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March 2, 2011

Abstract

A conforming finite element method on polygonal meshes is reviewed
which handles hanging nodes naturally. Trial functions are defined to ful-
fil the homogeneous PDE locally and they are treated by means of lo-
cal boundary integral equations. Using a quasi-interpolation operator of
Clément type a residual-based error estimate is obtained. This a posteri-
ori estimator can be used to rate the accuracy of the approximation over
polygonal elements or it can be applied to an adaptive BEM-based FEM.
The numerical experiments confirm our results and show optimal conver-
gence for the adaptive strategy on general meshes.

Keywords non-standard finite element method · a posteriori error esti-
mate · adaptivity · polygonal/polyhedral mesh

Mathematics Subject Classification (2000) 65N15 · 65N30 · 65N38 ·
65N50

1 Introduction

The interest in more flexible and general meshes for the numerical approximation
of boundary value problems has been increased. Brezzi, Lipnikov and Shashkov
published convergence results for the mimetic finite difference method on polyhe-
dral meshes [4]. Other authors like Doleǰśı, Feistauer and Sobot́ıková analysed the
discontinuous Galerkin method on such meshes [9]. In recent years, residual error
estimates have been invented for these two methods and their variations [2, 3].
This increased interest shows the need for advanced methods which handle gen-
eral meshes.
In contrast to the non-conforming mimetic finite difference method and the dis-
continuous Galerkin method, we review a conforming finite element method with
local PDE-harmonic trial functions. This BEM-based finite element method was
first proposed by Copeland, Langer and Pusch [7] in 2009. Copeland additionally
discussed the method for Helmholtz and Maxwell equations in [8] and a rigorous
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error analysis was performed by Hofreither, Langer and Pechstein [11]. Local
boundary integral formulations as well as boundary element methods (BEM) in
the numerics are used to treat the implicitly defined trial functions.
In the following section, we introduce the stationary isotropic heat equation and
its variational formulation as a model problem. Additionally, we state the reg-
ularity assumptions on a polygonal mesh and give some notations as well as a
short introduction into boundary integral formulations. Afterwards, in the third
section, the BEM-based finite element method is described.
In section four, we list a few properties of regular polygonal meshes, use them to
introduce a quasi-interpolation operator and prove approximation estimates with
the help of [17]. Using this operator in section five, the reliability of a residual-
based error estimator is proven in the style of Verfürth [18]. This a posteriori
error estimate allows to rate the accuracy of the approximation over polygonal
elements.
The numerical examples at the end confirm our results and show optimal rates of
convergence for an adaptive finite element strategy on polygonal meshes. Finally,
we discuss a special property of refined meshes for the adaptive BEM-based FEM
and give some conclusions.

2 Preliminaries

We choose a model problem to study the special finite element method, namely
the stationary heat equation with isotropic material properties. Let Ω ⊂ R2 be a
bounded polygonal Lipschitz domain with boundary Γ = ΓD ∪ ΓN and |ΓD| > 0.
The boundary value problem reads

−div(a(x)∇u(x)) = f(x) for x ∈ Ω, (1)

u(x) = gD(x) for x ∈ ΓD,

a(x)∇u(x) · n(x) = gN(x) for x ∈ ΓN ,

where f ∈ L2(Ω), gD ∈ H1/2(ΓD), gN ∈ L2(ΓN), n the outer normal vector of Ω
and a ∈ L∞(Ω) piecewise constant with 0 < amin ≤ a(x) ≤ amax for x ∈ Ω. The
properties of a ensure the coercivity of the problem. Since gD ∈ H1/2(ΓD), an
extension uD of gD exists with uD ∈ H1(Ω).
In contrast to [7, 11], we are dealing with mixed boundary conditions and we do
not simplify the problem to end up with the Laplace equation as in [11]. Let
V = H1

D(Ω) = {v ∈ H1(Ω) : γ0v = 0 on ΓD} and uD + V = {uD + v : v ∈ V },
where γ0 : H1(Ω)→ H1/2(Γ) is the trace on Γ defined in [1]. Then we obtain the
variational formulation

Find u ∈ uD + V : aΩ(u, v) = (f, v) + (gN , v)ΓN
, ∀v ∈ V
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with the L2-scalar products (·, ·) and (·, ·)ΓN
over Ω and ΓN , respectively, and the

bilinear form

aΩ(u, v) =

∫
Ω

a(x)∇u(x) · ∇v(x) dx.

Using the representation u = uD + u0, u0 ∈ V , we rewrite the formulation

Find u0 ∈ V : aΩ(u0, v) = (f, v) + (gN , v)ΓN
− aΩ(uD, v), ∀v ∈ V.

The bilinear form aΩ(·, ·) is bounded and coercive on V . Therefore, the problem
has a unique solution according to the Lax-Milgram theorem.

E′

E

K

TE′

TE

α0

z

Figure 1: Element with two isosceles triangles adjacent to the node z (left),
triangle and rectangle which are turned to polygons (right)

For the numeric, we have to introduce a discretization Kh of the domain Ω. We
allow polygonal meshes which are a generalisation of standard triangulations as
well as of quadrilateral meshes. The compact polygonal elements K ∈ Kh are
non-overlapping. In every corner of an element is a node, but it is also possible,
that there are more nodes on the boundary of each element, see Figure 1. We
stress this fact more carefully. If we have a triangle with three nodes and we add
some nodes on the boundary, this triangle turns formally into a polygon. These
additional nodes will enrich the approximation space in the finite element method
in section 3. In this context, hanging nodes appear naturally since they are just
classical nodes for polygons. An edge is always located between two nodes and
the intersection of two edges is either empty or a node. It is not allowed that an
edge contains more than two nodes, the start and the end point. We have

Ω =
⋃

K∈Kh

K.

The diameter of an element K ∈ Kh and the length of an edge E are denoted by
hK and hE, respectively.

Definition 1. The mesh Kh is called regular if it fulfils:

1. There is an angle α0 with 0 < α0 ≤ π/3 such that for all elements K ∈ Kh
and all its edges E ⊂ ∂K the isosceles triangle with longest side E and two
interior angles α0 lies inside the element K. This triangle is labelled TE,
see Figure 1.
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2. There is a constant c1 > 0 such that for all elements K ∈ Kh and all its
edges E ⊂ ∂K we have hK ≤ c1hE.

3. All elements K ∈ Kh are convex.

The first condition ensures that the interior angles of the polygonal elements
are bounded away from zero and that the elements do not get too thin. This
condition is more restrictive than the inner cone condition, since it additionally
bounds the thickness of the elements from below. The second condition says that
the length of an edge of an element is not too small compared with the size of
the element. In the case that we deal with a sequence of meshes, for example in
adaptive strategies, the conditions have to hold uniformly for all h > 0.
Additionally, we assume in the following that hK < 1 for all elements K ∈ Kh.
This condition is no grievous restriction on the mesh, since hK < 1 can always be
satisfied by scaling Ω. Nevertheless, it is needed for the local boundary integral
formulations.
We need some more notation. Nh is the set of all nodes in the mesh Kh. It isNh =
Nh,Ω∪Nh,D∪Nh,N where Nh,Ω, Nh,D, Nh,N contain the nodes in the interior of Ω,
on the Dirichlet boundary ΓD and on the interior of the Neumann boundary ΓN ,
respectively. We label the set of all edges of the mesh with Eh. Moreover, the
sets N (K) and N (E) contain all nodes which belong to the element K ∈ Kh and
the edge E ∈ Eh, respectively. Since elements are compact subdomains of Ω, we
label the interior of an element K ∈ Kh with K̊.
In the following we assume that the coefficient a is constant on each element
K ∈ Kh and we write a(x) = aK for x ∈ K.
In the remainder of this section, we introduce some expressions from the theory
of boundary integral formulations. We focus on the partial differential equation
of our model problem on each element K ∈ Kh. Since the coefficient a is constant
on each element, it can be taken out of the divergence expression. This yields
the Poisson equation

−∆u = f/aK on K̊.

For the following theory of boundary integral formulations, we need the usual
trace operator γK0 : H1(K̊)→ H1/2(∂K) which is defined in [1], for example. Let
v ∈ H1(K̊) with ∆v in the dual of H1(K̊). Due to Green’s first identity [12],
there exists a unique function γK1 v ∈ H−1/2(∂K) such that∫

K

∇v(y) · ∇w(y) dy =

∫
∂K

γK1 v(y)γK0 w(y) dsy −
∫
K

w(y)∆v(y) dy

for w ∈ H1(K̊). We call γK1 v the conormal derivative of v. If v is smooth, e.g.
v ∈ H2(K̊), we have

(γK1 v)(x) = nK(x) · (γK0 ∇v)(x) for x ∈ ∂K,

4



where nK(x) denotes the outer normal vector of the element K at x. The trace
and the conormal derivative are also called Dirichlet and Neumann trace for the
Laplace equation. The correct Neumann trace for the original equation (1) on
∂K is aKγ

K
1 u.

Additionally, we need the fundamental solution of the Laplacian. This singular
function is given as

U∗(x, y) = − 1

2π
ln |x− y| for x, y ∈ R2.

The fundamental solution fulfils the equation

−∆yU
∗(x, y) = δ0(y − x),

where δ0 is the Dirac delta distribution. If we substitute v(y) = U∗(x, y) in
Green’s second identity∫

K

(v(y)∆u(y)− u(y)∆v(y)) dy =

∫
∂K

(
γK0 v(y)γK1 u(y)− γK0 u(y)γK1 v(y)

)
dsy,

we obtain a representation formula for the solution u in every point x ∈ K̊. It
reads

u(x) =

∫
∂K

U∗(x, y)γK1 u(y) dsy −
∫
∂K

γK1,yU
∗(x, y)γK0 u(y) dsy +

∫
K

U∗(x, y)
f(y)

aK
dy.

The boundary functions γK0 u and γK1 u are called Dirichlet data and Neumann
data, respectively. If this boundary data is known, it is possible to evaluate the
function u everywhere in the element K̊. Furthermore, it is possible to evaluate
the Neumann data if the Dirichlet data is known. We apply the trace operator
and the conormal derivative operator to the representation formula. This yields
the system of equations(

γK0 u
γK1 u

)
=

(
1
2
I−KK VK

DK
1
2
I + K′K

)(
γK0 u
γK1 u

)
+

(
NK,0f/aK
NK,1f/aK

)
. (2)

The system contains the standard boundary integral operators which are well
studied, see e.g. [12, 16]. For x ∈ ∂K, we have the single-layer potential operator

(VKζ)(x) = γK0

∫
∂K

U∗(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K),

the double-layer potential operator

(KKξ)(x) = lim
ε→0

∫
y∈∂K:|y−x|≥ε

γK1,yU
∗(x, y)ξ(y) dsy for ξ ∈ H1/2(∂K),
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and the adjoint double-layer potential

(K′Kζ)(x) = lim
ε→0

∫
y∈∂K:|y−x|≥ε

γK1,xU
∗(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K),

as well as the hypersingular integral operator

(DKξ)(x) = −γK1
∫
∂K

γK1,yU
∗(x, y)ξ(y) dsy for ξ ∈ H1/2(∂K).

In addition, we have the Newton potential

(NK,0f)(x) = γK0

∫
K

U∗(x, y)f(y) dy for f ∈ H−1(K̊)

and its conormal derivative,

(NK,1f)(x) = γK1

∫
K

U∗(x, y)f(y) dy for f ∈ H−1(K̊)

for x ∈ ∂K. Since the diameter of K is smaller than one, the single-layer potential
operator is invertible. Assuming f is identical to zero, the system (2) of boundary
equations yields

γK1 u = SKγ
K
0 u with SK = V−1

K

(
1
2
I + KK

)
.

Therefore, we obtain the Dirichlet-to-Neumann map

aKγ
K
1 u = aKSKγ

K
0 u−V−1

K NK,0f on ∂K.

The introduced operator SK is called Steklov-Poincaré operator. It has also a
symmetric representation

SK = DK +
(

1
2
I + K′K

)
V−1
K

(
1
2
I + KK

)
.

For the numerical implementation, the operator SK has to be approximated for
all K ∈ Kh which leads to small local problems. We use standard boundary
element method techniques as in [16]. For each element K ∈ Kh, we choose the
unrefined polygonal boundary as discretization of the boundary ∂K. Dirichlet
traces are approximated by piecewise linear functions on the boundary which
are continuous on ∂K. Functions in H−1/2(∂K) are approximated by piecewise
constant functions. Finally, we use a Galerkin scheme for the computation of the
local boundary element matrices and obtain a discrete version

SK,h = DK,h +
(

1
2
M>

K,h + K>K,h
)
V−1
K,h

(
1
2
MK,h + KK,h

)
(3)

of the Steklov-Poincaré operator, see e.g. [16].
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3 BEM-based finite element method

The authors who describe the BEM-based FEM in [8, 7, 11] rewrite the variational
formulation of the model problem to get a formulation on the so called skeleton
of the domain. This skeleton is as usual the union of all edges of the mesh.
Afterwards, they approximate the trace of the solution on the skeleton and extend
it to the domain. In contrast to these ideas, we follow the standard steps of a
finite element method and reach finally the same system of linear equations.
The finite element method needs some finite dimensional trial spaces

Sh(Ω) ⊂ H1(Ω) and SDh(Ω) ⊂ H1
D(Ω).

Therefor, we use

Sh(Ω) = span{ψz : z ∈ Nh} and SDh(Ω) = span{ψz : z ∈ Nh \ Nh,D}.

For every node z ∈ Nh, we define the trial function ψz as follows

ψz(x) =

{
1 for x = z

0 for x ∈ Nh \ {z}
,

ψz is linear on each edge of the mesh, (4)

∆ψz = 0 in K̊ for all K ∈ Kh.

The trial functions are defined implicitly as solutions of local boundary value
problems, see Figure 2. They are continuous, i.e. ψz ∈ C(Ω), and they are arbi-
trarily smooth in the interior of every element K ∈ Kh, see e.g. [20]. Especially,
we have ψz ∈ C2(K̊) for K ∈ Kh.

Figure 2: Trial functions on quadrangle elements with hanging nodes

On the well known elements of triangular and quadrilateral meshes, the trial
functions are exactly the hat functions and the bilinear trial functions, respec-
tively. This can be easily seen, since these classical trial functions fulfil the local
boundary value problems (4) with unique solutions.
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We approximate the exact boundary data gD with a function gDh which is piece-
wise linear on the polygonal boundary ΓD. Additionally, we choose an extension
uDh of gDh in Sh(Ω). Let Vh = SDh(Ω) ⊂ V . We obtain the Galerkin-formulation

Find u0h ∈ Vh : aΩ(u0h, vh) = (f, vh) + (gN , vh)ΓN
− aΩ(uDh, vh), ∀vh ∈ Vh.

Unfortunately, it is difficult to integrate the implicitly defined functions ψz out of
Vh and their gradients over the interior of the elements. For this reason, we use
the theory of boundary integral operators to reformulate the given problem. Some
easy computations show that the Galerkin-formulation, which is given above, is
equivalent to

Find u0h ∈ Vh : aHΩ (u0h, vh) = Lvh − aHΩ (uDh, vh), ∀vh ∈ Vh,

with

aHΩ (u, v) =
∑
K∈Kh

∫
∂K

aK (SKγ
K
0 u)(x) γK0 v(x) dsx,

and

Lv = (gN , v)ΓN
+
∑
K∈Kh

∫
∂K

aK (V−1
K NK,0f)(x) γK0 v(x) dsx.

The discrete extension uDh of gDh can be chosen in such a way that it vanishes
at every node in the interior of the domain Ω as well as at ervery node in the
interior of the Neumann boundary ΓN . The ansatz

u0h(x) =
∑

z∈Nh\Nh,D

αzψz(x) and uDh(x) =
∑

z∈Nh,D

βzψz(x)

yields a system of linear equations∑
z∈Nh\Nh,D

αza
H
Ω (ψz, ψx) = Lψx −

∑
z∈Nh,D

βza
H
Ω (ψz, ψx), ∀x ∈ Nh \ Nh,D

to determine the unknowns αz. The coefficients βz of uDh can be computed with
interpolation or projection, for example. The advantage of this formulation is,
that the implicitly defined trial functions are only evaluated on the boundaries of
the elements where their Dirichlet traces are given explicitly and their Neumann
traces can be computed by the use of the Steklov-Poincaré operator.

4 Quasi-interpolation operator

Before we can present the quasi-interpolation operator, we have to introduce some
neighbourhoods of nodes, edges and elements. They are defined by

ωz =
⋃
z∈K′

K ′, ωE =
⋃

E∩K′ 6=∅

K ′, ωK =
⋃

K∩K′ 6=∅

K ′
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z

ωz

E

ωE

ωK

K

Figure 3: Examples for neighbourhoods of nodes, edges and elements

for z ∈ Nh, E ∈ Eh and K ∈ Kh, see also Figure 3. Let Qz : L2(ωz)→ R be the
L2-projection into the space of constants. For v ∈ H1

D(Ω), the quasi-interpolation
operator Ih : H1

D(Ω)→ SDh(Ω) is defined by

Ihv =
∑

z∈Nh\Nh,D

(Qzv)ψz.

The definition is very similar to the one of Clément [6]. The major difference is the
use of non-polynomial trial functions on polygonal meshes. Our main interest in
this section is to prove approximation properties of Ih in Proposition 1 below and
to show a few properties of meshes that are regular in the sense of Definition 1.
If no confusion can arise, we write v for both the function and the trace of the
function on an edge.

Proposition 1. Let Kh be a regular mesh and let v ∈ H1
D(Ω), E ∈ Eh and

K ∈ Kh. Then we have

‖v − Ihv‖0,K ≤ chK |v|1,ωK
,

‖v − Ihv‖0,E ≤ ch
1/2
E |v|1,ωE

,

where the constant c > 0 depends only on the regularity parameters α0 and c1,
see Definition 1.

In the following, c denotes a generic constant that only depends on the parameters
α0 and c1 from Definition 1. To state some properties of the regular mesh Kh,
we introduce the diameter hωz of the neighbourhood ωz.

Lemma 1. Let Kh be regular. Then, the mesh fulfils:

1. The number of nodes per element is uniformly bounded,
i.e. |N (K)| ≤ c, ∀K ∈ Kh.

2. Every node belongs to finitely many elements,
i.e. |{K ′ ∈ Kh : z ∈ K ′}| ≤ c, ∀z ∈ Nh.

3. For all z ∈ Nh and K ⊂ ωz, it is hωz ≤ chK.
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Proof. 1. Let K ∈ Kh. In two dimensions, the number of nodes |N (K)| and
the number of edges of the element K are identical. Since K is convex and
since it lies in a square with side length hK , the circumference |∂K| can be
estimated in terms of hK . Namely, it is |∂K| ≤ 4hK . Additionally, we have
hK ≤ c1hE for every edge E of K because of the regularity of Kh. These
facts yield

|N (K)|hK ≤ c1

∑
E⊂∂K

hE = c1|∂K| ≤ 4c1hK

and prove the first part.

2. This follows by the fact, that every interior angle of an element is bounded
from below by α0, due to the regularity of Kh. Therefore, we have

|{K ′ ∈ Kh : z ∈ K ′}| ≤
⌊

2π

α0

⌋
,

where the term on the right denotes the biggest integer smaller than 2π/α0.

3. We first recognise, that we have hK′ ≤ c1hE ≤ c1hK for K,K ′ ∈ Kh with
E ⊂ K ∩K ′. If we apply this inequality successively in the neighbourhood
ωz of the node z ∈ Nh, we obtain with 2.

hK′ ≤ c
b2π/α0c−1
1 hK for arbitrary K,K ′ ⊂ ωz.

This yields

hωz ≤ 2 max
K′⊂ωz

hK′ ≤ 2c
b2π/α0c−1
1 hK for K ⊂ ωz

and concludes the proof.

Next, we show an approximation estimate for the L2-projection on patches. The
important fact is here that the constant appearing in the estimate only depends
on the regularity parameters of the mesh.

Lemma 2. For every z ∈ Nh and v ∈ H1(ωz), we have

‖v −Qzv‖0,ωz ≤ chωz |v|1,ωz .

If K ∈ Kh with K ⊂ ωz, it follows

‖v −Qzv‖0,ωz ≤ chK |v|1,ωz .
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βK
K

K1

K2

z

ωz

Bρz(z)

z

Figure 4: Element K which is split along the bisector of the angle βK (left), patch
ωz with admissible decomposition {ωi}3

i=1 and triangulation (right)

Proof. It is known that the first inequality holds with the Poincaré constant

CP (ωz) = sup
v∈H1(ωz)

‖v −Qzv‖0,ωz

hωz |v|1,ωz

<∞,

see for example [17]. This constant depends only on the patch ωz. Therefore, we
have to show that the Poincaré constant CP (ωz) can be bounded independently
of z ∈ Nh from above in terms of the regularity parameter α0 and c1. For convex
domains ω, Payne and Weinberger [14] showed CP (ω) ≤ 1/π. In general, the
patches ωz are not convex, but they are star shaped with respect to z.
We distinguish two cases. First, we assume ωz = K which is the trivial case. Since
the element K is convex, we have CP (ωz) ≤ 1/π ≤ c. If ωz contains more than
one element, we use Proposition 2.10 (Decomposition) of [17]. As preliminary of
this Proposition, an admissible decomposition {ωi}ni=1 of ωz with pairwise disjoint
domains ωi and ωz =

⋃n
i=1 ωi is needed. Admissible means here, that there exist

triangles {Ti}ni=1 such that Ti ⊂ ωi and for every pair i, j of different indices, there
is a sequence i = k0, . . . , k` = j of indices such that for every m the triangles
Tkm−1 and Tkm share a complete side.
Let us construct a decomposition {ωi}ni=1 of ωz which is admissible. For z ∈ Nh,
it is ωz =

⋃
z∈K K. The angle between two neighbouring sides in a polygon K,

which also might be labelled Ti or ωi in the case of a triangle or a domain, at
the node z is called βK , see Figure 4. The set {ωi}ni=1 is defined as follows. It
contains all elements K ∈ Kh with z ∈ K which satisfy βK ≤ π/2. Additionally,
if βK > π/2 the set contains the two segments K1 and K2 which are obtained by
splitting K along the bisector of the angle βK , see again Figure 4. Due to the
convexity of K, the segments K1 and K2 are also convex. We have constructed
a decomposition {ωi}ni=1 of ωz which satisfies α0 ≤ βωi

≤ π/2 for i = 1, . . . , n,
where all ωi are convex. According to Lemma 1, it is

n ≤ 2|{K ∈ Kh : z ∈ K}| ≤ c.

In the next step, we intersect the boundary of the circle Bρz(z) with radius

ρz = min

{
inf

x∈∂ωz\Γ
|z − x|,min{|z − x| : x ∈ Nh,D ∪Nh,N , x ∈ ∂ωz}

}
11



centred in z with the edges of ωi, i = 1, . . . , n adjacent to z. The radius ρz
is chosen in such a way that ωi ∩ Bρz(z) for i = 1, . . . , n is a circular sector.
Afterwards, we connect the points of intersection in a way that we obtain a
coarse triangulation {Ti}ni=1 of ωz ∩ Bρz(z) with Ti ⊂ ωi for i = 1, . . . , n, see
Figure 4. According to the construction, every Ti is an isosceles triangle with
angle βTi = βωi

at z which is enclosed by two sides of length ρz. Consequently,
we have

|Ti| =
1

2
ρ2
z sin βTi ≥

1

2
ρ2
z sinα0 for i = 1, . . . , n

and the diameter hTi of Ti fulfils

hTi = max

{
ρz, 2ρz sin

βTi
2

}
≤ 2ρz.

Obviously, the decomposition {ωi}ni=1 of ωz is admissible. Thus, we can apply
Proposition 2.10 (Decomposition) of [17] which yields

CP (ωz) ≤ max
1≤i≤n

{
8(n− 1)

(
1− min

1≤j≤n

|ωj|
|ωz|

)
(C2

P (Ti) + 2CP (Ti))
|ωz|h2

Ti

|Ti|h2
ωz

}1/2

for the Poincaré constant. Since |ωz| ≤ h2
ωz

, we obtain with the help of Lemma 1

|ωz|h2
Ti

|Ti|h2
ωz

≤
h2
Ti

|Ti|
≤ 4ρ2

z
1
2
ρ2
z sinα0

≤ 8

sinα0

≤ c.

Therefore, we can bound CP (ωz) independently of z ∈ Nh in terms of α0 and c1,
i.e. CP (ωz) < c.
The second inequality in the Lemma follows directly from the first one and
Lemma 1.

Lemma 3. Let v ∈ H1(K) and E ⊂ ∂K, then we have

‖v‖0,E ≤ c
{
h
−1/2
E ‖v‖0,TE + h

1/2
E |v|1,TE

}
with the isosceles triangle TE ⊂ K from the definition of regularity.

Proof. Let T̂ = {x ∈ R2 : 0 ≤ xi ≤ 1, x1 + x2 ≤ 1} be the reference triangle with
horizontal edge Ê. According to the trace theorem, see e.g. [1], there exists a
constant ĉ such that

‖v̂‖0,Ê ≤ ĉ‖v̂‖1,T̂

for v̂ ∈ H1(T̂ ). Let K ∈ Kh be an arbitrary element with edge E and let
v ∈ H1(K). Owing to the regularity of Kh, there is a triangle TE ⊂ K with
longest side E. We choose the affine transformation FTE : T̂ → TE in such a way,
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that Ê is mapped onto E. We set v̂ = v ◦ FTE ∈ H1(T̂ ). For this transformation
it is known [5] that

|v̂|m,T̂ ≤ C‖DFTE‖m| detDFTE |−1/2|v|m,TE for v ∈ Hm(TE),

where C only depends on m and the spatial dimension which is equal to two here.
Moreover, we have

‖DFTE‖ ≤ (2 +
√

2)hE and | detDFTE | = 2|TE| =
1

2
tan(α0)h2

E.

Using this transformation, we get

‖v‖0,E = h
1/2
E ‖v̂‖0,Ê ≤ ĉh

1/2
E ‖v̂‖1,T̂

= ĉh
1/2
E

{
‖v̂‖2

0,T̂
+ |v̂|2

1,T̂

}1/2

≤ ĉh
1/2
E

{
‖v̂‖0,T̂ + |v̂|1,T̂

}
≤ ch

1/2
E

{
| detDFTE |−1/2‖v‖0,TE + | detDFTE |−1/2‖DF−1

TE
‖ |v|1,TE

}
≤ c

{
h
−1/2
E ‖v‖0,T + h

1/2
E |v|1,TE

}
.

Finally, we can prove Proposition 1.

Proof. For K ∈ Kh, we have ∑
z∈N (K)

ψz = 1 in K

and ‖ψz‖L∞(K) = 1 for z ∈ N (K). To prove the first estimate in the Proposition,
we distinguish two cases. Let K ∈ Kh and let all nodes z ∈ N (K) of the element
K be located in the interior of Ω or in the interior of the boundary ΓN . Using
Lemma 2, we obtain

‖v − Ihv‖0,K ≤
∑

z∈N (K)

‖ψz(v −Qzv)‖0,K

≤
∑

z∈N (K)

‖v −Qzv‖0,ωz

≤
∑

z∈N (K)

chK |v|1,ωz

≤ chK |v|1,ωK
.

The last estimate is valid because of the fact that the number of nodes in N (K)
is uniformly bounded with respect to K ∈ Kh.
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In the case that at least one node of the element K is on the boundary ΓD, we
write

v − Ihv =
∑

z∈N (K)

ψzv −
∑

z∈N (K)\Nh,D

ψzQzv

=
∑

z∈N (K)

ψz(v −Qzv) +
∑

z∈N (K)∩Nh,D

ψzQzv

and obtain

‖v − Ihv‖0,K ≤
∑

z∈N (K)

‖ψz(v −Qzv)‖0,K +
∑

z∈N (K)∩Nh,D

‖ψzQzv‖0,K .

The first sum has already been estimated, so let us have a look at the term in
the second sum. For z ∈ N (K) ∩Nh,D, we have

‖ψzQzv‖0,K ≤ |Qzv| ‖ψz‖L∞(K) |K|1/2 ≤ hK |Qzv|.

Since z ∈ ΓD, there is an element K ′ and an edge E ′ of K ′ such that z ∈ E ′

and E ′ ⊂ ΓD. Furthermore, there is an isosceles triangle TE′ with TE′ ⊂ K ′ due
to the regularity of Kh. Since v vanishes on E ′, we obtain with Lemma 3 and
h−1
E′ ≤ c1h

−1
K′

|Qzv| = h
−1/2
E′ ‖Qzv‖0,E′ = h

−1/2
E′ ‖v −Qzv‖0,E′

≤ ch
−1/2
E′

{
h
−1/2
E′ ‖v −Qzv‖0,TE′

+ h
1/2
E′ |v −Qzv|1,TE′

}
≤ c

{
h−1
K′‖v −Qzv‖0,ωz + |v|1,ωz

}
.

Using Lemma 2 and putting all estimates together proves the first statement of
Proposition 1.
To prove the second estimate in the Proposition, we proceed in a similar manner.
Let E ∈ Eh, we have ∑

z∈N (E)

ψz = 1 on E

and ‖ψz‖L∞(E) = 1 for z ∈ N (E). First, let E ∈ Eh such that all nodes z of the
edge E are located in the interior of Ω or in the interior of the boundary ΓN .
Using Lemma 2 and 3 as well as hKE

h
−1/2
E ≤ c1h

1/2
E , where KE ∈ Kh is an element
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with edge E, we obtain

‖v − Ihv‖0,E ≤
∑

z∈N (E)

‖ψz(v −Qzv)‖0,E

≤
∑

z∈N (E)

‖v −Qzv‖0,E

≤
∑

z∈N (E)

c
{
h
−1/2
E ‖v −Qzv‖0,TE + h

1/2
E |v −Qzv|1,TE

}
≤

∑
z∈N (E)

c
{
h
−1/2
E ‖v −Qzv‖0,ωz + h

1/2
E |v|1,ωz

}
≤

∑
z∈N (E)

ch
1/2
E |v|1,ωz

≤ ch
1/2
E |v|1,ωE

,

where TE is the isosceles triangle of E with TE ⊂ KE.
If at least one node of E is on ΓD, we have

‖v − Ihv‖0,E ≤
∑

z∈N (E)

‖ψz(v −Qzv)‖0,E +
∑

z∈N (E)∩Nh,D

‖ψzQzv‖0,E.

The first sum has already been estimated, so let us have a look at the term in
the second sum. For z ∈ N (E) ∩Nh,D, we have

‖ψzQzv‖0,E = |Qzv| ‖ψz‖0,E =
1√
3
h

1/2
E |Qzv|.

Since z ∈ ΓD, there is an element K ′ and an edge E ′ of K ′ such that z ∈ E ′ and
E ′ ⊂ ΓD. Furthermore, there is an isosceles triangle TE′ with TE′ ⊂ K ′ due to
the regularity of Kh. Since v vanishes on E ′, we obtain with Lemma 3 and the
condition h−1

E′ ≤ c1h
−1
K′

|Qzv| = h
−1/2
E′ ‖Qzv‖0,E′ = h

−1/2
E′ ‖v −Qzv‖0,E′

≤ ch
−1/2
E′

{
h
−1/2
E′ ‖v −Qzv‖0,TE′

+ h
1/2
E′ |v −Qzv|1,TE′

}
≤ c

{
h−1
K′‖v −Qzv‖0,ωz + |v|1,ωz

}
.

Using Lemma 2 and putting all estimates together yields the second statement
of Proposition 1 and concludes the proof.

5 Residual error estimate

In this section, we come to the main result. Among others, the residual error
estimate measures the jumps of the conormal derivatives over the element edges.
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This jump over an edge E ∈ Eh which lies in the interior of Ω is defiened by

JuhKE = aKγ
K
1 uh + aK′γ

K′

1 uh,

where K,K ′ ∈ Kh are the two neighbouring elements of E with E ⊂ K ∩K ′. We
assume that the Dirichlet boundary data gD is approximated exactly, i.e. gDh =
gD. Consequently, it is possible to set uDh = uD and this yields u− uh ∈ H1

D(Ω).

Theorem 1. Let Kh be a regular mesh. Then the residual error estimate is
reliable, i.e.

|u− uh|1,a,Ω ≤
c

√
amin

ηR

with
η2
R =

∑
K∈Kh

η2
K

and
η2
K = h2

K‖f‖2
0,K +

∑
E⊂∂K

hE‖RE‖2
0,E,

where

RE =


0 for E ⊂ ΓD,

gN − aKγK1 uh for E ⊂ ΓN with E ⊂ ∂K,

−1
2
JuhKE else,

and the constant c > 0 depends only on the regularity parameters α0 and c1, see
Definition 1.

Proof. In the first step, we define the functional ` on the dual of H1
D(Ω) by

`(v) =

∫
Ω

a∇(u− uh) · ∇v dx

=

∫
Ω

fv dx+

∫
ΓN

gNv dsx −
∑
K∈Kh

∫
K

aK∇uh · ∇v dx

=
∑
K∈Kh

∫
K

fv dx+
∑
E⊂ΓN

∫
E

gNv dsx −
∑
K∈Kh

∫
∂K

aKγ
K
1 uh v dsx.

If we rearrange the sums and take into account that we integrate over each edge
in the interior of Ω two times, we obtain

`(v) =
∑
K∈Kh

{∫
K

fv dx+
∑

E⊂∂K∩ΓN

∫
E

(gN − aKγK1 uh)v dsx

−1

2

∑
E⊂∂K\Γ

∫
E

JuhKE v dsx
}

=
∑
K∈Kh

{∫
K

fv dx+
∑
E⊂∂K

∫
E

REv dsx

}
.
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The norm ‖ · ‖1,Ω is equivalent to the semi norm | · |1,Ω on H1
D(Ω) and it is also

equivalent to the energy norm | · |1,a,Ω with

|w|21,a,Ω = aΩ(w,w) =

∫
Ω

a|∇w|2 dx,

because of the assumption 0 < amin ≤ a ≤ amax. Obviously, H1
D(Ω) together

with the weighted semi norm | · |1,a,Ω and the weighted scalar product aΩ(·, ·) is
a Hilbert space. The functional ` belongs to the dual space of H1

D(Ω) and so the
theorem of Riesz yields |u−uh|1,a,Ω = ‖`‖. With the definition of the dual norm,
we conclude

|u− uh|1,a,Ω = sup
v∈H1

D(Ω)

|`(v)|
|v|1,a,Ω

. (5)

Next, we have to estimate |`(v)|. Using the Galerkin orthogonality

aΩ(u− uh, vh) = 0 for vh ∈ Vh,

the triangular inequality and Cauchy-Schwarz inequality, we obtain

|`(v)| = |`(v − Ihv)|

≤
∑
K∈Kh

{∣∣∣∣ ∫
K

f(v − Ihv) dx

∣∣∣∣+
∑
E⊂∂K

∣∣∣∣ ∫
E

RE(v − Ihv) dsx

∣∣∣∣}

≤
∑
K∈Kh

{
‖f‖0,K‖v − Ihv‖0,K +

∑
E⊂∂K

‖RE‖0,E‖v − Ihv‖0,E

}
.

The Cauchy-Schwarz inequality and the properties of the interpolation operator
from section 4 yield

|`(v)| ≤
∑
K∈Kh

{
‖f‖0,K chK |v|1,ωK

+
∑
E⊂∂K

‖RE‖0,E ch
1/2
E |v|1,ωE

}
≤ c
√
amin

∑
K∈Kh

{
hK‖f‖0,K |v|1,a,ωK

+
∑
E⊂∂K

h
1/2
E ‖RE‖0,E|v|1,a,ωE

}

≤ c
√
amin

∑
K∈Kh

{
hK‖f‖0,K +

( ∑
E⊂∂K

hE‖RE‖2
0,E

)1/2
}
|v|1,a,ωK

≤ c
√
amin

∑
K∈Kh

{
h2
K‖f‖2

0,K +
∑
E⊂∂K

hE‖RE‖2
0,E

}1/2

|v|1,a,ωK

≤ c
√
amin

( ∑
K∈Kh

η2
K

)1/2

|v|1,a,Ω.

Applying (5) concludes the proof.
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When the source function f in the differential equation is not known exactly and
one has to approximate it with some function fh, it is possible to extend the
theorem in the usual way. In this case, the term ‖f − fh‖0,Ω appears which is
called data oscillation according to Morin, Nochetto and Siebert [13].

6 Implementation

An adaptive finite element method on polygonal meshes with hanging nodes and
with the above introduced trial functions has been implemented.
In each iteration step of the adaptive scheme, we have to solve the boundary value
problem on a given mesh. This means, that a system of linear equations has to
be set up. As usual, the system matrix is assembled by local stiffness matrices.
These local matrices are closely related to the symmetric discretization (3) of
the local Steklov-Poincaré operators. In the case of a triangular mesh, the trial
functions are exactly the hat functions which have piecewise linear Dirichlet and
piecewise constant Neumann traces on each element. Due to the choice of the
discretization in the BEM, we obtain the same global system matrix as for a
standard FEM with linear trial functions apart from numerical errors.
A new procedure has been implemented to refine the polygonal meshes locally
and globally. For the decision how to split an element K into two new ones, we
first compute the matrix

MCov =

∫
K

(x− x̄)(x− x̄)>dx

where

x̄ =
1

|K|

∫
K

x dx.

It is known that MCov is a symmetric positive definite two by two matrix. The
eigenvector to the biggest eigenvalue points into the direction of the longest ex-
tend of the element K. Therefore, we split the element orthogonal to this eigen-
vector through the centre x̄ of K and obtain two new elements, see Figure 5. The
regularity of the mesh has to be ensured by the implementation. Figures 6 and
11 show examples of such meshes and their refinements. Similar ideas are used
in [15] to build up cluster trees for matrix approximation.
The adaptive strategy is as follows. The boundary value problem is solved on a
mesh. Afterwards, the error indicators ηK for all K ∈ Kh are calculated and we
mark some elements due to the Dörfler strategy [10]. Then, we refine the marked
elements and obtain a new mesh. Now we can solve the problem again on the
refined mesh. This loop can be repeated until the desired accuracy is achieved.
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Figure 5: Refinement of an element: element with centre x̄ (left), element with
eigenvector (middle), two new elements (right)
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Figure 6: Initial mesh (left), uniform refined mesh (middle), adaptive refined
mesh (right)
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7 Numerical examples

In this section, we have a look at different numerical examples to confirm our
theoretical results. Let Ω = (−1, 1) × (−1, 1) ⊂ R2 be split into two domains,
Ω1 = Ω \ Ω2 and Ω2 = (0, 1) × (0, 1). We are interested in the boundary value
problem

−div (a(x)∇u(x)) = 0 for x ∈ Ω,
u(x) = g(x) for x ∈ Γ = ΓD,

where the coefficient a is given by

a(x) =

{
1 for x ∈ Ω1,
k2 for x ∈ Ω2.

Using polar coordinates (r, ϕ), we choose the boundary data as restriction of the
global function

g(x) = rλ
{

cos(λ(ϕ− π/4)) for x ∈ Ω2,
β cos(λ(π − |ϕ− π/4|)) else,

with

λ =
4

π
arctan

(√
3 + k2

1 + 3k2

)
and β = −k2

sin
(
λ
π

4

)
sin

(
λ

3π

4

) .
This problem is constructed in such a way that u = g is the exact solution in Ω.
The parameter k2 > 0 is responsible for the regularity of the solution. If k2 < 1
we have u ∈ H2(Ω) and otherwise u is singular in the sense that the gradient of
u is not squared integrable any more. Figure 7 displays approximations of the
function g for two different values of k2.
When the solution of the problem fulfils u ∈ H2(Ω), it is known that the fi-
nite element method with linear trial functions on admissible meshes converges
quadratically in the mesh size h with respect to the L2-norm on uniform refined
meshes. If we sketch the approximation error ‖u − uh‖0,Ω with respect to the
degrees of freedom (DoF) in a logarithmic plot we expect a slope of one, since
h = O((DoF)−1/2). This behaviour is shown in the first numerical example for
the introduced finite element method. We choose k2 = 0.01 so that u ∈ H2(Ω)
and start with a polygonal mesh (see Figure 6). In every iteration step we refine
all elements and hanging nodes appear naturally. In Figure 8, we can recognise
quadratic convergence for the proposed method on arbitrary polygonal meshes
with hanging nodes.
In the next numerical experiment we are going to examine the rate of convergence
with respect to the energy norm | · |1,a,Ω. We perform the adaptive strategy with
the error estimate ηR and the method with uniform refinement. From the theory
of standard finite element methods, we would expect linear convergence for the
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Figure 7: k2 = 0.01 and therefore g ∈ H2(Ω) (left), k2 = 100 and so g /∈ H2(Ω)
(right)

1e− 05

1e− 04

1e− 03

1e− 02

1e+ 01 1e+ 02 1e+ 03 1e+ 04

DoF

‖u− uh‖0,Ω

Figure 8: Convergence for smooth solution (k2 = 0.01) using uniform refinement,
triangles with slope one
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uniform strategy. Indeed, we observe linear convergence for the uniform and
for the adaptive strategy with the proposed method (see Figure 9). We can
also recognise that the error estimate ηR reproduces the behaviour of the error
|u− uh|1,a,Ω asymptotically very well.

1e− 03

1e− 02

1e− 01

1e+ 00

1e+ 01 1e+ 02 1e+ 03 1e+ 04 1e+ 05

DoF

adaptive |u− uh|1,a,Ω
uniform |u− uh|1,a,Ω

adaptive ηR
uniform ηR

Figure 9: Convergence for smooth solution (k2 = 0.01) using adaptive and uni-
form refinement, triangles with slope one half

If one considers boundary value problems with smooth solutions it is very difficult
for an adaptive strategy to perform better than an uniform one. Therefore, we
want to choose the problem in such a way that it has a singular solution. For
k2 = 100, we obtain the convergence results shown in Figure 10. Obviously, the
error stays more or less constant at the beginning of the two strategies. This can
be explained as follows. In our considerations, we have assumed that the bound-
ary data is approximated exactly but this assumption is not true here. The error
in the Dirichlet data dominates. Consequently, the method needs some refine-
ment steps until the data is approximated accurately enough to perform well.
Nevertheless, we can see that the rate of convergence for the uniform refinement
slows down. In contrast, the adaptive method still converges linearly.
Finally, a standard example is considered. We use again the polar coordinates
(r, ϕ). Let Ω = {x ∈ R2 : |r| < 1 and 0 < ϕ < 3π/2} and

g(x) = r2/3 sin

(
2ϕ

3

)
for x ∈ R2.

The problem reads

−∆u(x) = 0 for x ∈ Ω,

u(x) = g(x) for x ∈ Γ = ΓD.

It looks very simple but the solution u = g is singular in the origin. In Figure 11,
you can see the initial mesh and two adaptive refinements after five and ten
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Figure 10: Convergence for singular solution (k2 = 100) using adaptive and
uniform refinement, triangles with slope one half

Tue Sep 21 14:54:10 2010

−1 0 1

−1

0

1

Tue Sep 21 15:00:39 2010

−1 0 1

−1

0

1

Tue Sep 21 14:55:19 2010

−1 0 1

−1

0

1

Figure 11: Initial mesh (left), adaptive refined mesh after five steps (middle),
adaptive refined mesh after ten steps (right)
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steps. The adaptive finite element method obviously recognises the singularity
and refines the mesh near the origin. Typically, one would expect that all elements
near the origin should be refined in a similar manner. But in Figure 11, the
triangle on the upper right of the origin is still not refined after five steps. Even
after ten steps, there are big elements near the origin. This is a difference to
standard finite element methods, where values at hanging nodes are obtained
by interpolation of values at classical nodes. In the proposed BEM-based FEM,
a hanging node gives a degree of freedom and adds an trial function to the
approximation space Vh. These trial functions also affect the approximation
quality at neighbouring elements. In Figure 12, we can see that the error over
the upper right triangle of the origin is reduced by introducing hanging nodes
without refining the element.

Figure 12: Error distribution ‖u− uh‖2
1,a,K for the first three meshes

The convergence analyses for this example shows the same results as in the last
example. The uniform method does not converge linearly any more but the
adaptive strategy has still linear convergence (see Figure 13).

8 Conclusions

The proposed method can be seen as a generalisation of standard finite element
methods, since these two methods are equivalent on triangular and quadrilateral
meshes. Actually, the BEM-based FEM has the advantage that it works on
arbitrary polygonal meshes with convex elements and it handles hanging nodes
in a natural way. To the best of our knowledge, the present paper contains the first
a posteriori error estimate for the BEM-based FEM. In industrial applications,
this allows us to check the accuracy of the approximation in a region of special
interest if only one mesh is available without refinements. Therefore, we can
judge the quality of the mesh and optimize it if necessary. Additionally, we can
perform adaptive finite element strategies and yield optimal convergence.
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