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EISENSTEIN SERIES FOR PRINCIPAL CONGRUENCE

SUBGROUPS OF GL(2,Fq[T ])

ERNST-ULRICH GEKELER

Abstract. We determine the zeroes of Drinfeld-Goss Eisenstein
series for the principal congruence subgroups Γ(N) of Γ = GL(2, Fq[T ])
on the Drinfeld modular curve X(N).

MSC 2010: Primary 11F52; secondary 11T55, 11F85
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0. Introduction. In recent years, the study of Eisenstein series,
both for the classical modular group SL(2,Z) and the Drinfeld modular
group GL(2,Fq[T ]) and the arithmetic of their zeroes led to remarkable
and surprising results, see [1, 2, 4, 9, 10, 11, 21, 22, 24].

In the present paper we deal with the case of Eisenstein series for the
principal congruence subgroup

Γ(N) = {γ ∈ Γ | γ ≡ 1 (modN)}

of Γ = GL(2, A) for some N ∈ A := Fq[T ].

While the classical Eisenstein series

E(k)(z) =
∑

a,b∈Z

′
=

1

(az + b)k

(the
∑′ denotes the sum over all (a, b) 6= (0, 0)) have all their zeroes

in the standard fundamental domain on the unit circle (equivalently:
their j-invariants belong to the interval [0, 1728]), and the Drinfeld-
Goss Eisenstein series [18]

E(k)(z) =
∑

a,b∈A

′ 1

(az + b)k

have a similar property [2, 9], the situation drastically changes once we
replace Γ = GL(2, A) by Γ(N) as above. Here the basic functions are
partial sums of E(k) subject to congruence conditions. For technical
reasons, we work with the equivalent functions

E(k)
u (z) :=

∑′

a,b∈Fq(T )

(a,b)≡u ( mod A×A)

1

(az + b)k
,
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where u = N−1(u1, u2) with ui ∈ A, deg ui < degN (i = 1, 2). It turns
out that these Eisenstein series with level N have their zeroes in the
standard fundamental domain F in specified subdomains Fs “far away
from the unit circle”.

The description is given in Theorem 3.1, our main result. The dis-
tribution pattern of the zeroes is governed by the Goss polynomial
Gk(X) (see section 2) of the lattice A. Our results depend on the
determination of the Newton polygon of Gk(X) over the valued field
K∞ = Fq((T

−1)), which has been carried out in [13] for the case of a
prime field Fq. The general case will be given in [14].

The paper is organized as follows.

In section 1 we collect the necessary definitions, notations and back-
ground on Drinfeld modular forms and curves.

In section 2 we review facts about Goss polynomials and determine the

vanishing order of E
(k)
u at the cusp ∞.

Section 3 is devoted to the statement and proof of the main result

Theorem 3.1, which describes the location of the zeroes of E
(k)
u in the

fundamental domain F in terms of Goss polynomials. We also calcu-

late the spectral norm of E
(k)
u along F (Corollary 3.9).

Section 4 gives the overall picture of the zeroes of E
(k)
u on the modular

curve X(N).

We conclude in section 5 with a more detailed study of the two ex-
tremal cases where the weight k equals q+ 1 (the first non-trivial case;

if 1 ≤ k ≤ q then E
(k)
u = (E

(1)
u )k has no non-cuspidal zeroes) or where

the conductor N has degree one.

The present study suggests an abundance of natural questions, for ex-
ample about the arithmetic nature of the zeroes, about similar results
for other congruence subgroups of Γ, e.g., the Hecke congruence sub-
groups Γ0(N), or about the analogous number-theoretical case.

During work on this paper, the author enjoyed the hospitality of the
Centre de Recerca Matematica (CRM) in Bellaterra, Spain, whose sup-
port is gratefully acknowledged.

Notations.

F = Fq = finite field with q elements, q = power of the prime p
A = F[T ] = polynomial ring in an indeterminate T ,
As = {a ∈ A | deg a ≤ s}

K = F(T ) = quotient field of A
K∞ = F((T−1)) = completion of K at the place at infinity, with ring

of integers O∞ = F[[T−1]] and its absolute value | . | normalized
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such that |T | = q
C∞ = completed algebraic closure of K∞ w.r.t. | . |
Ω = C∞\K∞ the Drinfeld upper half-plane
| . |i : C∞ −→ R≥0 the “imaginary part” function, |z|i = infx∈K∞ |z−x|
N a fixed non-constant element of A, of degree δ
Γ = GL(2, A) the Drinfeld modular group, which acts on the projective

line P1(C∞) through fractional linear transformations
Γ(N) = {γ ∈ Γ | γ ≡ 1 (modN)} the principal congruence subgroup

with conductor N
Γ∞ = {γ ∈ Γ | γ =

(

∗ ∗
0 ∗

)

}, the stabilizer group of ∞ in Γ

Z = {
(

a 0
0 a

)

| a ∈ F∗} →֒ Γ, the kernel of the action on P1(C∞)
G(N) = Γ/Γ(N) · Z
Q≥0 = {a ∈ Q | a ≥ 0}

1. Modular forms and curves [6, 7, 9, 18, 19].

Recall that the Drinfeld half-plane Ω carries a natural structure of
C∞-analytic space, so the notion of an analytic (holomorphic, mero-
morphic) function on Ω is meaningful. We define the following analytic
subspaces of Ω:

(1.1) F := {z ∈ Ω | |z| = |z|i ≥ 1}

and for s ∈ Q≥0

Fs := {z ∈ Ω | |z| = |z|i = qs}.

Then F is the disjoint union of the Fs, and is a fundamental domain
for the action of Γ on Ω, that is, each z ∈ Ω is Γ-equivalent with
at least one and at most finitely many z′ ∈ F . The Fs are rational
subdomains, isomorphic with a “Riemann sphere” P1(C∞) minus q+1
disjoint open balls if s ∈ N0 = {0, 1, 2, . . .} (resp. minus 2 disjoint open
balls if s 6∈ N0), see [3, 16, 17]. Note that for z ∈ F and a, b ∈ K∞ the
following useful formula holds:

(1.2) |az + b| = max{|az|, |b|}.

We also need

(1.3)

Γs = {γ ∈ Γ | γ(Fs) ∩ F 6= ∅} = {γ ∈ Γ | γ(Fs) = Fs}

= GL(2,F), s = 0

= {
(

a b

0 d

)

∈ Γ | a, d ∈ F∗, b ∈ As}, s > 0.

Further, Γs(N) := Γs ∩ Γ(N) has size

(1.4) #Γs(N) = qmax([s]−δ+1,0),

where δ = degN ∈ N = {1, 2, 3, . . .} and [s] = largest integer n ≤ s.

Given a discrete A-submodule X of C∞ (i.e., the intersection of Λ
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with each ball B(0, s) with finite radius s is finite; such Λ are called
A-lattices), let

(1.5) eΛ(z) := z
∏

0 6=λ∈Λ

(1 − z/λ)

be its lattice function. The product converges, locally uniformly, and
defines an entire, surjective, F-linear function eΛ : C∞ −→ C∞, which
apparently is Λ-periodic and may be written as

(1.6) eΛ(z) =
∑

i≥0

αi(Λ)zqi

, α0(Λ) = 1.

Taking logarithmic derivatives, we get the identity of meromorphic
functions

(1.7)
e′Λ(z)

eΛ(z)
=

1

eΛ(z)
=

∑

λ∈Λ

1

z − λ
=: tΛ(z).

We define the uniformizer at ∞

(1.8) t(z) := tA(z) =
∑

a∈A

1

z − a
;

it yields an isomorphism of analytic spaces

(1.9) A\F
∼=

−→ B(0, 1) \ {0},

where the left hand side is the set of equivalence classes modulo the
action of A on F by shifts z 7−→ z + a and the right hand side the
pointed ball with radius 1 around zero. Regarded as a function on F ,
|t(z)| depends only on |z| = |z|i, and is a strictly decreasing function
of |z|. Similarly, we let

(1.10) tN(z) :=
1

eNA(z)
=

∑

a∈NA

1

z − a
,

which yields NA \ F
∼=

−→ B(0, r) \ {0} with some r.

1.11 Remark. For arithmetical purposes it is useful to choose other
normalizations of t resp. tN , which involve transcendental constants
and correspond to the classical ez

 e2πiz. That renormalization is
however irrelevant for our purpose, as is the precise value of the radius
r above.

For a function f of Ω and
(

a b

c d

)

= γ ∈ Γ, we put as usual

(1.12) f[γ]k(z) := (cz + d)−kf(
az + b

cz + d
),

which defines a right action of Γ on functions.

A modular form of weight k for Γ(N) is a holomorphic function f :
Ω −→ C∞ that satisfies
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(1.13) (i) for each
(

a b

c d

)

= γ ∈ Γ(N)), f(az+b
cz+d

) = (cz + d)kf(z);
(ii) for each γ ∈ Γ, the function f[γ]k has a power series expansion,
convergent for |z|i ≫ 0:

f[γ]k(z) =
∑

i≥0

ait
i
N(z).

Note that |z|i large is equivalent with |tN(z)| small, so the above expan-
sion is nothing else than the Laurent expansion of f[γ]k on the pointed

ball NA \ F
∼=

−→ B(0, r) \ {0}. It suffices to check property (ii) for γ
running through a set of representatives in the finite set

(1.14) cusps(N) := Γ/Γ(N)Γ∞.

We further let Mk(N) be the C∞-vector space of modular forms of
weight k for Γ(N) and M(N) =

⊕

k≥0Mk(N) the algebra of all mod-
ular forms.

1.15 Example. Let k be a natural number and 0 6= u ∈ (K/A)2 a
class with Nu = 0. The Eisenstein series

E(k)
u (z) :=

∑

(a,b)∈K2

(a,b)≡u ( mod A2)

1

(az + b)k

converges locally uniformly on Ω and defines an element 0 6= E
(k)
u of

Mk(N). Its study and notably the determination of its zeroes is our
main objective. We represent the row vector u by 1

N
(u1, u2) with ui ∈ A

not both zero, di := deg ui < δ = degN (i = 1, 2). Further, we will

restrict to considering E
(k)
u with u primitive of level N , i.e., N ′u 6= 0 for

proper divisors N ′ of N ; otherwise, we replace N by N/ gcd(u1, u2, N).

An easy calculation yields the fundamental property for
(

a b

c d

)

= γ ∈ Γ:

(1.16) E(k)
u (γz) = (cz + d)k(Euγ(z), that is, E(k)

u )[γ]k = E(k)
uγ ,

where uγ is the effect of right matrix multiplication of u with γ. We
abbreviate

Eu(z) := E(1)
u (z) =

∑

(a,b)≡u ( mod A2)

1

az + b
,

which by (1.7) equals e−1
u (z), with

(1.17) eu(z) := eAz+A(
u1z + u2

N
).

This shows in particular that Eu has no zeroes as a function on Ω.

Next, we discuss modular curves. We let X(N) be the smooth con-
nected algebraic curve over C∞ (the principal modular curve of level
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N , see [6, 18]) whose C∞-points are given by

X(N)(C∞) = Γ(N) \ Ω
·
∪ Γ(N) \ P1(K).

As Γ acts transitively on P1(K), we may identify

(1.18) cusps(N) = Γ/Γ(N)Γ∞

∼=
−→ Γ(N) \ P1(K),

which we call the set of cusps of X(N). Its cardinality is

(1.19) #cusps(N) = (q − 1)−1|N |2
∏

P |N
Pmonic, prime

(1 − |P |−2).

The function tN of (1.10) serves as a uniformizer at the cusp ∞, and
the behavior of e.g. modular forms f ∈Mk(N) at the cusp γ∞ (γ ∈ Γ)
is described through the behavior of f[γ]k at ∞.

Similarly, the principal modular curve X(1) of level 1 has points

X(1)(C∞) = Γ \ Ω
·
∪ {∞}

∼=
−→ P1(C∞),

where the identification is given by the Drinfeld j-invariant j : Γ\Ω
∼=

−→
C∞ defined and discussed e.g. in [5, 8, 19]. The curve X(N) is a
ramified Galois cover of X(1) with group

(1.20) G(N) := Γ/Γ(N)Z
∼=

−→ {γ ∈ GL(2, A/N) | det γ ∈ F∗}/Z,

where Z ist the group of F∗-valued scalar matrices, regarded simultane-
ously as a subgroup of Γ and of GL(2, A/N). Studying the ramification
of X(N) over X(1), one finds [5, 18]:

(1.21) g(N) = 1 +
|N | − q − 1

q + 1
#cusps(N)

for the genus g(N) of X(N). There is a line bundle M over X(N), of
degree

(1.22) deg(M) = (q2 − 1)−1#G(N) = (q + 1)−1|N |#cusps(N),

such that Mk(N) equals the space H0(X(N),M⊗k) of sections of the
k-fold tensor product M⊗k [7], VII 6.1, [18]. The order of vanishing
of Eu (= pole order of eu) at the cusps of X(N) is described in [6]
Korollar 2.2, see (2.12). It is the aim of the present work to give an
overall picture of the zeroes (both cuspidal and non-cuspidal) of all the

E
(k)
u .

Let now z ∈ Ω be Γ-equivalent with z′ ∈ F . Then z′ ∈ Fs with a
well-defined s ∈ Q≥0 (i.e., |z′| = |z′|i = qs is independent of the choice
of z′ ∈ F). We define the type

(1.23) type(z) := s,

which yields a function type: X(N) −→ Q≥0 ∪ {∞} (with the obvious
declaration type (z) = ∞ for cusps z). We may now state a weak form
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of our main result.

1.24 Theorem. All the zeroes of E
(k)
u on X(N) are at points with type

i ∈ N = {1, 2, 3 . . .} or i = ∞ (i.e., at cusps).

In Theorem 3.1 and Proposition 2.12 we will describe in detail which

and how often types i ∈ N ∪ {∞} occur as zeroes of E
(k)
u . In view

of (1.16), possibly replacing u by γu, we may restrict to studying the

behavior of E
(k)
u on the fundamental domain F .

2. Goss polynomials.

Let Λ ⊂ C∞ be an A-lattice with lattice function eΛ(z) =
∑

i≥0 αi(Λ)zqi

and tΛ(z) = 1
eΛ(z)

=
∑

λ∈Λ
1

z−λ
as in (1.5) to (1.8). The following result

has been proven in [19], see also [8].

2.1 Proposition. There exists a series of polynomials Gk,Λ(X) ∈
C∞[X] (k = 1, 2, 3, . . .) such that we have an identity of meromorphic
functions

∑

λ∈Λ

1

(z − λ)k
= Gk(tΛ(z)).

These Goss polynomials Gk = Gk,Λ satisfy

(2.2) Gk is monic of degree k with Gk(0) = 0;

(2.3) putting Gk(X) = 0 for k ≤ 0, the recurrence

Gk(X) = X(Gk−1(X) + α1Gk−q(X) + α2Gk−q2(X) + · · · )

with the coefficients αi = αi(Λ) of eΛ(z) holds;

(2.4) Gpk(X) = (Gk(X))p (p = char F = charK);

(2.5) X2(G′
k(X) = kGk+1(X);

(2.6) Gk(X) = Xk if k ≤ q.

2.7 Remark. For some questions it is useful to know how the quan-
tities eΛ, tΛ, Gk,Λ change if the lattice Λ is replaced by Λ′ = c · Λ with
0 6= c ∈ C∞. The relevant (and easily proved) formulas can be found
in [13] 2.20.

Recalling the notation of section 1, the identity

Eu(z) = tΛ(
u1z + u2

N
)

holds with the lattice Λ = Az + A. Therefore (2.4)+(2.6) yield the
following immediate consequence:

2.8 Corollary. Suppose that k = k1 · p
n with 1 ≤ k1 ≤ q. Then

E(k)
u = Ek

u
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holds. In particular, E
(k)
u has no non-cuspidal zeroes. �

From now on, we focus on the Goss polynomials of the A-lattice A,
which are crucial for our purposes. Therefore, Gk(X) = Gk,A(X) will
always refer to the lattice A; it is obvious from definitions that it has
coefficients in K∞. The next result has been shown in [13] in the spe-
cial case where q = p is prime; the proof of the general case will be
given in [14].

2.9 Theorem. Let 0 6= x ∈ C∞ be a zero of Gk(X) = Gk,A(X). Then

there exists some n ∈ N0 such that logq |x| = −q( qn−1
q−1

).

In terms of the Newton polygon of the polynomial Gk(X) over the
valued field K∞ ([23], Ch. II), the theorem may be phrased as fol-
lows: All the slopes of the Newton polygon of Gk(X) have the form
−q( qn−1

q−1
) for some n ∈ N0. (In fact, the possible n are less or equal to

logq(k − 1) − 1, see [13].)

Given k, we define

(2.10)

γ(k) := multiplicity of 0 as a zero of Gk(X),
and for n ≥ 0

γn(k) := number of zeroes x of Gk(X) (counted
with multiplicity) with logq |x| = −q( qn−1

q−1
)

= width of the segment with slope − q( qn−1
q−1

)

of the Newton polygon of Gk(X).

By the theorem, k = γ(k) +
∑

n≥0 γn(k). Explicit formulas for these
numbers in terms of the q-adic expansion of k− 1 can be found in [13]
and [14].

(2.11) As in (1.15), we let 0 6= u ∈ (K/A)2 with Nu = 0 be represented
by 1

N
(u1, u2) with ui ∈ A of degree di < δ = degA (i = 1, 2). We

put deg 0 = −∞ and evaluate formulas containing −∞ in the usual
fashion. In particular, qd1 = |u1| = 0 if u1 = 0.

2.12 Proposition. The vanishing order of E
(k)
u at the cusp ∞ equals

|u1|γ(k).

Proof. In what follows, we calculate formally and interchange limits
and summation orders. The estimates justifying these operations are
almost trivial, due to our non-archimedean situation, and are left to
the reader. We have

E(k)
u (z) =

∑

a,b∈A×A

1

((u1

N
+ a)z + u2

N
+ b)k

=
∑

a

∑

b

. . .

=
∑

a

Gk,A(tA((
u1

N
+ a)z +

u2

N
)).
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Suppose that u1 = 0. The terms corresponding to a 6= 0 in the double
sum vanish upon |z|i −→ ∞, which implies

E(k)
u (∞) =

∑

b∈A

1

(u2

N
+ b)k

= (
u2

N
)−k + smaller terms,

which thus doesn’t vanish. Let now u1 6= 0. As deg u1 < degN ,
Lemma 2.13 and the definition of γ(k) show that Gk,A(tA(u1

N
z+ u2

N
)) is

a power series in the uniformizer tN at infinity with precise vanishing
order |u1|γ(k), while the terms Gk,A(tA(u1

N
+ a)z + u2

N
with a 6= 0 have

strictly larger vanishing orders when regarded as power series in tN . �

2.13 Lemma. Let c, d be elements of A, c 6= 0. The function tA( c
N
z + d

N
)

may be expanded as a power series in tN(z) of shape C · t
|c|
N + terms of

higher order in tN with some constant C 6= 0.

Proof. The assertion is a well-known fact, and we give the proof for the
reader’s convenience only, who is assumed to be familiar with the basic
theory of Drinfeld modules as e.g. presented in [20] Ch. IV or [7] Ch.
IV.

Let ρ be the rank-one Drinfeld module that corresponds to the lattice
NA. It yields for each c ∈ A an operator polynomial ρc(X) of degree
|c| such that

(1) eNA(cz) = ρc(eNA(z))

holds. Further, the lattice functions of A and NA are related by

(2) eNA(Nz) = NeA(z).

Now

tA(
c

N
z + d) =

1

eA( cz+d
N

)

(2)
=

N

eNA(cz + d)

(1)
=

N

ρc(eNA(z)) + eNA(d)
.

Taking into account that eNA(z) = tN(z)−1 and expanding by t
|c|
N , we

get Nt
|c|
N divided by a polynomial in tN with non-vanishing absolute

term. �

3. The zeroes of E
(k)
u on F .

We keep the notation of (1.15) and (2.11): 0 6= u ∈ (K/A)2 with
Nu = 0, represented by 1

N
(u1, u2) with di = deg ui < δ = degN and

N ′u 6= 0 for all proper divisors N ′ of N . Our goal is to prove the
following result.

3.1 Theorem. Suppose that u1 6= 0. For i = 0, 1, 2, . . . , the Eisenstein

series E
(k)
u has γi(k)q

i+1 zeroes (counted with multiplicity) on Fδ−d1+i

and no other zeroes on F . If u1 = 0, E
(k)
u has no zeroes on F .
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In view of (1.16) and (2.12) we then know the location of all the zeroes

of all E
(k)
u on X(N) = Γ(N) \ (Ω ∪ P1(K)). In particular, Theorem

1.24 is a consequence of Theorem 3.1. As the group Γδ−d1+i(N) (which
by (1.4) has order qmax(i+1−d1,0)) acts without fixed points on Fδ−d1+i,

E
(k)
u has γi(k)q

min(d1,i+1) zeroes on

Γδ−d1+i(N) \ Fδ−d1+i →֒ Γ(N) \ Ω →֒ X(N).

Before proving the theorem, we collect some more information.

3.2 Lemma. Consider the functions z 7−→ t(u1z+u2

N
) and Eu = E

(1)
u

on F and their absolute values. Then

(i) |Eu(z)| = |t(u1z+u2

N
)|.

(ii) logq |t(
u1z+u2

N
)| = −q qs+d1−δ−1

q−1
, s ≥ δ − d1

= min(δ − d1 − s, δ − d2), s < δ − d1

for z ∈ Fs, s ∈ N0

(iii) logq |t(
u1z+u2

N
)| depends only on s = logq |z|. Regarded as a func-

tion of s ∈ Q≥0, it is linear on intervals [i, i+ 1]∩Q≥0, i ∈ N0.

Proof. (i) As Eu(z) = eAz+A(u1z+u2

N
)−1 and t(u1z+u2

N
) = eA(u1z+u2

N
)−1,

both numbers differ by the factor
∏

a,b∈A
a6=0

(1− u1z+u2

N(az+b)
). Since |u1z+u2| <

|Naz| ≤ |N(az + b)|, that factor has absolute value 1.
(ii) This follows from an elementary (but tedious) calculation, using
(1.2), and is left to the reader.
(iii) This is a general property of invertible holomorphic functions, see
e.g. [25], but results in our case from the calculation that shows (ii). �

We thus have control on |t(u1z+u2

N
)|. In particular, for z ∈ F :

(3.3) |t(
u1z + u2

N
)| > 1 ⇔ |z| < qδ−d1 .

Next, let Fs be one of the subspaces described in (1.1). For a holomor-
phic function f on Fs, let

(3.4) ‖f‖s = sup{f(z) | z ∈ Fs} = max{f(z) | z ∈ Fs}

denote the spectral norm on Fs.

3.5 Lemma. Suppose that f may be written as f = fp + fc with a
holomorphic principal part fp and a complementary part fc that satisfy
‖f‖s = ‖fp‖s > ‖fc‖s. Then the number of zeroes of f on Fs (counted
with multiplicity) agrees with the number of zeroes of fp on Fs.

Proof. Without restriction, ‖f‖s = 1. Let x1, . . . , xn (resp. y1, . . . , ym)
be the zeroes of f (resp. fp) on Fs, each counted with multiplicities.
Then ([3], Théorème I.2.2) we can write

f(z) =
∏

1≤i≤n

(z − xi)g(z),
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where |g| = ‖f‖s = 1 is constant on Fs. Similarly, fp(z) =
∏

1≤j≤m(z−

yj)gp(z) with |gp| = 1 on Fs. Since the canonical reductions f and fp

of f and fp agree, we find n = number of zeroes of f = number of

zeroes of fp = m. �

As in the proof of (2.12), we write

(3.6) E(k)
u (z) =

∑

a∈A

Gk(t((
u1

N
+ a)z +

u2

N
)).

3.7 Lemma. Put fp(z) := Gk(t(
u1z+u2

N
)) and fc := E

(k)
u −fp. For each

s ∈ Q≥0, the (in-)equalities

‖fp‖s = ‖E(k)
u ‖s > ‖fc‖s

hold.

Proof. For s given, let σ := logq |t(
u1z+u2

N
)| be the constant absolute

value of the function z 7−→ t(u1z+u2

N
) on Fs. Write the Goss polynomial

(1) Gk(X) =
∏

1≤i≤n

(X − xi)
∏

1≤j≤m

(X − yj) (n+m = k)

with zeroes xi and yj that satisfy |xi| < qσ, |yj| ≥ qσ. Note that n > 0
since Gk(X) is divisible by X (and even by X2 if k > 1). Replacing the
term fp, which corresponds to a = 0 in (3.6), by Gk(t((

u1

N
+ a)z + u2

N
))

with a 6= 0, the quantity

|eA(
u1

N
+ a)z +

u2

N
| = |eA(

u1z + u2

N
+ eA(az)| = |eA(az)|

becomes strictly larger, as follows from (3.2). Hence for the reciprocals:

qσa := |t((
u1

N
+ a)z +

u2

N
)| < |t(

u1z + u2

N
)| = qσ.

Since these functions are invertible on Fs, the absolute values are con-
stant on Fs and agree with the spectral norms. We read off from (1)
that ‖Gk(t((

u1

N
+ a)z + u2

N
))‖s decreases compared to ‖fp‖s by a factor

smaller or equal to
∏

1≤i≤n(sup(qσa , |xi|)q
−σ) < 1. As σa −→ −∞ with

increasing deg a, we are done. �

Proof of Theorem 3.1. From the preceding lemmas, the number of ze-

roes of E
(k)
u and of fp(z) = Gk(t(

u1z+u2

N
)) on Fs agree. We abbreviate

τ(z) for t(u1z+u2

N
).

If u1 = 0, then τ(z) and fp(z) = Gk(τ(z)) are constant, and there are
no zeroes of fp on F . Thus suppose u1 6= 0. By (2.9) there are precisely

γi(k) many values τ of τ(z) with logq |τ | = −q( qi−1
q−1

) (i = 0, 1, 2, . . .)

which are zeroes of Gk(X), and no other zeroes. By (3.2), these arise
on Fδ−d1+i.

How many z ∈ Fδ−d1+i are there that give rise to the same value of
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τ(z)?

We have for z, z′ ∈ Fδ−d1+i:

τ(z) = τ(z′) ⇔ eA(
u1z + u2

N
) = eA(

u1z
′ + u2

N
)

⇔ eA(
u1(z − z′)

N
) ⇔ z − z′ ∈

N

u1

A

Hence the map τ is m-to-one on Fδ−d1+i, with

m = #{
w

u1

∈
N

u1

A | |
w

u1

| ≤ qδ−d1+i}

= #{w ∈ NA | degw ≤ δ + i} = qi+1.

Therefore there are precisely γi(k)q
i+1 zeroes of fp, thus of E

(k)
u , on

Fδ−d1+i (i = 0, 1, 2, . . .), and no other zeroes on F . �

The spectral norm defines a function

(3.8)
ν

(k)
u : Q≥0 −→ R

s 7−→ ‖E
(k)
u ‖s.

Recall that Gk(X) is exactly divisible by Xγ(k). Let gγ(k) be the coeffi-

cient of Xγ(k) and ψ(k) := − logq |gγ(k)| ∈ N0 its ∞-adic valuation. We
further need ω(k), the largest i such that γi(k) > 0 (which is less than
logq(k − 1) [13]).

3.9 Corollary. The function ν
(k)
u enjoys the following properties:

(i) logq |ν
(k)
u | is linear on intervals [i, i+ 1] ∩ Q≥0, i ∈ N0;

(ii) ν
(k)
u is non-increasing;

(iii) if u1 = 0 then ν(s) = |E
(k)
u (z)| = 1 for each s ∈ Q≥0 and z ∈ F .

From now on, suppose u1 6= 0. Then

(iv) ν
(k)
u (s) = |E

(k)
u (z)| for each z ∈ Fs if s 6∈ {δ−d1+i | γi(k) 6= 0}.

Let s ∈ N0.

(v) If s ≤ δ − d1 then logq ν
(k)
u (s) = k · min(δ − d1 − s, δ − d2);

(vi) if s ≥ δ − d1 + ω(k) then logq ν
(k)
u (s) = −γ(k) qs−δ+d1−1

q−1
− ψ(k).

Proof. (i) follows from (3.1), i.e., the fact that E
(k)
u has its zeroes in F

only in
⋃

s∈N
Fs.

(ii) results from (3.2) (the non-increasingness of logq |t(
u1z+u2

N
)| as a

function of logq |z|) and (3.7).
(iii) has already been shown in the proof of (3.1).

(iv) comes from the description of zeroes of E
(k)
u .

(v) If z ∈ Fs with s ∈ N0, s < δ − d1 then logq |t(
u1z+u2

N
)| = min(δ −

d1 − s, δ − d2) > 0 (cf. (3.2)), so t(u1z+u2

N
) is larger in absolute value

than the zeroes of Gk(X), and |E
(k)
u (z)| = |Gk(t(

u1z+u2

N
))| is determined
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through the leading term of Gk.
(vi) For z ∈ Fs with s > δ − d1 + ω(k), |t(u1z+u2

N
)| < |x| for each zero

x 6= 0 of Gk(X), hence |E
(k)
u (z)| is given by the lowest order term of

Gk. �

3.10 Remark. Combining the explicit description of the Newton poly-
gon of Gk(X) given in [13] and [14] with (3.2), it is possible to work

out the precise value of ν
(k)
u (s) = ‖E

(k)
n ‖s also for s on the critical strip

{δ − d1, δ − d1 + 1, δ − d1 + ω(k)}.

4. Distribution of the zeroes of E
(k)
u on X(N).

Recall that G(N) = Γ/Γ(N) · Z is the group of the ramified Galois

covering of X(N) over X(1)
∼=

−→ P1(C∞). It acts transitively on the
set of cusps

cusps(N) = Γ/Γ(N) · Γ∞

and on

(4.1) Eis(N) := {u ∈ (K/A)2 | Nu = 0}prim/Z,

where {. . .}prim refers to those u for which N ′u 6= 0 for all proper
divisors N ′ of N . As non-primitive u’s give rise to Eisenstein series

E
(k)
u of strictly smaller level than N and Z-equivalent u, u′ yield es-

sentially the same Eisenstein series (i.e., u′ = cu with c ∈ F∗
∼=

−→ Z

implies E
(k)
u′ = c−kE

(k)
u ), we use Eis(N) as an index set for them. Both

cusps(N) and Eis(N) have the same cardinality

(4.2) #Eis(N) = #cusps(N) = (q − 1)|N |2
∏

P |N
P monic, prime

(1 − |P |−2).

(In [6] sect. 3 it is shown how one can find a common set of represen-
tatives in G(N) for both sets which actually is a subgroup of G(N).)

Now let us count the total number of zeroes of E
(k)
u . Choose a set

R of representatives for G(N) in Γ. In view of (1.16) and X(N) =
⋃

γ∈R γ(F ∪ {∞}), non-cuspidal zeroes of E
(k)
u on X(N) are described

by pairs (γ, z), where γ ∈ R and z is a zero of E
(k)
uγ on F . Two such

pairs, (γ1, z1) and (γ2, z2), yield the same zero if and only if γγ1z1 = γ2z2

with some γ ∈ Γ(N). If so, type(z1) = type(z2), i.e., z1 and z2 belong
to the same Fs (s ∈ N) and are equivalent under Γs. On the other

hand, if z1 ∈ Fs is a zero of E
(k)
uγ1 and z2 = βz1 with β ∈ Γs, then there

exists a unique γ2 ∈ R such that z2 is a zero of E
(k)
uγ2 . Hence the equiv-

alence class of (γ, z) has length #Γs/Z = (q − 1)qs+1. We thus find
(where we abuse language and write #{. . .} for the number of zeroes
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counted with multiplicity):

# {non-cuspidal zeroes of E
(k)
u on X(N)}

=
∑

γ∈R

∑

s∈N

#{zeroes of E
(k)
uγ on Fs}

(q − 1)qs+1

= (q − 1)qδ
∑

v∈Eis(N)

∑

s∈N

#{zeroes of E
(k)
v on Fs}

(q − 1)qs+1
,

as each E
(k)
v occurs (q − 1)qδ times as E

(k)
uγ when γ runs through R.

For v = class of N−1(v1, v2) with deg vi < δ (i = 1, 2), we let d1 =
d1(v) = deg v1. With (3.1) the expression becomes

qδ
∑

v∈Eis(N)

∑

i≥0

γi(k)q
i+1

qδ−d1(v)+i+1
=

∑

v∈Eis(N)

qd1(v)
∑

i≥0

γi(k)

=
∑

v∈Eis(N)

|v1|
∑

i≥0

γi(k).

A similar calculation, based on (2.12), yields
∑

v∈Eis(N) |v1|γ(k) for the

number of cuspidal zeroes of E
(k)
u on X(N). Together

#{zeroes of E
(k)
u on X(N)}

=
∑

v∈Eis(N)

|v1|(
∑

i≥0

γi(k) + γ(k)) = k
∑

v∈Eis(N)

|v1|.

As may be verified by elementary means (although this is rather deli-
cate), but also follows from Korollar 2.2 in [6], the identity

(4.4)
∑

v∈Eis(N)

|v1| = |N |
#cusps(N)

q + 1
= deg(M)

holds. Hence the above calculation is (of course ...) compatible with
(1.22). Beyond the sheer number, it exhibits a more precise picture of
the location of the zeroes, which will be exemplified in the next section.

5. Examples.

We consider in more detail the two extremal cases where either the
weight k or the conductor N is as small as possible without leading to
a trivial situation. We keep the notation of the preceding sections.

5.1 Example. Let k = q + 1 and u ∈ (K/A)2 be primitive of level N .
Here Gk(X) = Gq+1(X) = Xq+1 + α1X

2 with a constant α1 ∈ O∞ of
absolute value 1, so γ(q + 1) = 2, ψ(q + 1) = 0 = ω(q + 1) (cf. (3.8)).

If u1 = 0 then E
(q+1)
u has no zeroes on F ∪{∞} and |E

(q+1)
u | = 1 on F .



EISENSTEIN SERIES 15

Thus suppose u1 6= 0. Then E
(q+1)
u has (q − 1)q zeroes on Fδ−d1 and

no other zeroes on F . The formulas of (3.9) yield for z ∈ Fs, s ∈ N0:

logq |E
(q+1)
u (z)| = (q + 1) min(δ − d1 − s, δ − d2), s < δ − d1

= −2q qs−δ+d1−1
q−1

, s > δ − d1

‖E
(q+1)
u ‖δ−d1 = 1

The zeroes of E
(q+1)
u are of type s with s = δ − d1 between 1 and δ.

The considerations of Section 4 show that

#{x ∈ X(N) | x is a non-cuspidal zero of type s of E
(q+1)
u }

= (q − 1)#{v ∈ Eis(N) | d1(v) = δ − s},

which apart from s and δ = degN depends in general on the split-
ting type of N . However for s = δ that number is (q − 1)#{v ∈
Eis(N) | d1(v) = 0} = (q − 1)|N |. Hence the number (counted

with multiplicity) of all zeroes of type δ of all E
(q−1)
u (u ∈ Eis(N))

is (q − 1)|N |#Eis(N) = #G(N).

As G(N) acts on the corresponding set Z, and acts fixed-point free
(the only fixed points of G(N) are at cusps and at elliptic points, of
type 0), Z forms one orbit of G(N), of size #G(N). We have thus
shown the following result.

5.2 Proposition. Let u, v ∈ (K/A)2 be primitive of level N and in-
equivalent modulo Z (i.e., v 6= cu, c ∈ F∗). The sets of zeroes of type

δ = degN of E
(q+1)
u and E

(q+1)
v are disjoint, and all these zeroes are

simple.

5.3 Remarks. (i) It would be interesting to know whether such prop-

erties (simplicity of non-cuspidal zeroes of E
(k)
u , disjointness of the cor-

responding divisors) hold in greater generality. Of course, (2.4) and
(2.8) yield some restrictions.

(ii) Since Z = {x ∈ X(N) of type δ|∃u ∈ Eis(N) s.t. E
(q+1)
u (x) = 0}

forms an orbit under G(N), it corresponds to one point j(Z) on the

modular curve X(1)
∼=

−→ P1(C∞) without level. From [12] 2.3 we see
that logq |j(Z)| = qδ+1. It is worthwhile to determine that number

and, more generally, the j-invariants of other zeroes of E
(k)
u and to

study their arithmetic. See (5.8) for a special case.

Finally, we treat the case where the weight k is unrestricted but δ =
degN = 1, without restriction, N = T .

5.4 Example. The case N = T .
The modular curve X(T ), of genus 0, is a well-studied object, see e.g.
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[1, 2, 15]. There are natural identifications

(5.5)

G(T ) = PGL(2,F)

cusps(T ) = G(T )/B
∼=

−→ P1(F)

class of
(

a b

c d

)

7−→ (a : c)

Eis(T ) = B \G(T )
∼=

−→ P1(F),
class of T−1(u1, u2) 7−→ (u1 : u2)

where B = {
(

∗ ∗
0 ∗

)

} ⊂ G(T ) is the standard Borel subgroup and u1, u2 ∈
F. (The description in [6] sect. 3 might be helpful. It applies to general
conductors.) Going through the identifications we find:

(5.6) E
(k)
u with u = T−1(u1, u2) vanishes at the cusp (a : c) of X(T ) if

and only if u1a+ u2c 6= 0. In this case, the vanishing order is γ(k).

For each cusp (a : c) let αa:c =
(

a ∗
c ∗

)

∈ GL(2,F) →֒ Γ be a representa-
tive, and let R = {αa:c | (a : c) ∈ cusps(T )}. Then

X(T ) =
⋃

α∈R

α(F ∪ {∞}),

where the intersection of α(F ∪ {∞}) and β(F ∪ {∞}) for α, β ∈ R,
α 6= β, is in α(F0) = β(F0) = F0. This corresponds to the fact that
the Bruhat-Tits tree T of PGL(2, K∞) divided out by Γ(T ) is a star
composed of q+1 half lines •−−−•−−−•−− · · · glued together in
their origins, see [15] and [1]. For u = T−1(u1, u2) as above, the zeroes

of E
(k)
u on X(T ) are

• γ(k) zeroes at each of the q cusps (a : c) with u1a+ u2c 6= 0;
• γi(k) zeroes (counted with multiplicity) on αa:c(F1+i), for each

of the q representatives αa:c with u1a+ u2c 6= 0.

The conjunction of the two examples is the case where

(5.7) N = T and k = q + 1 .

There are precisely #Eis(T ) × γ0(q + 1) × degM = (q + 1)(q − 1)q =

#G(T ) non-cuspidal zeroes of E
(q+1)
u , u ∈ Eis(T ), all different, which

form a complete orbit under G(T ). Here we can directly calculate the
j-invariant.

5.8 Proposition. Let z ∈ X(T ) be a non-cuspidal zero of E
(q+1)
u for

some u ∈ Eis(T ). Then j(z) = (T q−T )q+1

T q−2T
.

Proof. As in the proof of (2.13), we use rudiments of the theory of
Drinfeld modular forms and the corresponding notation, see [8] or [9].

Fix 0 6= u ∈ (K/A)2 with Tu = 0, let E := Eu and e := E−1. Then

(1) E(q+1)
u (z) = Gq+1,Λ(E(z))
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with the lattice Λ := Az + A in C∞ (cf. (2.8)).

(2) Gq+1,Λ(X) = Xq+1 + α1X
2,

where α1 = α1(Az+A) is the first coefficient of eΛ(ω) =
∑

i≥0 αi(Az+

A)ωqi

. Regarded as a function of z, α1 is a modular form of weight
q − 1 for Γ.

Let φ be the Drinfeld module corresponding to Λ, given by the operator
polynomial

φT (X) = TX + gXq + ∆Xq2

with g,∆ ∈ C∞, ∆ 6= 0. Again, g and ∆ depend in such a way on z
that they are modular forms of weights q − 1 and q2 − 1, respectively.
In fact, from the functional equation of eΛ,

(3) eΛ(Tz) = φT (eΛ(z),

we find

(4) α1(z) =
1

T q − T
g(z).

Also from (3) and (1.7), e = E−1 is a T -division point of φ, i.e., φT (e) =
0, and since e has no zeroes,

(5) T + geq−1 + ∆eq2−1 = 0

identically on Ω. From (1), (2), (4) we see

(6) E(q+1)
u (z) = 0 ⇔ Eq−1

u +
g(z)

T q − T
= 0 ⇔ g(z) =

T − T q

eq−1(z)
.

Thus, if z is a zero then (5) and (6) imply

∆(z) =
T q − 2T

eq2−1(z)
,

and so

j(z) =
gq−1(z)

∆(z)
=

(T q − T )q+1

T q − 2T

as stated. �

References

[1] L. Carbone, L. Cobbs, S.H. Murray: Fundamental domains for congruence
subgroups of SL2 in positive characteristic. Submitted.

[2] G. Cornelissen: Geometric properties of modular forms over rational function
fields. Thesis Universiteit Gent 1997.
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