can be computed
without ambiguity.
It turns out that the classic concave/convex ambiguity is not the only source of non-
uniqueness. Starting from a paper by Rouy and Tourin [29], a modern tool to understand
the hyperbolic partial differential equations (PDEs) that arise in SFS is the notion of
viscosity solutions. For the classic SFS model investigated in [29], one can see that this
notion allows several weak solutions in the viscosity sense. This lack of uniqueness is a
fundamental property of the underlying class of PDEs. In order to achieve uniqueness in
this setting, one may add information such as the height at each singular point [19], or one
may characterize the so-called maximal solution [7, 14].

Numerical methods for PSFS A number of recent papers have considered the nu-
merical realization of the PSFS model. The original scheme of Prados et al., see especially
[22], relies on the optimal control formulation of the PSFS model. It solves the underly-
ing Hamilton-Jacobi-Bellman equation using a top-down dynamic programming approach.
However, the method is difficult to implement as it relies on the analytical solution of an in-
corporated optimization problem involving many distinct cases. In [11] a semi-Lagrangian
method (CFS) has been proposed. This method also relies on the Hamilton-Jacobi-Bellman
equation but it is much easier to code. An alternative approach has been explored in [33]
where the Hamilton-Jacobi equation corresponding to the PSFS model has been discretized
with finite differences (VBW).
All the mentioned schemes as well as their algorithmic extensions have been studied ex-
perimentally in [4]. The latter two schemes, i.e. CFS and VBW, have been identified as
the most efficient techniques.

Our contribution The novelties of this paper can be summarized as follows:
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(i) We explain in detail why the PSFS model cannot be considered completely well-
posed as concluded in [27, 28]. To this end, we show analytically that a new class of
generalized concave/convex ambiguity arises, and we present numerical computations
proving the practical importance of this new type of ambiguities.

(ii) We prove convergence to the viscosity solution of both the CFS [11] and the VBW
[33] scheme.

For validating the convergence of the VBW method, we show how to make use of
previous results of Barles and Souganidis [1]. Concerning the proof of convergence
for the CFS scheme, we do not rely on that classic approach. Our proof relies on
the idea that the CFS iterates are monotone decreasing (in the sense of pointwise
comparison) as well as bounded from below, which implies convergence. A similar
strategy has been developed in [3] in the context of hyperbolic conservation laws.

(iii) Relying on the results from (i) and (ii), we explore an algorithmic way to overcome
ambiguities via a pre-segmentation of the input image. This allows to approximate
the smooth parts of the PSFS solution with correct initial conditions for iterative
methods. At segment borders that usually coincide in computations with points
of non-continuity or non-differentiability, state constraints boundary conditions are
employed. We validate experimentally using synthetic and real-world data that this
set-up gives reasonable results.

Our work shows that a complete understanding combining the theoretical analysis of the
PDE and the numerical analysis of solution schemes is useful for dealing with complex
computer vision problems such as PSFS.

Paper organization The paper is organized as follows. In Section 2, we briefly review
the model and the related equations. The ambiguity problem is discussed in detail in
Section 3. The numerical methods and their convergence are considered in Section 4.
Section 5 is devoted to numerical experiments. The paper is finished by a conclusion.
Some technical issues are described in appendices.

2 The PSFS model and related equations

In this section, we recall, for the reader’s convenience, the model for PSFS with point light
source located at the optical center and light attenuation term. We also recall the first
related PDE associated to the model, derived in [28].

2.1 The PSFS model with light attenuation

Let (x, y) be a point in the image domain Ω, where Ω is an open bounded subset of R
2.

Furthermore, let
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• I = I(x, y) > 0 be the normalised brightness function. We have I = E(x,y)
σ

, where E
is the greylevel of the given image and σ is the product of the surface albedo (which
tells us to which extent the surface reflects light) and the light source intensity;

• f be the focal length, i.e. the distance between the optical center C of the camera
and the two-dimensional plane to which the scene of interest is mapped (see Fig. 1).

Let M be a generic point on the surface Σ. We choose as unknown of the problem the
function u : Ω → R such that
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Figure 1: Notations for the perspective SFS model with point light source at optical center.

M = M(x, y) = u(x, y) m′ , (1)

where

m′ =
f√

x2 + y2 + f2
m and m = (x, y,−f)⊤. (2)

Another definition of the unknown u is given by the relation M(x, y) = u(x, y) m, which
differs from (1) and leads to a slightly different PDE, as shown in [28].
Note that, according to these notations, u > 0 holds as the depicted scene is in front of
the camera. We denote by r(x, y) the distance between the point light source and the
point M(x, y) on the surface. It holds u(x, y) = r(x, y)/f, since the light source location
coincides with the optical center.
The model associated to the PSFS problem is obtained by the image irradiance equation:

R(n̂(x, y)) = I(x, y), (3)
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making explicit the unit normal n̂ to the surface and the reflectance function R which gives
the value of the light reflection on the surface as a function of its normal.
We denote by ω(x, y) the unit vector representing the light source direction at the point
M(x, y) (note that in the classic SFS model this vector is constant):

ω(x, y) =
(−x,−y, f)⊤√
x2 + y2 + f2

. (4)

Adding the assumptions of a light attenuation term and of a Lambertian surface, the
function R is defined as

R(n̂(x, y)) =
ω(x, y) · n̂(x, y)

r(x, y)2
, (5)

with an attenuation factor which is equal to the inverse of the squared distance from the
source. Expression (5) would still hold for any location of the point light source, but the
same would not be true for the equality u(x, y) = r(x, y)/f nor for (4). The case where
the light source coincides with the optical center is not only that which gives the simplest
model: it more or less corresponds to endoscopic images [20] and to photographs taken at
short distance with the camera flash [28]. Another considerable advantage of the PSFS
model using a point light source at the optical center is that there is no shadow in the
image.
Finally, by (3) and (5) we obtain the PSFS equation

ω(x, y) · n̂(x, y)

r(x, y)2
= I(x, y). (6)

2.2 The corresponding Hamilton-Jacobi equation

In order to write down the corresponding PDE, it is useful to introduce the new unknown
v = ln(u) (we recall that u > 0). Equation (6) can be written [27, 28] as a static Hamilton-
Jacobi equation (see [28], and Appendix A for details):

H(x, y, v,∇v) :=
I(x, y)

Q(x, y)
f2 W (x, y,∇v)− e−2v(x,y) = 0 , (x, y) ∈ Ω (7)

where

Q(x, y) :=
f√

x2 + y2 + f2
(8)

(which is equal to |cos θ|, cf. Fig. 1) and

W (x, y,∇v) :=
√

f2‖∇v‖2 + (∇v · (x, y))2 + Q(x, y)2, (9)

(‖ · ‖ denotes the Euclidean vector norm). Note that W (x, y,∇v) is convex with respect
to ∇v ∈ R

2, and then the Hamiltonian H(x, y, v, ·) is convex.
The existence and uniqueness of the viscosity solution of equation (7) is proven in [28]. In
the same paper some possible choices for the boundary conditions are discussed.
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Equation (7) also admits a ”control formulation” which can be helpful. In [28] it is shown
that v is the solution of the following Hamilton-Jacobi-Bellman-like equation

−e−2v(x,y) + sup
a∈B(0,1)

{−b(x, y, a) · ∇v(x, y) − ℓ(x, y, a)} = 0 (10)

where B(0, 1) denotes the closed unit ball in R
2 and the other terms in (10) are defined as

follows:

b(x, y, a) := −JGT DGa , ℓ(x, y, a) := −I(x, y) f2
√

1 − ‖a‖2 , (11)

J(x, y) :=
I(x, y)

Q(x, y)
f2 = I(x, y)f

√
f2 + x2 + y2 (12)

where G, D are the 2 × 2 matrices

G(x, y) :=





1√
x2+y2

(
y −x
x y

)
if (x, y) 6= (0, 0)

(
1 0
0 1

)
if (x, y) = (0, 0)

,

D(x, y) :=

(
f 0

0
√

f2 + x2 + y2

)
.

3 The generalized concave/convex ambiguity

In this section, we show that in the model presented above an analogue of the classic
concave/convex ambiguity still exists. We also show in detail in which case it is numer-
ically possible to reconstruct the expected surface and in which case a different surface
is computed. After rewriting the PSFS equation in spherical coordinates, we will restrict
ourself to the one-dimensional case. This is done to make the theoretical and numerical
analysis simpler, and it is sufficient to show the presence of an ambiguity in the model.
Indeed, if an ambiguity appears in the one-dimensional case, a fortiori it appears in the
two-dimensional case.

3.1 The ambiguity in the model

In order to prove the existence of at least two different surfaces which are associated to the
same brightness function I and the same Dirichlet boundary conditions, it is convenient to
reformulate the problem in standard spherical coordinates (r, θ, φ): the parameters of an
image point m(θ, φ) are now the angles θ and φ, which are respectively the colatitude and
the longitude of the conjugated object point M(θ, φ), with respect to the camera coordinate
system (Cxyz). Let us notice that only the object points M(θ, φ) such that θ ∈ [π/2, π]
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are visible (see Figure 1), whereas φ ∈ [0, 2π[. Given a brightness function I(θ, φ), we are
looking for a surface Σ in the form r = r(θ, φ) such that:

ω(θ, φ) · n̂(θ, φ)

r(θ, φ)2
= I(θ, φ). (13)

A generic point M has coordinates:

M(θ, φ) =




r(θ, φ) sin θ cos φ
r(θ, φ) sin θ sin φ

r(θ, φ) cos θ




(Cxyz)

(14)

with respect to the coordinate system (Cxyz). We now introduce the local orthonormal
basis S = (ur, uθ, uφ) of R

3 defined by:

ur :=
M(θ, φ)

r(θ, φ)
, uθ :=

∂θur

‖∂θur‖
and uφ :=

∂φur

‖∂φur‖
, (15)

which depends on the point M (see Fig. 1). The expression of n̂ in this new basis is (see
Appendix B for details):

n̂(θ, φ) =
1

((r2 + rθ
2) sin2 θ + rφ

2)1/2




−r sin θ
rθ sin θ

rφ





S

, (16)

where the dependences of r, rθ and rφ on (θ, φ) are omitted. Using the expression (16) of
n̂, and knowing that ω coincides with −ur, since the point light source is located at the
optical center, Equation (13) can be rewritten as:

r2

(
r2 + rθ

2 +
rφ

2

sin2 θ

)
=

1

I2
. (17)

We now return to our purpose. We choose as reference surface Σ the hemisphere r(θ, φ) ≡ 1,
where (θ, φ) ∈ [π/2, π]× [0, 2π[, which is associated to the brightness function IΣ(θ, φ) ≡ 1
(see Figure 2-a). Then, we look for other surfaces which are not isometric to Σ but give the
same brightness function. For the sake of simplicity, let us limit our search to the surfaces
which are circularly-symmetric around the optical axis Cz i.e., to the functions r of the
form r(θ, φ) = r(θ). Equation (17) is thus simplified to the following ordinary differential
equation:

r2(r2 + rθ
2) =

1

IΣ
2 = 1, (18)

which can be rewritten, since Equation (18) imposes that r ≤ 1:

r dr√
1 − r4

= ±dθ. (19)
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Σ
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z

C x

Σ7π/8
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z

π/2

θ0 = 7π/8

(a) (b)

C

z

x

θ0 = π

π/2

Σπ

C x

θ0 = 9π/8

Σ9π/8

π/2

z

(c) (d)
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7π/8

z

C
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(e) (f)

Figure 2: Generalized concave/convex ambiguity. All the surfaces drawn in red solid line,
which are circularly-symmetric around the optical axis Cz, have the same image with
uniform greylevel I ≡ 1 as the hemisphere Σ shown in (a), according to the perspective
shape-from-shading model with point light source at the optical center and light atten-
uation: (b), (c) and (d) show three surfaces Σ7π/8, Σπ and Σ9π/8 among the continuous
family {Σθ0}θ0∈[3π/4,5π/4]; (e) and (f) show two other surfaces Σ′

7π/8 and Σ′′
7π/8 that can

be constructed by joining Σ7π/8 to Σ: Σ′
7π/8 is of class C1, whereas Σ′′

7π/8 is differentiable
everywhere except in its intersection with the optical axis.

Integrating Equation (19), we obtain the following solutions depending on a parameter θ0,
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which is a constant of integration:

rθ0(θ) =
√

cos(2(θ − θ0)). (20)

Let us denote as Σθ0 the surface of equation r = rθ0(θ). Note that equation (20) imposes
that θ ∈ [θ0 − π/4, θ0 + π/4]. We know that θ ∈ [π/2, π] by definition, then each surface
Σθ0 has the same brightness function I ≡ 1 as Σ in a domain Dθ0 of the image plane which
is circularly-symmetric around the optical axis Cz, and contains the points such that
θ ∈ Iθ0 = [θ0 − π/4, θ0 + π/4]∩ [π/2, π]. If we impose Dθ0 to be non-empty and to contain
the origin O = (0, 0) in the image plane, this clearly implies that the parameter θ0 in
Equation (20) is in the interval [3π/4, 5π/4]. Then, it is easy to see that Iθ0 = [θ0 −π/4, π]
and that Dθ0 is a disc of center O and of radius ρθ0 = f tan(5π/4 − θ0).
Since all the surfaces Σθ0 , for θ0 ∈ [3π/4, 5π/4], are circularly-symmetric around the optical
axis Cz, we only draw their cuts by the plane Cxz. Three such cuts are represented in
Figures 2-b,c,d (note that we have simplified here the three-dimensional setting of spherical
coordinates to two dimensions, omitting the angle describing the location of points with
respect to the y-axis). Note that among those surfaces, only Σπ is differentiable everywhere
(see Figure 2-c). We thus found two differentiable surfaces Σ and Σπ giving the same image
in the disc Dπ = (O, f) under the PSFS model with point light source at the optical center
and light attenuation term. Since this recalls the well-known concave/convex ambiguity of
the classic SFS model, we refer to this new ambiguity as the generalized concave/convex
ambiguity.
It is important to stress that all the surfaces Σθ0 , for θ0 ∈ [3π/4, 5π/4]\{π}, have a unique
singularity at their intersection with the optical axis. Moreover each surface Σθ0 , for
θ0 ∈ [3π/4, π[, is tangent to the reference surface Σ in θ = θ0, so that other differentiable
(but not of class C2) solutions can be constructed by joining the differentiable part of Σθ0

to Σ. These new surfaces are called Σ′
θ0

(see Figure 2-e). Finally, the non-differentiable

part of Σθ0 can be joined to Σ. These last solutions are called Σ′′
θ0

(see Figure 2-f). We thus

found four families of continuous surfaces associated to the same image than Σ, namely
{Σθ0}θ0∈[3π/4,π[, {Σθ0}θ0∈ ]π,5π/4], {Σ′

θ0
}θ0∈ [3π/4,π[, and {Σ′′

θ0
}θ0∈ [3π/4,π[, which are illustrated,

respectively, in Figures 2-b,d,e,f. The surfaces Σ′
θ0

are differentiable everywhere (but are
not of class C2) and they are the only C1 solutions. In the next subsection, we will see that
Σ, which constitutes a common super-solution of all these solutions, is the initial surface
used in the algorithm of Prados et al. [28].
Let us also mention that, among the different solutions of our problem, a certain number
share a part of the boundary conditions. This is the case, for instance, of Σθ0 , Σ′

θ0
and

Σ′′
θ0

, for θ0 ∈ [3π/4, π[, on the circle where these three surfaces are tangent to Σ (note that
either the Dirichlet and the Neumann conditions are identical there).
Let us finally note that the greylevel remains unchanged by rotation of all these surfaces
around the optical center C, since it is uniformly equal to 1. This leads us to other
solutions, which are not circularly-symmetric around the optical axis any more. We will
see in the next subsection that all of these solutions can be computed by solving the PSFS
equation (7) imposing appropriate boundary conditions.
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3.2 Viscosity and weak solutions

In this subsection we investigate when the generalized concave/convex ambiguity arises
solving the PSFS equation (7). The uniqueness of the viscosity solution of equation (7)
was proven in [28] (see also [26]). Nevertheless, the uniqueness of the viscosity solution
does not solve the problem of the model ambiguity, because we could be interested in the
reconstruction of a surface not described by the viscosity solution, rather by another weak
solution. This is a well-known issue in orthographic SFS with light beam parallel to the
optical axis: let us consider the simple case of a one-dimensional greylevel image with
constant brightness function I(x) ≡

√
2/2, and let us solve the SFS problem by means of

the eikonal equation

|z′(x)| =

√
1

I2(x)
− 1 , x ∈ [−1, 1] (21)

imposing exact Dirichlet boundary conditions z = 0 at x = −1 and x = 1. Here z(x)
denotes the height of the surface. The unique viscosity solution is drawn in Fig. 3-a, while
other possible (weak) solutions are drawn in Fig. 3-b. Our goal is to show that the PSFS

x−1 1

z

x−1 1

z

(a) (b)

Figure 3: (a) Viscosity solution and (b) some weak solutions of the eikonal equation (21).

equation (7) has essentially the same features of the eikonal equation (21), thus showing
the same kind of ambiguity. The starting point is the following Proposition.

Proposition 3.1 The viscosity solution u = ev of the PSFS equation (7) is increasing
along characteristic curves.

Proof Let us define
u(x, y) := (I(x, y)f2)−

1
2 , (22)

corresponding to

v(x, y) := ln(u(x, y)) = −1

2
ln(I(x, y)f2). (23)

Let us prove that the inequality

u(x, y) ≥ u(x, y) ∀(x, y) ∈ Ω (24)
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(and similarly v ≥ v) holds. Equation (24) easily follows from equation (6) and from the
definition u = r/f, since u is the solution of the equation where ω · n̂ = 1 and it is larger
than the solution u where ω · n̂ < 1. In [28] it is also proven that v is a super-solution of
the equation (7). Note that, in the example of Fig. 3.1, the super-solution ū corresponds
to the hemisphere shown in Fig. 3.1-a.
Let us consider a point (x, y) where v is differentiable (we recall that v is differentiable
everywhere in Ω except for a zero-measure subset) and assume that there exists a control
a∗ ∈ B(0, 1) in which the maximum in Equation (10) is attained. Then Equation (10) can
be rewritten as

−e−2v(x,y) + (−b(x, y, a∗) · ∇v(x, y) − ℓ(x, y, a∗)) = 0.

We have

∂v(x, y)

∂(−b(x, y, a∗))
= −b(x, y, a∗) · ∇v(x, y) =

ℓ(x, y, a∗) + e−2v(x,y) = −I(x, y) f2
√

1 − ‖a∗‖2 + e−2v(x,y) ≥
−I(x, y) f2

√
1 − ‖a∗‖2 + e−2v(x,y) = I(x, y)f2(1 −

√
1 − ‖a∗‖2) ≥ 0 ,

which proves our assertion. ♣

As a consequence of the Proposition 3.1, every time the surface we want to reconstruct
is described by a function u which is not increasing along characteristics, it cannot be
reconstructed as the viscosity solution of the PSFS model. This is exactly what happens in
SFS, see Fig. 3-b. Information spreads from the boundaries to the center of the domain,
and the solution can only increase along the way. Then, all the solutions different from the
viscosity solution cannot be achieved. To overcome this problem (in SFS as well as PSFS),
we can impose the exact solution in every point of local minimum for the solution. Doing
this, the correct solution is computed, but we face the new problem of how to recover
the values of these new Dirichlet boundary conditions. In this respect, the PSFS model
is preferable to the SFS model, since the light attenuation term 1/r2 allows to get rid of
these additional unknowns. Let us explain this point in detail.

According to Eq. (17), if the surface is differentiable, a local minimum point for u corre-
sponds to a point where I = 1/r2. The latter equation is easily solved with respect to r,
and then u is found [32]. This means that the light attenuation term allows to compute
the correct solution at the points where we need to impose boundary conditions. It turns
out from Eq. (6) that these points are also those where ω · n̂ = 1, which characterizes the
so-called singular points of the classic SFS model [15].
As we will see in Section 4, the numerical resolution of the PSFS equation needs to set up
an iterative procedure, and then an initial guess for u has to be given in order to start the
algorithm. Let us denote that initial guess by u(0). If we choose u(0) as

u(0) := u (25)
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the algorithm starts from a function which is actually the correct solution of the equation
(6) at all points where ω · n̂ = 1, and it is larger than the correct solution elsewhere. Since
the information propagates from the smallest to the largest values, the values larger than
the correct ones do not influence the correct ones. Then the values at the local minimum
points remain fixed, playing the role of correct Dirichlet boundary conditions, while the
other values decreases, converging in the limit to the solution. Note that the initial guess
(25) corresponds to the initial guess for v suggested in [28], namely

v(0) := v. (26)

We can conclude that when the surface is differentiable, the PSFS model is well-posed,
provided a suitable initial guess for the iterative algorithm is given. Moreover, the correct
initial guess can be computed directly from the greylevel image.

If the surface is not differentiable, the method described above cannot be applied. In par-
ticular, the method fails whenever one of the following conditions holds true: 1) a point of
non-differentiability for the surface is a minimum point, 2) local minimum points coincide
with the boundaries, and state constraints boundary conditions are used. In these cases,
the initial guess (25) is not able to impose the right values automatically and an ambigu-
ity arises. In order to explain and summarize the role of the initial guess, the minimum
points and the boundary conditions, it is useful to consider the four surfaces shown in Fig.
4. Characteristic curves are depicted below the surfaces (although they lie on Ω). The
surface in (a) is differentiable, and can be recovered without any additional information.
The minimum points for u are automatically detected (black dots on the surface). Char-
acteristics start from these points and the solution increases along them. State constraints
boundary conditions are suitable since no information comes from the boundaries. The
surface in (b) is not differentiable, but the point of non-differentiability does not coincide
with a minimum point for u. Characteristics move away from the minimum points (auto-
matically detected as before), and they meet each other in the point of non-differentiability.
The surface in (c) is differentiable, but it cannot be correctly reconstructed unless suitable
Dirichlet boundary conditions are given at the boundary of the domain. Indeed, char-
acteristics start from the automatically-detected minimum point, then the solution u is
correctly computed from that point until it increases. Near the right-hand boundary, the
viscosity solution corresponds to another surface with the same brightness function. The
surface in (d) is not differentiable, and the point of non-differentiability coincides with a
minimum point. Then, one minimum point is not detected and the ambiguity arises in a
large part of the domain. Here state constraints are suitable and the surface is correctly
reconstructed near the boundaries. To obtain the correct surface, the value of u at the
non-differentiable point should be given.

Some numerical approximations for ambiguous cases In order to have a numerical
confirmation of the theoretical results presented above, we solved the PSFS equation using
the scheme presented in [33], which is proved to be convergent in Section 4. First, we

12
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Σ

ambiguity

(c) (d)

Figure 4: Four surfaces with different properties. Characteristic curves are depicted below
the surfaces. (a) differentiable surface, correctly reconstructed imposing state constraints
boundary conditions, starting from the two singular points automatically detected (black
dots). (b) non differentiable surface, correctly reconstructed as before. (c) differentiable
surface with ambiguity if state constraints boundary condition are imposed. The ambiguity
is limited in the region where u should increase starting from the source points (black
dot). (d) non differentiable surface with ambiguity. The non-differentiable point is not
automatically detected.

recovered some of the surfaces described in Fig. 2, choosing a constant brightness function
I and then varying the boundary conditions (state constraints or Dirichlet) or imposing
specific values in some internal points (see Fig. 5 and its caption). Then, we tried to solve
the PSFS problem for two surfaces similar to the surfaces illustrated in Fig. 4-c,d, where an
ambiguity is expected. The first surface corresponds to u(x) = sin(5x) + 5, x ∈ [−2, 0.8].
The second surface corresponds to u(x) = 10|x|+3, x ∈ [−2, 2]. For each test we show the
initial and the reconstructed surface Σ, together with the functions u and the corresponding
brightness functions I. The focal length is set to f = 1 and the discretization steps are
chosen to be small enough to reduce the visible approximation errors. We have applied
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Figure 5: Some reconstructed surfaces with constant brightness function. (a) with state
constraints boundary conditions (convergence is reached in one iteration), (b) with Dirich-
let boundary conditions, (c) with state constraints boundary conditions and a specific value
imposed at the center, and (d) with mixed state constraints and Dirichlet boundary con-
ditions, and a specific value imposed inside the domain. These surfaces can be compared
with those in Fig. 2.

state constraint boundary condition. In Figs. 6-7 we present our numerical results.
We see that the first surface is correctly reconstructed in a large part of the domain, and the
algorithm fails only near the right-hand boundary. This is expected because the correct
value should be carried by a Dirichlet boundary condition, which is not imposed. The
second surface is scarcely reconstructed in its shape, but the result is completely wrong
if we compare the scales of the figures (the peak is found at z ≈ −6 while the correct
value is z = −3). It is useful to note that the example shown in Fig. 7 is rather delicate
because the ambiguity is generated by the non-differentiability at a single point. If, for
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Figure 6: Numerical outcome for a case similar to that described in Fig. 4-c. First column:
exact u, Σ and I. Second column: approximate u, Σ and I.

example, we compute the initial brightness function imposing by hand u′(0) = 0 (at the
discrete level), the minimal point is detected and the surface is perfectly reconstructed. It
is also noticeable that I is well approximated everywhere while this is not true for u, which
confirms the existence of an ambiguity.
It should be clear that the generalized concave/convex ambiguity is not limited to one-
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Figure 7: Numerical outcome for a case similar to that described in Fig. 4-d. First column:
exact u, Σ and I. Second column: approximate u, Σ and I.

dimensional surfaces. We tried to reconstruct an upside-down pyramid, with Dirichlet
boundary condition at the boundary of the base of the pyramid. In Fig. 8 we show the
original pyramid as well as the the brightness functions corresponding to (a) the original
surface, (b) the reconstructed surface and (c) the surface reconstructed imposing an incor-
rect value at the center of the image, which forces a peak similar to the one in Fig. 2-f.
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As it can be seen, the three images are equal but for a 0-measure set. The differences are

Figure 8: Top: Original upside-down pyramid. Bottom row, from left to right: initial
image rendered from the upside-down pyramid, brightness function of the reconstructed
surface, and brightness function of the reconstruction where a peak was imposed.

concentrated in the non-differentiable regions and are due to the numerical approximation
of the gradient.

4 Two approximation schemes for the PSFS problem

The goal of this section is to analyse two approximation schemes that have been proposed
in [33] and [11] (as indicated in the introduction, the two schemes will be referred to by the
acronyms VBW and CFS respectively). We will study their analytical properties, and we
prove that they converge to the viscosity solution of equation (7). A standard treatment
of boundaries is employed for both schemes; we do not mention it explicitly in the text
in order to simplify the presentation. We refer the interested reader to [4] for a detailed
comparison of the performances of these schemes. Experimental evidence shows that all the
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schemes available for the PSFS equation compute comparable solutions, although relevant
differences appear in the accuracy and CPU time.

4.1 The VBW scheme: properties and convergence

In this section we describe the VBW scheme, which is the scheme we used in the simulations
presented in the previous section. We prove the convergence of the approximate solution
to the viscosity solution of equation (7) when the discretization step goes to zero.
In order to simplify the presentation, we first prove the properties of the scheme in one
dimension. Then, we will point out how the proofs can be extended to dimension two.

One-dimensional analysis Let us introduce the discretization of spatial derivative
made by means of the upwind method as in Rouy and Tourin [29]. Let ∆x > 0 be
the spatial mesh width in x direction and denote by N = N(∆x) the number of mesh
points xi, i = 1, . . . , N . Denote by wi the approximate value of v at the i-th mesh point
xi and define φi(w) as

φi(w) := min

(
0,

wi+1 − wi

∆x
,

wi−1 − wi

∆x

)
, for i = 1, . . . , N. (27)

Then, the approximate gradient is given by

∇v(xi) ≈ ∇̃wi :=

{
−φi(w) if φi(w) = wi−1−wi

∆x
,

φi(w) otherwise.
(28)

By the above upwind discretization, one gets the discrete operator

Li(w) :=

(
− Ii

Qi

f2
√

(f∇̃wi)2 + (xi∇̃wi)2 + Q2
i + e−2wi

)
, (29)

and can write the discrete version of equation (7) as

Li(w) = 0, for i = 1, . . . , N. (30)

Introducing the parameter τ > 0, we obtain the fixed point form:

w = Gτ (w) , (31)

simply defining Gτ componentwise by

Gτ
i (w) := wi + τLi(w) , i = 1, . . . N. (32)

We describe important structural properties of the scheme in the following proposition.
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Proposition 4.1 Let Gτ : R
N → R

N be defined as in (32). The following properties hold
true:
(i) there exists τ ∗ > 0 such that w1 ≤ w2 implies Gτ (w1) ≤ Gτ (w2) for τ < τ ∗;
(ii) if τ < τ ∗, then

‖Gτ (w1) − Gτ (w2)‖∞ < ‖w1 − w2‖∞, for any w1, w2 ∈ R
N .

Proof Let us first assume that the evaluation of (28) gives ∇̃wi = wi−wi−1

∆x
, which implies

wi − wi−1 > 0. Then, we have

∂Gτ
i (w)

∂wi

= 1 − τIif
2

Qi

(x2
i + f2)wi−wi−1

∆x2√
(f2 + x2

i )
(wi−wi−1

∆x

)2
+ Q2

i

− 2τe−2wi , (33)

∂Gτ
i (w)

∂wi−1

=
τIif

2

Qi

(x2
i + f2)wi−wi−1

∆x2√
(f2 + x2

i )
(wi−wi−1

∆x

)2
+ Q2

i

(34)

and
∂Gτ

i (w)

∂wi+1

= 0. (35)

The term ∂Gτ
i (w)/∂wi−1 is always positive, whereas ∂Gτ

i (w)/∂wi is positive only for τ
sufficiently small. Note that the maximal value τ ∗ can be explicitly computed by means
of (33), and the condition τ < τ ∗ can be explicitly verified while the algorithm is running.

If ∇̃wi = wi+1−wi

∆x
we get a similar result. Let us assume now that ∇̃wi = 0. We get

Gτ
i (w) = wi − τIif

2 + τe−2wi

and then
∂Gτ

i (w)

∂wi

= 1 − 2τe−2wi ,
∂Gτ

i (w)

∂wi−1

=
∂Gτ

i (w)

∂wi+1

= 0.

Again, the three terms are positive provided τ is sufficiently small. This proves (i).

Let us denote by JGτ the Jacobian matrix of Gτ . Whatever the evaluation of ∇̃w gives,
assuming that τ is sufficiently small, we get

‖JGτ‖∞ = max
i

{
∂Gτ

i

∂wi−1
+

∂Gτ
i

∂wi
+

∂Gτ
i

∂wi+1

}
= max

i

{
1 − 2τe−2wi

}
, (36)

which is always strictly lower than 1 and this ends the proof. ♣

The algorithm is implemented in the fixed point form, i.e.

w
(n+1)
i = Gτ

i (w
(n)) , i = 1, . . . N , n = 0, 1, . . . (37)

with w(0) as in (26).
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Proposition 4.2 Let w(0) be chosen as in (26) and let τ be sufficiently small. Then,
(i) the algorithm (37) converges to the unique fixed point ŵ∆x,τ , and

(ii) w
(n+1)
i ≤ w

(n)
i for any i and any n.

Proof In order to apply the fixed point theorem, we only have to show that Gτ : X → X,
where X is a compact subset of R

N . Given the set-up of the experiment, it is easy to
restrict the range of the function v (which depends on the function r) finding two values
wmin and wmax such that wmin ≤ v ≤ wmax. A natural choice is then X = [wmin, wmax]

N .
In the following the right choice of wmax will be detailed more precisely. Let us fix w ∈ X
and i ∈ {1, . . . , N}. The proof is divided in two steps:
(a) We prove that Gτ

i (w) ≥ wmin. If wi = wmin, the neighbouring nodes of xi cannot have

a smaller value than wi, then the evaluation of ∇̃wi gives ∇̃wi = 0. Moreover, wmin is by
definition smaller than the exact value v(xi). Then we have

Gτ
i (w) = wmin + τ

(
−Iif

2

Qi

√
0 + 0 + Q2

i + e−2wmin

)
≥ wmin + τ

(
−Iif

2 + e−2v(xi)
)
≥

wmin + τ

(
−Iif

2

Qi

√
(f∇vi)2 + (xi∇vi)2 + Q2

i + e−2v(xi)

)
= wmin + τ · 0 = wmin.

If wi > wmin, we have Gτ
i (w) = wi + τLi(w). The result is obtained choosing τ in such a

way that
τ |Li(w)| ≤ wi − wmin. (38)

(b) Let us now prove that Gτ
i (w) ≤ wmax. If wi = wmax , we have

Gτ
i (w) = wmax + τ

(
−Iif

2

Qi

√
(f∇̃wi)2 + (xi∇̃wi)2 + Q2

i + e−2wmax

)
.

Since Qi < +∞ and we assume that Ii > 0, the desired result follows choosing wmax

sufficiently large, so that the term e−2wmax is small enough the the negative term be leading.
If instead wi < wmax, the result is obtained similarly to before, choosing τ in such a way
that

τ |Li(w)| ≤ wmax − wi. (39)

We can now apply the fixed point theorem and conclude that (i) holds true. A posteriori,
we realize that conditions (38)-(39) are not really restrictive, since convergence to the fixed
point implies that L(w(n)) → 0 for n → +∞.
The choice of the initial guess is the key property to obtain monotone decreasing conver-
gence to the fixed point. In fact, w(0) is larger (or equal) than the solution (see Section
3.2) and Gτ verifies Proposition 4.1-(i). This proves (ii). ♣

We want to prove convergence of the numerical solution ŵ∆x,τ to the viscosity solution v of
the equation (7), for ∆x → 0. We can rely on the classic results of Barles and Souganidis
[1], following the same strategy of Rouy and Tourin [29].
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Proposition 4.3 Let w(0) be chosen as in (26) and let τ ∗ = τ ∗(∆x) be the ”constant”
defined by Proposition 4.1. If τ(∆x) < τ ∗(∆x), then ŵ∆x,τ(∆x) converges locally uniformly
to v for ∆x → 0.

Proof We start proving that the scheme is monotone in the sense given in [1]. We know
that the fixed point ŵ∆x,τ satisfies the equation

L(w) = 0 ,

so we will use this form, since in [1] the discrete operator is written in the implicit form
S(h, x, w(x), w) = 0, where S : R

+ ×Ω×R×B(Ω) → R and B(Ω) is the space of bounded

functions defined on Ω. If the evaluation of (28) gives ∇̃wi = wi−wi−1

∆x
, we only have to

prove that ∂Li(w)
∂wi−1

does not change sign. By (34) we easily get ∂Li(w)
∂wi−1

> 0. If the evaluation

of (28) gives ∇̃wi = wi+1−wi

∆x
we obtain analogously ∂Li(w)

∂wi+1
> 0. Finally, if ∇̃wi = 0, Li does

not depend on wi−1 nor wi+1.
The stability and consistency of the scheme are easy to prove. Since the comparison
principle for the problem is proven in [28] we know that the equation (7) has a unique
viscosity solution v and we can conclude, by the general convergence result in [1], that the
approximate solution converges locally uniformly to v. ♣

It is interesting to note that the property pointed out in Proposition 3.1 is preserved in
the numerical approximation. Let us assume that the assumptions of Proposition 4.3 are
satisfied. We want to show that





w
(n+1)
i > w

(n)
i−1 if ∇̃wi = wi−wi−1

∆x
,

w
(n+1)
i > w

(n)
i+1 if ∇̃wi = wi+1−wi

∆x
,

w
(n+1)
i = w

(n)
i if ∇̃wi = 0.

(40)

If (40) holds, the solution is constructed from the smallest to the largest values, and
then the solution cannot become lower than the information sources (Dirichlet boundary
conditions or minimum points automatically detected). Let us prove the first line in (40).
To this end, we first recall that

w
(n+1)
i = Gi(w

(n)) = w
(n)
i + τLi(w

(n)).

Note that Proposition 4.2-(ii) implies Li(w
(n)) < 0 for any i and n. In order to have

w
(n+1)
i > w

(n)
i−1 the parameter τ must be chosen in such a way that

τ |L(w(n))| < (w
(n)
i − w

(n)
i−1)

which corresponds to

τ <
w

(n)
i − w

(n)
i−1

−Li(w(n))
. (41)
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Note that the right-hand term in (41) is strictly positive. For any fixed ∆x, the term
Li(w

(n)) tends to zero when n tends to infinity (this follows by the fact that the algorithm
converges to the fixed point). Then, the condition (41) is always satisfied in the limit.
We can also obtain the results similar to those proven for the continuous model. Let us
write

w
(n+1)
i − w

(n)
i−1

∆x
=

w
(n+1)
i − w

(n)
i

∆x
+

w
(n)
i − w

(n)
i−1

∆x
.

Since, as we have just seen, w
(n+1)
i −w

(n)
i−1 ≥ 0 and we know that w

(n+1)
i −w

(n)
i ≤ 0 (because

the algorithm computes a decreasing sequence), we obtain that w
(n)
i − w

(n)
i−1 ≥ 0 for any

∆x, and then, passing to the limit (in the case it exists),

lim
∆x→0+

w(xi) − w(xi − ∆x)

∆x
≥ 0 ,

which corresponds to the fact that the solution is increasing along the characteristic direc-
tion.

Two-dimensional analysis While the ambiguity issues can be investigated in one
dimension without loss of generality, real-world applications of (P)SFS require a two-
dimensional approach. The strategy developed in the one-dimensional case can be easily
generalized, and all the main results still hold. The only difference is a new condition on the
experimental set-up which is necessary to prove that w1 ≤ w2 implies Gτ (w1) ≤ Gτ (w2).
Assuming a square uniform N ×N grid with ∆x = ∆y, the scheme is now defined compo-
nentwise by

Gτ
i,j(w) := wi,j + τLi,j(w) , i, j = 1, . . . N (42)

where

Li,j(w) := (43)

− Ii,j

Qi,j
f2

√
f2

(
(∇̃xwi,j)2 + (∇̃ywi,j)2

)
+ (xi∇̃xwi,j + yj∇̃ywi,j)2 + Q2

i,j + e−2wi,j .

Let us assume that ∇̃wi,j is evaluated by 1
∆x

(wi,j − wi−1,j, wi,j − wi,j−1).

∂Gτ
i,j(w)

∂wi−1,j
=

τIi,jf
2

Qi,j

Aij(w)√
Bij(w)

(44)

where

Aij(w) := (x2
i + f2)

wi,j − wi−1,j

∆x2
+ xiyj

wi,j − wi,j−1

∆x2
(45)

Bij(w) : = f2
(

wi,j − wi−1,j

∆x

)2

+ f2
(

wi,j − wi,j−1

∆x

)2

+

+

(
xi

wi,j − wi−1,j

∆x
+ yj

wi,j − wi,j−1

∆x

)2

+ Q2
i,j (46)
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and an analogous result for ∂Gτ
i,j(w)/∂wi,j−1. With no further assumptions, the quan-

tity in (44) can be negative, due to the term xiyj in (45), which has no fixed sign.
Then, in order to get the same result as in the one-dimensional case, namely ‖JGτ‖∞ =
maxi,j {1 − 2τe−2wi,j}, we need to assume that

(x2
i + f2) (wi,j − wi−1,j) + xiyj (wi,j − wi,j−1) ≥ 0 (47)

and, analogously, that

(y2
j + f2) (wi,j − wi,j−1) + xiyj (wi,j − wi−1,j) ≥ 0. (48)

As the conditions (47)-(48) incorporate a coupling of image dimension and focal length,
they imply a condition on the experimental set-up. They are fulfilled if f is sufficiently
large, or if the surface is fully contained in the ”positive” region {x > 0, y > 0}.

4.2 The CFS scheme: properties and convergence

In order to simplify the notations, let us prove the result in the one-dimensional case.
Generalization to higher dimension is trivial and all the results are preserved. The semi-
discrete formulation of the CFS scheme was derived in [10, 11], we report it here for the
reader’s convenience. For any function w : R → R, we define the semi-discrete operator
F h as

F h[w](x) := min
a∈B(0,1)

{w(x + hb(x, a)) + hℓ(x, a)} + he−2w(x). (49)

The iterative algorithm can be written in compact form as

{
w(n+1)(x) = F h[w(n)](x) , n = 0, 1, . . .
w(0)(x) = −1

2
ln(I(x)f2).

(50)

As usual, the parameter h must be intended as a fictitious-time discretization step used
to integrate along characteristics in the semi-Lagrangian formulation. We do not consider
here the fully-discrete problem in which the operator F h is projected on a grid.
In the following we prove that the sequence generated by the algorithm (50) actually
converges to some function wh. Note that we employ here a different approach than the
one used in the previous subsection for the analysis of the VBW method. More precisely,
we will not prove that the operator F h is a contraction mapping, but we prove that the
sequence {w(n)}n≥0 is monotone decreasing and bounded from below.

Proposition 4.4 (boundedness from below) Let w ∈ C0(Ω). For any x ∈ Ω there
exists a step h = h(x) > 0 and a constant wmin ∈ R such that

w(x) ≥ wmin implies F h[w](x) ≥ wmin. (51)

Proof Let us consider separately two cases.
i) Let w(x) = wmin. We first note, by the definition of l in (11), that ℓ(x, 0) = mina{ℓ(x, a)}.
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Second, by the definition of b in (11), we have w(x + hb(x, 0)) = w(x) = mina{w(x +
hb(x, a))} since the minimum of w is attained at x by assumption. As a consequence, the
minimum in (49) is attained for a∗ = 0. Then,

F h[w](x) = w(x) − hI(x)f2 + he−2w(x) = wmin + h
(
e−2wmin − I(x)f2

)
.

For wmin sufficiently small, we get

e−2wmin − I(x)f2 ≥ 0

and then F h[w](x) ≥ wmin. Note that it is possible to choose a suitable wmin uniformly in
x. To this end, it is sufficient to choose wmin ≤ minx∈Ω w(0)(x).

(ii) Let w(x) > wmin. The continuity of w guarantees that there exists a ball B(x, ξ)
centred in x of radius ξ such that w(x′) > wmin for every x′ ∈ B(x, ξ). Let us denote by a∗

the arg min appearing in the definition of F h[w]. Defining ∆w = w(x + hb(x, a∗)) − wmin,
we have

F h[w](x) = w(x + hb(x, a∗)) + hℓ(x, a∗) + he−2w(x)

= wmin + ∆w + h(e−2w(x) + ℓ(x, a∗))

≥ wmin + ∆w + h(0 − I(x)f2).

Choosing h in such a way that h maxa b(x, a) < ξ, we have ∆w > 0. Moreover, we note
that ∆w does not tend to zero if h tends to zero. The conclusion follows by choosing
h ≤ ∆w/I(x)f2. ♣

Proposition 4.5 (monotonicity) Let us assume that w(n) ∈ C1(Ω) for any n ∈ N.
Then, for any n ∈ N there exists a step h = h(n) > 0 such that the sequence defined in
(50) verifies

w(n+1)(x) ≤ w(n)(x) for any x ∈ Ω.

Proof We first consider points x such that the corresponding a∗ is equal to zero at the first
iteration n = 0. These are the points where the initial guess w(0) is actually the correct
solution, see Section 3.2. In this case we have

w(1)(x) = w(0)(x) − hI(x)f2 + he−2w(0)(x) = w(0)(x).

Since the solution already reached convergence at these points, we can simply stop the
computation (so that w(n+1)(x) = w(n)(x) for any n).
Let us now consider a point x such that a∗(x) 6= 0 for n = 0. We prove the assertion by
induction on n. We have

w(1)(x) = w(0)(x + hb(x, a∗)) + hℓ(x, a∗) + he−2w(0)(x).
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Since a∗ 6= 0, we have

w(0)(x + hb(x, a∗)) + hℓ(x, a∗) < w(0)(x + hb(x, 0)) + hℓ(x, 0) = w(0)(x) − hI(x)f2 (52)

and then w(1)(x) < w(0)(x) − hI(x)f2 + he−2w(0)(x) = w(0)(x). Note that we could find two
different optimal controls a∗

1 = 0 and a∗
2 6= 0 in which the minimum is attained, so that

the strict inequality in (52) does not hold true. This issue can be fixed assuming that in
such an ambiguous case we keep a∗

1 as optimal control.

Now we prove that

w(n)(x) < w(n−1)(x) implies w(n+1)(x) < w(n)(x).

We have to prove that F h[w(n)](x) < F h[w(n−1)](x). Let us denote by a∗ the arg min
for F h[w(n−1)](x). Note that a∗ is in general different from the minimizing choice for
F h[w(n)](x)). Then it is sufficient to show that

w(n)(x + hb(x, a∗)) + hℓ(x, a∗) + he−2w(n)(x)

< w(n−1)(x + hb(x, a∗)) + hℓ(x, a∗) + he−2w(n−1)(x)

or, analogously, that

w(n)(x + hb(x, a∗)) − w(n−1)(x + hb(x, a∗)) + h
(
e−2w(n)(x) − e−2w(n−1)(x)

)
< 0.

Since the function z 7→ e−2z is differentiable and w(n)(x) ≥ wmin for any n (see Prop. 4.4),
we have (

e−2w(n)(x) − e−2w(n−1)(x)
)

< 2e−2wmin

(
w(n−1)(x) − w(n)(x)

)
.

Then, we only need to prove that

w(n)(x + hb(x, a∗)) − w(n−1)(x + hb(x, a∗)) + 2he−2wmin

(
w(n−1)(x) − w(n)(x)

)
< 0.

Let us define C := 2e−2wmin and use the first-order Taylor series expansion for w(n) and
w(n−1). We have

(1 − Ch)w(n)(x) + (Ch − 1)w(n−1)(x) + (53)

+hb(x, a∗) ·
(
∇w(n)(x) −∇w(n−1)(x)

)
+ O(h2) < 0.

When h tends to zero, the left hand side of the previous inequality tends to w(n)(x) −
w(n−1)(x), which is strictly negative by assumption. Then there exists a h sufficiently
small such that (53) holds true. ♣

To conclude, let us observe that assuming I ∈ C1(Ω), we have w(0) ∈ C1(Ω) and then
w(n) ∈ C1(Ω) for any n, since the regularity is preserved by the operator F h. Under this
assumption, the two previous propositions can be applied, and we get the convergence of
the sequence defined in (50).
Finally, note that the dependence of the step h on x and n is not an issue in the implemen-
tation of the numerical approximation because the space is discretized in a finite number
of nodes and the algorithm is stopped after a finite number of iterations.
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5 Overcoming the ambiguity

In this section we suggest a simple algorithm to overcome the ambiguity issue in some cases.
In particular, we try to reconstruct discontinuous surfaces. Numerical tests performed in
[4, 10, 11] clearly show that the PSFS algorithm is not able to catch discontinuities of
the surface. In fact, it tries to reconstruct a continuous surface with the same brightness
function as the original one. In order to deal with discontinuities, the idea is to perform
first a segmentation of the input image, dividing the domain into several subdomains. The
boundaries of the subdomains correspond to the curves of discontinuity of the brightness
function. Then, we apply the PSFS algorithm piecewise in every subdomain where the
brightness function is continuous. For each subdomain, initial data for the iterative schemes
are computed as in (25).
The question arises which boundary conditions have to be imposed at the boundary of
each subdomain. In the following we impose always state constraints boundary conditions
there.

Synthetic input data We test the new algorithm on a synthetic photograph of an
upside-down pyramid over a flat surface. See Fig. 9-a,b for the input photograph and the
true surface (the surface is reversed for visualization purposes).
Applying directly the PSFS algorithm, we obtain the surface depicted in Fig. 9-c, where
the discontinuity is totally lost. Note that the reconstructed surface has the same bright-
ness function as the original one. It is also worth to note that only the pyramid is well
reconstructed.
Applying the PSFS algorithm after the segmentation, we face to solve two separate prob-
lems (for the pyramid and for the frame). The result is shown in 9-d. This time the flat
surface is correctly reconstructed too, showing that our procedure works. For the exper-
iment, we used a 256 × 256 grid and f = 250. The reconstruction errors (depth error
compared to the ground truth) are summarized in Table 1.

Table 1: Errors for the test described in Section 5.

Algorithm L1 error L∞ error
Direct 8.74% 26.71%
Segmented 2.55% 4.80%

Real-world input data Our aim is now to show that the strategy to employ state
constraints boundary conditions at object boundaries works favourably, as in the synthetic
pyramid test.
As an example of an image for real-world data we consider the image at the top in Fig. 10.
The image was acquired with a Nikon D90 camera, and it has been downsampled to
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Figure 9: (a) Input image, (b) input surface (reversed), (c) reconstructed surface by a
direct application of the PSFS scheme (state constraint b.c.), (d) reconstructed surface
after segmentation (state constraint b.c.).

800× 531 pixels. The focal length in multiples of the resulting pixel size is 1525. As usual
for real-world imges, the reflectance and lighting parameters need to be estimated by us.
We employed the following numbers for the σ: 100000 for the background, 73000 for the
blue mug, and 110000 for the beige cup.
The segment borders separating the cup from the mug as well as those separating cup/mug
from background, were obtained here by hand. They were enhanced a bit in order to
mask out points where interreflections between the objects are very strong. The specular
highlight at the upper lip of the cup was also masked out since such specular reflections
are not included in our PSFS model. At the three resulting segments – cup, mug and
background – the PSFS equation was applied separately under state constraints boundary
conditions.
Let us turn to the corresponding experimental result, see Fig. 10 (bottom). The general
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shape of the objects and the background is captured in a rather accurate way. As expected,
there is no visible tendency to enforce continuous transition zones between the segments.
This shows that the proposed idea to use state constraint boundary conditions at the
borders of segmented objects works properly.
Concerning the quality of results we observe some artefacts, as expected for this relatively
difficult real-world input image. The cup is reflected on the surface of the mug, and in
addition there are a lot of specular reflections as by the rough surface of the mug, so that
its reconstruction is drawn towards the camera. Both cup and mug are reflected on the
green cardboard of the background, so that the latter is not reconstructed perfectly flat.
We also chose not to display the reconstruction of the ground the cup/mug are standing
on, since the absence of critical points there leads to a misinterpretation of the depth. The
underlying modelling assumptions are violated here: Objects should have at least one point
where the surface normal points to the camera and where the distance to it is minimal.
Moreover, the quality of the reconstruction of the ground is degraded since the reflections
of both the cup and the mug are strongly visible there.

Conclusion

In this paper, we have extensively studied analytically and numerically the PSFS model
and the related Hamilton-Jacobi equation.
It turns out that a generalized concave/convex ambiguity can still arise in the model as well
as in practical computations. This is particularly important at points where the sought
surface is not differentiable. A way to circumvent this difficulty is proposed here: We
combine PSFS with a segmentation step and state constraints boundary conditions at the
segment borders.
We have also proved the convergence of a finite-difference and a semi-Lagrangian numerical
scheme for the PSFS equation. In the latter case we employed an innovative technique for
the proof that can be useful also in other contexts than PSFS. Our theoretical results sup-
port the previous investigation about the generalized concave/convex ambiguity, assuring
that the ambiguity issues are not due to numerical artefacts. Finally, we have validated
with these schemes the currently most important iterative solvers for PSFS.
Modern models like the PSFS model studied here have a significant potential for appli-
cations. We believe that this paper represents an important step towards a deeper un-
derstanding of PSFS and other state-of-the-art SFS models as well as towards the use of
mathematically established numerical techniques in modern computer vision.
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Figure 10: Real-world input image (top) and 3-D reconstruction (bottom).

A Derivation of PSFS equation in Cartesian coordi-

nates

Starting from (1) and (2), we have (see Figure 1):

M(x, y) =
fu(x, y)

d(x, y)




x
y
−f


 ,
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where:
d(x, y) =

√
x2 + y2 + f2.

The two vectors ∂xM and ∂yM form a basis in the plane orthogonal to the normal direction
n̂(x, y) at the point M = M(x, y). We have

∂xM =
f

d3

(
d2u + d2xu − x2u, y(d2ux − xu), f(−d2ux + xu)

)⊤
,

∂yM =
f

d3

(
x(d2uy − yu), d2u + d2yuy − y2u, f(−d2uy + yu)

)⊤
.

After some algebra, we find

∂xM × ∂yM =
f2u

d2

(
f
(
ux −

xu

d2

)
, f

(
uy −

yu

d2

)
,
f2u

d2
+ xux + yuy)

)⊤

,

which, after a normalization, gives

n̂(x, y) =
±1√

f2‖∇u‖2 + (∇u · (x, y))2 + (fu/d)2




f(ux − xu/d2)
f(uy − yu/d2)

f2u

d2
+ ∇u · (x, y)


 . (54)

Knowing that in each visible point M the normal n̂ points towards C, it follows that the
right sign in (54) is equal to +, so we get from (54) and (4):

ω(x, y) · n̂(x, y) =
fu

d
√

f2‖∇u‖2 + (∇u · (x, y))2 + (fu/d)2
.

In conclusion, knowing that r = f u, Equation (6) can be written as:

dfu
√

f2‖∇u‖2 + (∇u · (x, y))2 + (fu/d)2 =
1

I
,

or, using the change in the unknown v = ln(u):

Idf
√

f2‖∇v‖2 + (∇v · (x, y))2 + (f/d)2 = e−2v, (55)

which easily gives the Hamilton-Jacobi equation (7), since Q = f/d.

B Derivation of PSFS equation in spherical coordi-

nates

Starting from (14)-(15), we have (see Figure 1):

ur :=
M(θ, φ)

r(θ, φ)
=




sin θ cos φ
sin θ sin φ

cos θ


 , uθ :=

∂θur

‖∂θur‖
=




cos θ cos φ
cos θ sin φ
− sin θ


 ,
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and

uφ :=
∂φur

‖∂φur‖
=




− sin φ
cos φ

0



 .

The new system S = (ur, uθ, uφ) is mobile and depends on the surface point M . The

coordinates of
−−→
CM in this new system are (r, 0, 0)⊤S .

The two vectors ∂θM and ∂φM form a basis in the plane orthogonal to the normal direction

n̂(θ, φ) at the point M = M(θ, φ). Since
−−→
CM = rur, we have

∂θM = rθur + ruθ and ∂φM = rφur + r sin θuφ,

and then
∂θM = (rθ, r, 0)⊤S and ∂φM = (rφ, 0, r sin θ)⊤S .

We can write the coordinates of the normal vector in the new system S as

n̂(θ, φ) = ± ∂θM × ∂φM

‖∂θM × ∂φM‖ = ± (r sin θ,−rθ sin θ,−rφ)⊤S
((r2 + rθ

2) sin2 θ + rφ
2)1/2

. (56)

Knowing that in each visible point M , the normal n̂ points towards C, and knowing that
sin θ ≥ 0, it follows that the right sign in (56) is equal to −, so we have:

ω(θ, φ) · n̂(θ, φ) = (−1, 0, 0)⊤S · (−r sin θ, rθ sin θ, rφ)
⊤
S

((r2 + rθ
2) sin2 θ + rφ

2)1/2
.

In conclusion, Equation (13) can be written as

sin θ

r((r2 + rθ
2) sin2 θ + rφ

2)1/2
= I

or, in an equivalent form, as (17).
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