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On the essential commutant of analytic Toeplitz operators

associated with spherical isometries

Michael Didas and Jörg Eschmeier

Let T ∈ B(H)n be an essentially normal spherical isometry with empty point
spectrum on a separable complex Hilbert space H , and let AT ⊂ B(H) be the
unital dual operator algebra generated by T . In this note we show that every
operator S ∈ B(H) in the essential commutant of AT has the form S = X+K
with a T -Toeplitz operator X and a compact operator K. Our proof actually
covers a larger class of subnormal operator tuples, called A-isometries, which
includes for example the tuple T = (Mz1

, . . . ,Mzn
) ∈ B(H2(σ))n consisting of

the multiplication operators with the coordinate functions on the Hardy space
H2(σ) associated with the normalized surface measure σ on the boundary ∂D
of a strictly pseudoconvex domain D ⊂ Cn. As an application we determine
the essential commutant of the set of all analytic Toeplitz operators on H2(σ)
and thus extend results proved by Davidson [6] for the unit disc and Ding-Sun
[11] for the unit ball.

2010 Mathematics Subject Classification: Primary 47A13, 47B20, 47L45; Sec-
ondary 47B35, 47L80
Key words and phrases: spherical isometries, inner functions, Toeplitz opera-
tors, essential commutant, Hardy spaces

1 Introduction

Let m denote the linear Lebesgue measure on the unit circle ∂D. A classical theorem
of Davidson from 1977 (Theorem 1 in [6]) asserts that an operator S on the Hardy
space H2(m) commutes modulo compact operators with all analytic Toeplitz opera-
tors if and only if S is a compact perturbation of a Toeplitz operator Tf with symbol
f ∈ H∞(m) + C(∂D), where H∞(m) refers to the space of all bounded holomor-
phic functions on D regarded as a subspace of L∞(m) by passing to non-tangential
boundary values.

In a paper [11] by Ding and Sun from 1997 an analogue of this result is obtained
for the Hardy space on the open Euclidean unit ball Bn ⊂ C

n. More precisely, if
σ denotes the normalized surface measure on ∂Bn, then by Theorem 2 in [11], an
operator S ∈ B(H2(σ)) essentially commutes with all analytic Toeplitz operators if
and only if S = Tf +K, where K is compact and f ∈ L∞(σ) has the property that
the associated Hankel operator Hf = PH2(σ)⊥Mf |H2(σ) is compact. For n > 1, this
class of symbols strictly contains the space H∞(σ)+C(∂Bn) (see [7]), while equality
holds in the case n = 1.

The aim of this paper is to establish variants of the cited results for Toeplitz operators
associated with spherical isometries or, more general, with A-isometries. Recall that
a spherical isometry on a complex Hilbert space H is a commuting tuple T ∈ B(H)n

satisfying
n∑

i=1

T ∗
i Ti = 1H .
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Given a spherical isometry T , there is an abstract theory of T -Toeplitz opera-
tors X ∈ B(H) defined by Prunaru [20] as the solutions of the operator equation∑n

i=1 T
∗
i XTi = X. From this point of view, the result of Ding and Sun cited above

describes the essential commutant of the dual algebra

AT = C[T1, . . . , Tn]
w∗

⊂ B(H)

generated by the special spherical isometry T = (T1, . . . , Tn) ∈ B(H)n consisting of
the multiplication operators Ti = Mzi

with the coordinate functions on the Hardy
space H = H2(σ). Formulated in the setting of general spherical isometries, the
main result of the paper is the following (cf. Theorem 4.6):

If T ∈ B(H)n is an essentially normal spherical isometry with empty point

spectrum, then every operator S ∈ B(H) in the essential commutant of AT

has the form S = X+K with a T -Toeplitz operator X and a compact operator

K on H.

As an application we deduce concrete analogues of the above-mentioned results of
Davidson and Ding-Sun for multiplication tuples on Hardy-type function spaces. To
be more specific, let µ denote a regular Borel probability measure on ∂Bn with the
property that all one-point sets have µ-measure zero. Then, the multiplication tuple
Tz = (Mz1 , . . . ,Mzn) ∈ B(H2(µ))n on the associated Hardy space

H2(µ) = C[z1, . . . , zn]
‖·‖2,µ ⊂ L2(µ)

is a spherical isometry whose Tz-Toeplitz operators are precisely the compressions

Tf = PH2(µ)Mf |H2(µ)

of multiplication operators Mf : L2(µ) → L2(µ) with symbols f ∈ L∞(µ). In this
context, the analytic Toeplitz operators are those with a symbol belonging to the
space

H∞(µ) = C[z1, . . . , zn]
w∗

⊂ L∞(µ).

Our main theorem then takes the following form (see Corollary 4.7):

If Tz ∈ B(H2(µ))n is essentially normal, then an operator essentially com-

mutes with all analytic Toeplitz operators if and only if it has the form

S = Tf + K with a compact operator K and a symbol f ∈ L∞(µ) for which

the associated Hankel operator Hf = PH2(µ)⊥Mf |H2(µ) is compact.

We actually prove stronger versions of the above results for so-called regular A-
isometries. The precise definition will be given in Section 2. Let us just mention at
the moment that this class is general enough to cover multiplication tuples with the
coordinate functions on strictly pseudoconvex domains. For example, we obtain the
following exact analogue of the above-mentioned theorem of Ding and Sun in the
strictly pseudoconvex situation (see Corollary 4.8).

If σ denotes the normalized surface measure on the boundary ∂D of a strictly

pseudoconvex domain D ⊂ C
n with C2-boundary, then an operator S in

B(H2(σ)) essentially commutes with all analytic Toeplitz operators on H2(σ)
if and only if it has the form S = Tf +K with a compact operator K and a

symbol f ∈ L∞(σ) for which the associated Hankel operator Hf is compact.
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Along the way we extend Prunaru’s theory [20] on the existence of short exact
Toeplitz sequences from the case of spherical isometries to the class of A-isometries
and refine his results in the essentially normal case. To illustrate this for a spherical
isometry T ∈ B(H)n, let us write TC(T ) = C∗(Tf : f ∈ C(∂Bn)) for the C∗-algebra
generated by all T -Toeplitz operators with continuous symbols (for the definition of
Tf , see Section 3). Then Proposition 3.9 says the following:

Let T ∈ B(H)n be an essentially normal, non-normal spherical isometry. If

TC(T ) is irreducible, then there is a short exact sequence of C∗-algebras

0 −→ K(H)
⊂−→ TC(T )

σ−→ C(σn(T )) −→ 0,

where σ maps the Toeplitz operator Tf to f |σn(T ) for every f ∈ C(∂Bn).

As the above examples show (see also Theorem 3.5 in [10]), many interesting aspects
of the theory of Toeplitz operators on classical Hardy spaces can be rediscovered in
the context of multi-variable subnormal isometries. The role of the surface measure
in the classical theory will then be played by a scalar spectral measure of the minimal
normal extension for the underlying subnormal tuple. In general, this measure is
far from being explicitly known. So one cannot hope to find as detailed results as
in the classical case. Nevertheless, it seems worthwile to pursue this connection
further. An interesting question arises from a recent result of Xia (Theorem 1 in
[25]) who answered a longstanding problem for Toeplitz operators on the unit disc.
By the cited theorem, the condition that TθXTθ − X is compact for every inner
function θ ∈ H∞(m) implies that X ∈ B(H2(m)) is a compact perturbation of a
Toeplitz operator. In the context of spherical isometries T ∈ B(H)n, the T -Toeplitz
operators with inner symbols naturally correspond to isometries in the dual operator
algebra AT (see Lemma 2.3). So we may ask:

If T ∈ B(H)n is an essentially normal spherical isometry with empty point

spectrum, and X ∈ B(H) has the property that J∗XJ − X is compact for

every isometry J ∈ AT . Must X then necessarily be a compact perturbation

of a T -Toeplitz operator?

Xia’s proof depends on a special sequence of inner functions (θk)k≥0 consisting of
finite Blaschke products, for which a multi-variable substitute is out of sight at the
moment. So it seems that more sophisticated methods are needed to solve this
problem.

2 A-isometries and inner functions

Let H be a separable complex Hilbert space. A commuting tuple T ∈ B(H)n is
called a spherical isometry if it satisfies the relation

n∑

i=1

T ∗
i Ti = 1H .

A result of Athavale [2] from 1990 saying that each spherical isometry is subnormal
marks the starting point of the structure theory for this class of multi-operators.
Since our approach to spherical isometries and their generalizations is based on
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the property of subnormality, we briefly recall some central facts about subnormal
operator tuples.

By definition, a subnormal tuple T ∈ B(H)n possesses an extension to a tuple
U ∈ B(Ĥ)n consisting of commuting normal operators on some Hilbert space Ĥ
containing H. If the only reducing subspace for U that contains H is the space Ĥ
itself, then the tuple U ∈ B(Ĥ)n is called a minimal normal extension of T . Given
any normal extension U of T , one can always obtain a minimal one by restricting
U to the space

∨
α∈Nn

0
(U∗)αH. It is well known that any two minimal normal

extensions of T are unitarily equivalent. In particular, the normal spectrum of T ,
which is defined by σn(T ) = σ(U) for some minimal normal extension U of T , does
not depend on the choice of U . A result of Putinar [21] guarantees that σn(T ) is
always contained in σ(T ).

Now, fix a subnormal tuple T ∈ B(H)n together with a minimal normal extension
U ∈ B(Ĥ)n. Then one can choose a separating vector z ∈ H for U , which means
that the projection-valued spectral measure E(·) for U and the scalar-valued measure
µ = 〈E(·)z, z〉 are mutually absolutely continuous. The measure µ obtained in this
way is a finite regular positive Borel measure supported by σn(T ) = σ(U), and
will be called a scalar spectral measure for U . From the identity µ(σn(T )) = ‖z‖2 it
follows that µ is a probability measure if the underlying separating vector z ∈ H is a
unit vector. Since, up to mutual absolute continuity, the measure µ does not depend
on the special choice of U , we may speak of µ as a scalar spectral measure associated

with T . By the spectral theorem for normal tuples, there exists an isomorphism of
von Neumann algebras

ΨU : L∞(µ) →W ∗(U) ⊂ B(Ĥ),

mapping the coordinate functions to the corresponding components of U . Defining

RT = {f ∈ L∞(µ) : ΨU (f)H ⊂ H}

one obtains a weak∗ closed subalgebra of L∞(µ) called the restriction algebra. The
induced mapping

γT : RT → B(H), f 7→ ΨU (f)|H
is known to be isometric again (see Conway [5]). Thus γT defines a weak∗ continuous
isometric algebra homomorphism mapping zi to Ti for i = 1, . . . , n. It should be
mentioned that the restriction algebra RT is independent of the choice of the minimal
normal extension U and the concrete spectral measure µ.

From these general considerations about subnormal tuples we now return to the
special case of a spherical isometry T ∈ B(H)n. According to Athavale [2], T is
subnormal and the spectral inclusion σn(T ) ⊂ ∂Bn holds. An obvious density argu-
ment for the polynomials implies that the restriction algebra always contains the ball
algebra A(Bn) = {f ∈ C(Bn) : f |Bn is holomorphic}. The rich function-theoretic
structure of A(Bn) and suitable weak* closures then leads to interesting structure
theorems for spherical isometries such as the reflexivity [9] of the dual operator al-
gebra generated by T or factorization properties of type A1 and A1,ℵ0 (see [14]).
Replacing A(Bn) by an arbitrary function algebra A containing the polynomials one
obtains the following very general notion of an isometric operator tuple introduced
by the second author in [13].

2.1 Definition. Let K ⊂ C
n be a compact set and let A ⊂ C(K) be a closed

subalgebra containing the restrictions of the polynomials C[z] in n complex variables
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z = (z1, . . . , zn). A subnormal tuple T ∈ B(H)n is called an A-isometry if A ⊂ RT

and σn(T ) is contained in the Shilov boundary ∂A of A.

By definition the Shilov boundary ∂A ⊂ K is the smallest closed set such that
‖f‖∞,K = ‖f‖∞,∂A

holds for every f ∈ A. Since the Shilov boundary of A(Bn)
coincides with the topological boundary ∂Bn, the remarks preceding the definition
show that spherical isometries are precisely the A(Bn)-isometries.

Other natural examples of A-isometries can be found in the context of general-
ized Hardy spaces. Fix a compact set K ⊂ C

n, a closed subalgebra A ⊂ C(K)
containing the polynomials C[z1, . . . , zn]|K and a positive measure µ ∈ M+(∂A).
The multiplication tuple Mz = (Mz1 , . . . ,Mzn) ∈ B(L2(µ))n is normal with scalar
spectral measure µ and Taylor spectrum σ(Mz) = supp(µ) ⊂ ∂A. The associated
functional calculus is given by the map ΨMz : L∞(µ) → B(L2(µ)), f 7→ Mf . A
Stone-Weiertrass argument shows that the restriction Tz of Mz to the invariant
subspace

H2
A(µ) = A

‖·‖2,µ ⊂ L2(µ)

has Mz as minimal normal extension. Since H2
A(µ) is invariant under each mul-

tiplication operator Mf with symbol f ∈ A, it follows that RTz ⊃ A. Thus, the
tuple

Tz = (Mz1 , . . . ,Mzn) ∈ B(H2
A(µ))n

is an A-isometry. Note that the multiplication tuples with the coordinate functions
on the classical Hardy spaces over strictly pseudoconvex or bounded symmetric
domains in C

n all fit into this context. This justifies the following terminology.

2.2 Definition. A multiplication tuple of the form Tz ∈ B(H2
A(µ))n described

above will be called a Hardy-space A-isometry.

Let us now return from these concrete examples to the study of a general A-isometry
T ∈ B(H)n. Fix a minimal normal extension U ∈ B(Ĥ)n and a scalar spectral
measure µ of T . Writing M+(C) for the set of all finite regular positive Borel
measures on a compact set C ⊂ C

n, we may consider µ as an element of M+(∂A) in
the sequel.

Since the restriction algebra is weak∗ closed and contains A, it also contains the dual
algebra

H∞
A (µ) = A

w∗

⊂ L∞(µ).

If we denote the image of H∞
A (µ) under the canonical map γT introduced above by

HT = γT (H∞
A (µ)) ⊂ B(H),

which is a weak∗ closed subalgebra of B(H), then we obtain a dual algebra isomor-
phism, that is, a weak∗ homeomorphism and isometric isomorphism

γT : H∞
A (µ) → HT , f 7→ ΨU(f)|H,

extending the polynomially functional calculus of T . This map will be referred to as
the canonical functional calculus for T . Via γT one can analyze the operator algebra
HT by studying the function algebra H∞

A (µ). A special role in this context is played
by the family

Iµ = {θ ∈ H∞
A (µ) : |θ| = 1 µ− a.e. on ∂A},
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whose elements are called µ-inner functions. As in the case of spherical isometries,
there is a one-to-one correspondece between Iµ and the operator family

IT = {J ∈ HT : J is isometric}.

More precisely, a word-by-word repetition of the proof of Lemma 1.1 in [10] yields
the following result.

2.3 Lemma. Let T ∈ B(H)n be an A-isometry with associated scalar spectral
meassure µ ∈ M+(∂A). Then IT = γT (Iµ), where γT is the canonical functional
calculus of T . �

In his celebrated work [1], Aleksandrov gives a sufficient condition ensuring H∞
A (µ)

to have a rich supply of inner functions. More explicitly, a triple (A,K,µ) consisting
of a compact setK ⊂ C

n, a closed subalgebra A ⊂ C(K) and a measure µ ∈M+(K),
is called regular in the sense of Aleksandrov if the following approximation problem
is solvable: For every ϕ ∈ C(K) with ϕ > 0, there exists a sequence of functions

(ϕk) in A with |ϕk| < ϕ on K and limk→∞ ϕk = ϕ µ-almost everywhere on K. One
of the main results in [1] says that, if the measure µ in a regular triple is continuous

in the sense that one-point sets have µ-measure zero, then the set of all µ-inner
functions is rich in the following sense (see Corollary 29 in [1]).

2.4 Theorem. (Aleksandrov) Let (A,K,µ) be a regular triple with a continuous
measure µ ∈ M+(K). Then the weak∗ sequential closure of the set Iµ contains all
L∞(µ)-equivalence classes of functions f ∈ A with |f | ≤ 1 on K. �

In [10] (Proposition 2.4 and Corollary 2.5) it was observed that the following weaker
version of this density assertion is valid without any continuity assumption on the
measure.

2.5 Proposition. For every regular triple (A,K,µ), we have

H∞
A (µ) = LH

w∗

(Iµ) and L∞(µ) = LH
w∗

({η · θ : η, θ ∈ Iµ}).

�

Now we introduce a regularity criterion for A-isometries which guarantees that the
above density results hold for the associated scalar spectral measures.

2.6 Definition. An A-isometry T ∈ B(H)n is called regular if, for some or equiv-
alently every scalar spectral measure µ ∈ M+(∂A) associated with T , the triple
(A|∂A, ∂A, µ) is regular.

In general, the regularity condition is hard to check. Nevertheless there are examples
of function algebras A for which every A-isometry is regular. For example, if D ⊂ C

n

is a relatively compact stricly pseudoconvex open set and

A(D) = {f ∈ C(D) : f |D is holomorphic}

is the generalized ball-algebra, then ∂A(D) = ∂D and the triple (A(D)|∂D, ∂D, µ) is
regular for every measure µ ∈M+(∂D) (see Aleksandrov [1] or, for a more detailed
explanation, [8]).
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2.7 Proposition. Every A(D)-isometry on a relatively compact strictly pseudo-
convex open set D ⊂ C

n (in partucluar, every spherical isometry) is regular. �

As another example, take A = C(K). Then ∂A = K and (C(K),K, µ) is regular for
every measure µ ∈ M+(K). Now, a look at Definition 2.1 shows that the regular
C(K)-isometries are precisely the normal tuples T ∈ B(H)n with Taylor spectrum
contained in K.

The regularity of an A-isometry T ∈ B(H)n has immediate and far-reaching con-
sequences for the structure of the dual operator algebras associated with T and
its minimal normal extension U . For later reference, we collect some of them in
the following proposition. Recall from Lemma 2.3 that the family of all isome-
tries in HT is IT = γT (Iµ) ⊂ B(H). Considering the normal tuple U ∈ B(Ĥ)n

also as an A-isometry, the corresponding set of all isometries contained in HU is
IU = ΨU (Iµ) ⊂ B(Ĥ). Having in mind that the point spectrum

σp(T ) = {ζ ∈ C
n : ∩n

i=1 ker(ζi − Ti) 6= ∅}

coincides with the set ∆µ = {ζ ∈ ∂A : µ({ζ}) > 0} of all one-point atoms of one
(equivalently any) scalar spectral measure µ (cp. the remarks following Proposition
3.1 in [10] for the case of spherical isometries), the following approximation results
are immediate consequences of Lemma 2.3, Theorem 2.4 and Proposition 2.5.

2.8 Proposition. Let T ∈ B(H)n be a regular A-isometry with minimal normal
extension U ∈ B(Ĥ)n. Then the following assertions hold:

(a) The families of isometries IT and IU defined above satisfy

HT = LH
w∗

(IT ) and W ∗(U) = LH
w∗

({J∗
1J2 : J1, J2 ∈ IU}).

(b) If T has empty point spectrum, then the dual operator algebra HT contains
a weak∗ zero sequence of isometries Jk = γT (θk) with θk ∈ Iµ for k ≥ 1. �

It seems that a profound theory of Toeplitz operators for A-isometries can only be
established under the assumption that the associated families of isometries IT and
IU are sufficiently rich (in the sense of part (a) above). This is the reason why we
mostly consider regular A-isometries from now on.

3 Toeplitz operators

Recall that Toeplitz operators associated with a spherical isometry T ∈ B(H)n have
been introduced by Prunaru in [20] as the solutions X ∈ B(H) of the operator equa-
tion

∑n
i=1 T

∗
i XTi = X. This relation is modelled after the classical Brown-Halmos

condition characterizing Hardy-space Toeplitz operators on the unit disc. A recent
result of the authors (Proposition 3.1 in [10]) shows that the following definition for
general A-isometries is consistent with Prunaru’s definition for spherical isometries.

3.1 Definition. Let T ∈ B(H)n be an A-isometry. Then an operator X ∈ B(H) is
called a T -Toeplitz operator if

J∗XJ = X holds for every isometry J ∈ HT .

We write T (T ) for the set of all T -Toeplitz operators on H.
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To give an alternative characterization of T -Toeplitz operators, fix a minimal normal
extension U ∈ B(Ĥ)n and write (U)′ for the commutant of U in B(Ĥ), PH ∈ B(Ĥ)
for the orthogonal projection onto H. Then every operator X ∈ B(H) of the form

X = PHA|H with A ∈ (U)′

belongs to T (T ). Indeed, if J = γT (θ) is an isometry in HT and h, k are arbi-
trary elements of H, then the fact that θ ∈ H∞

A (µ) is inner immediately implies
that 〈J∗XJh, k〉 = 〈AΨU (θ)h,ΨU (θ)k〉 = 〈Ah,ΨU (|θ|2)k〉 = 〈Ah, k〉 = 〈Xh, k〉. In
particular, for every f ∈ L∞(µ), we obtain an element Tf ∈ T (T ) by setting

Tf = PHΨU (f)|H ∈ B(H),

called the T -Toeplitz operator with symbol f . The corresponding Hankel operator

with symbol f is defined to be

Hf = (1 − PH)ΨU (f)|H ∈ B(H,H⊥).

In case of a regular A-isometry the different types of Toeplitz operators considered
above are related as follows.

3.2 Proposition. Given a regular A-isometry T ∈ B(H)n with minimal normal
extension U ∈ B(Ĥ)n, the following assertions hold:

(a) The T -Toeplitz operators possess the representation T (T ) = PH(U)′|H.

(b) If W ∗(U) is a maximal abelian W ∗-algebra, then T (T ) = {Tϕ : ϕ ∈ L∞(µ)}.

Proof. Note that the T -Toeplitz operators in the sense of Definition 3.1 are just
the operators X ∈ B(H) that are T-Toeplitz with respect to the commuting family
of isometries (γT (θ))θ∈Iµ in the sense of Prunaru (Definition 1.1 in [20]) . The
representation

W ∗(U) = LH
w∗

({J∗
1J2 : J1, J2 ∈ IU})

obtained in Proposition 2.8 shows that the commutant of the family (ΨU (θ))θ∈Iµ

coincides with (W ∗(U))′ = (U)′. But then the minimality of U as a normal extension
of T implies that (ΨU (θ))θ∈Iµ is the minimal normal extension of the commuting
family (γT (θ))θ∈Iµ of isometries. Using Theorem 1.2 in Prunaru [20] for commuting
families of isometries, we obtain that

T (T ) = PH(ΨU (θ))′θ∈Iµ
|H = PH(U)′|H.

To prove part (b), observe that if W ∗(U) is a maximal abelian W ∗-algebra, then
W ∗(U) = (W ∗(U))′ = (U)′ by Proposition 4.62 in Douglas [12]. Therefore T (T ) =
PH(U)′|H = PHΨU(L∞(µ))|H, as desired. �

3.3 Corollary. For every regular Hardy-space A-isometry T = Tz ∈ H2
A(µ)n asso-

ciated with a probability measure µ ∈M+
1 (∂A), we obtain the identity

T (T ) = {X ∈ B(H2
A(µ)) : TθXTθ = X for every θ ∈ Iµ} = {Tϕ : ϕ ∈ L∞(µ)}.

Proof. Remember that the minimal normal extension of T is U = Mz ∈ B(L2(µ))n.
Proposition 4.50 in Douglas [12] says that W ∗(U) = {Mϕ : ϕ ∈ L∞(µ)} ⊂ B(L2(µ))
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is a maximal abelian W ∗-algebra. Hence the assertion follows from Lemma 2.3 and
part (b) of the above proposition. �

Let us add a simple lemma with two elementary properties of Toeplitz operators
that will often be used without a comment throughout the subsequent section. For
abbreviation, we say that a map Γ : L∞(µ) → B(H) is pointwise boundedly SOT-

continuous if, for every bounded sequence (fk)k≥1 in L∞(µ) converging pointwise
µ-almost everywhere to some f ∈ L∞(µ) (at the level of representatives), we have
Γ(f) = SOT − limk→∞ Γ(fk).

3.4 Lemma. Let T ∈ B(H)n be an A-isometry with minimal normal extension
U ∈ B(Ĥ)n. Then the following assertions hold:

(a) For every Y ∈ B(Ĥ), the maps Γ : L∞(µ) → B(H), f 7→ PH(ΨU (f)Y )|H and
Γ∗ : L∞(µ) → B(H), Γ∗(f) = Γ(f)∗ are pointwise boundedly SOT-continuous.

(b) Given Y ∈ (U)′, f ∈ L∞(µ) and g, h ∈ H∞
A (µ), we have

PH(ΨU (gfh)Y )|H = Tg

(
PH(ΨU (f)Y )|H

)
Th

and in particular Tgfh = TgTfTh.

Proof. Fix an arbitrary vector x ∈ H and set y = Y x. Then the desired continuity
property for Γ follows from the dominated convergence theorem and the estimate

‖Γ(f)x‖2 ≤ ‖ΨU (f)y‖2 =

∫

∂A

|f |2d〈E(·)y, y〉 (f ∈ L∞(µ)).

An analogous argument applies to ‖Γ(f)∗x‖2 ≤ ‖Y ∗‖2‖ΨU (f)x‖2. This proves
part (a). In order to verify part (b), note that, for x, y ∈ H, the scalar product
〈PHΨU (gfh)Y x, y〉 can be rewritten as

〈ΨU (g)∗ΨU (f)YΨU (h)x, y〉 = 〈ΨU (f)Y Thx, Tgy〉 = 〈TgPHΨU(f)Y Thx, y〉,

as desired. �

Now we take a closer look at the identification T (T ) = PH(U)′|H from part (a) of
Proposition 3.2. Having the details from the corresponding proof in mind, Theorem
1.2 in [20] actually yields the following detailed analysis of this identity:

3.5 Proposition. (Prunaru) For a regular A-isometry T ∈ B(H)n, the following
assertions hold:

(a) The compression map ρ : (U)′ → B(H), Y 7→ PHY |H is a complete isometry
with range ran(ρ) = T (T ).

(b) There is a surjective unital ∗-representation π : C∗(T (T )) → (U)′ ⊂ B(Ĥ)
satisfying the identity π(ρ(Y )) = Y for every Y ∈ (U)′.

(c) There exists a completely positive and unital projection Φ : B(H) → B(H)
onto ran(Φ) = T (T ) such that Φ(X) = PHπ(X)|H holds for every X ∈
C∗(T (T )).

(d) The kernels ker(Φ|C∗(T (T ))) and ker(π) are equal and coincide with the two-
sided closed ideal in C∗(T (T )) generated by all operators of the form XY −
Φ(XY ) with X,Y ∈ T (T ). �
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As an immediate consequence we obtain the existence of a generalized Toeplitz
sequence which, in some sense, justifies the definition of Toeplitz operators via the
condition J∗XJ = X for every J ∈ IT .

3.6 Corollary. For every regular A-isometry T ∈ B(H)n, there is a short exact
sequence

0 −→ SC(T )
⊂−→ C∗(T (T ))

π−→ (U)′ −→ 0,

where SC(T ) stands for the two-sided closed ideal in C∗(T (T )) generated by all
operators of the form XY − Φ(XY ) with X,Y ∈ T (T ). �

Restricting the map π from the full Toeplitz C∗-algebra C∗(T (T )) to the C∗-algebra

TC(T ) = C∗({Tf : f ∈ C(∂A)}) ⊂ B(H)

generated by all Toeplitz operators with continuous symbols, we obtain the next
result. Let SCC(T ) ⊂ TC(T ) be the closed two-sided ideal generated by all semi-
commutators TfTg − Tfg with f, g ∈ C(∂A).

3.7 Corollary. For every regular A-isometry T ∈ B(H)n, there is a short exact
sequence

0 −→ SCC(T )
⊂−→ TC(T )

σ−→ C(σn(T )) −→ 0

with a ∗-homomorphism σ satisfying σ(Tf ) = f |σn(T ) for every f ∈ C(∂A).

Proof. With the notations from Proposition 3.5, we have ρ(ΨU (f)) = PHΨU(f)|H =
Tf for f ∈ C(∂A). Hence by part (b) of Proposition 3.5, the restriction of the
map π : C∗(T (T )) → (U)′ to TC(T ) yields a surjective C∗-algebra homomorphism
π̃ : TC(T ) → C∗(U) with π̃(Tf ) = ΨU (f) for all f ∈ C(∂A). We want to determine
the kernel of π̃, which is a closed two-sided ideal in TC(T ). First observe that part
(c) of Propositon 3.5 yields the identity

Φ(Tf1 · · ·Tfk
) = PHπ(Tf1 · · ·Tfk

)|H
= PH π̃(Tf1) · · · π̃(Tfk

)|H
= PHΨU (f1 · · · fk)|H
= Tf1···fk

,

valid for all k ≥ 1 and all f1, . . . , fk ∈ C(∂A). The case k = 2, together with part
(d) of Proposition 3.5, implies that the closed two-sided ideal SCC(T ) ⊂ TC(T )
generated by the semi-commutators TfTg−Tfg = TfTg −Φ(TfTg) with f, g ∈ C(∂A)
satisfies the inclusion

SCC(T ) ⊂ ker(π̃).

To finish the proof, we have to settle the reverse inclusion. Towards this end, first
observe that the map Φ leaves TC(T ) invariant, as can be shown using the identity
Φ(Tf1 · · ·Tfk

) = Tf1···fk
and the fact that TC(T ) is the closed linear hull of all opera-

tors of the form Tf1 · · ·Tfk
with k ∈ N and f1, . . . , fk ∈ C(∂A). Hence Φ̃ = Φ|TC(T )

is a continuous linear map with Φ̃2 = Φ̃. By part (d) of Proposition 3.5,

ran(1 − Φ̃) = ker(Φ̃) = ker(Φ) ∩ TC(T ) = ker(π) ∩ TC(T ) = ker(π̃).

So it remains to check that

(1 − Φ)(Tf1 · · ·Tfk
) = Tf1 · · ·Tfk

− Tf1···fk
∈ SCC(T ).
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for all k ∈ N and f1, . . . , fk ∈ C(∂A). But this follows easily from the decomposition

Tf1 · · ·Tfk
− Tf1···fk

= Tf1 · · ·Tfk
− Tf1···fk−1

Tfk
+ Tf1···fk−1

Tfk
− Tf1···fk

∈ (Tf1 · · ·Tfk−1
− Tf1···fk−1

)Tfk
+ SCC(T )

using an elementary induction. To complete the proof, we define the symbol map
σ as the composition σ = Γ ◦ π̃ of π̃ and the Gelfand map Γ : C∗(U) → C(σn(T )).

�

In the classical theory of Hardy space Toeplitz tuples on the unit ball or, more
general, on strictly pseudoconvex domains in C

n (see [23]), the first space in the
above short exact sequence coincides with the commutator ideal of TC(T ). While
this fails to be true for arbitrary A-isometries, it holds under some natural additional
assumptions on T including essential normality. Recall that a commuting tuple
T ∈ B(H)n is said to be essentially normal if its self-commutators are compact,
that is, if

[Ti, T
∗
i ] = TiT

∗
i − T ∗

i Ti ∈ K(H) (i = 1, . . . , n).

In other words, the images π(Ti) of the components of T under the canonical map

π : B(H) → C(H) = B(H)/K(H), X 7→ X + K(H)

into the Calkin-algebra form a commuting tuple π(T ) = (π(T1), . . . , π(Tn)) of normal
elements in C(H). Some useful characterizations of essentially normal A-isometries
are collected in the following lemma.

3.8 Lemma. For an A-isometry T ∈ B(H)n, the following assertions are equivalent:

(a) The tuple T is essentially normal.

(b) All Hankel operators Hf with continuous symbol f ∈ C(∂A) are compact.

(c) For every f ∈ C(∂A) and every Y ∈ B(Ĥ), the semi-commutators
(
PHY |H

)
Tf − PH(YΨU (f))|H and Tf

(
PHY |H

)
− PH(ΨU (f)Y )|H

are compact.

(d) The semi-commutators TfTg − Tfg are compact whenever f ∈ C(∂A) and
g ∈ L∞(µ) (or, equivalently, whenever f, g ∈ C(∂A)).

Proof. It is well known that a subnormal tuple T ∈ B(H)n with minimal normal
extension U ∈ B(Ĥ)n is essentially normal if and only if

[Ui, PH ] ∈ K(Ĥ) (i = 1, . . . , n),

or equivalently, if π(PH) ∈ C(Ĥ) belongs to the commutant of the C∗-algebra gen-
erated by the commuting normal elements π(Ui) (i = 1, . . . , n). In the setting of the
lemma, this immediately implies the compactness of all commutators [ΨU (f), PH ]
with f ∈ C(∂A), and thus of all Hankel operators

Hf = (1 − PH)ΨU (f)PH |H = (1 − PH)[ΨU (f), PH ]|H (f ∈ C(∂A)).

This settles the implication (a) ⇒ (b). Now, fix arbitrary elements Y ∈ B(Ĥ) and
f ∈ C(∂A). A look at the algebraic identities

(
PHY |H

)
Tf − PH(YΨU (f))|H = PHY

(
PHΨU (f) − ΨU (f)

)
|H

= PHY (PH − 1)ΨU (f)|H = −PHY Hf

11



and Tf

(
PHY |H

)
− PH(ΨU (f)Y )|H =

((
PHY

∗|H
)
Tf − PH(Y ∗ΨU (f))|H)

)∗

shows that (b) implies (c). Setting Y = ΨU (g) with g ∈ L∞(µ) in the last part, we
obtain (d) as special case. Using the decompostion

[Ti, T
∗
i ] = Tzi

Tzi − TziTzi
= (Tzi

Tzi − Tzizi
) + (Tzizi

− TziTzi
) (i = 1, . . . , n)

we get back to condition (a), as desired. �

Part (d) of the preceding lemma can be used to calculate the commutator ideal of
the Toeplitz algebra TC(T ), that is, the closed two-sided ideal of TC(T ) generated
by all commutators [A,B] = AB − BA of operators A,B ∈ TC(T ). Recall that a
subset S ⊂ B(H) is called irreducible, if there is no non-zero proper closed subspace
M ⊂ H which is reducing for H. It is well known that the classical Toeplitz tuples
Tz on the Hardy space H2(σ) with respect to the surface measure of the unit sphere
or the boundary of a strictly pseudoconvex domain in C

n are essentially normal and
generate an irreducible Toeplitz algebra TC(Tz) (see Upmeier [23]).

3.9 Proposition. Let T ∈ B(H)n be an essentially normal, non-normal regular
A-isometry. If the Toeplitz C∗-algebra TC(T ) is irreducible, then the commutator
ideal of TC(T ) is K(H), and there is a short exact sequence of C∗-algebras

0 −→ K(H)
⊂−→ TC(T )

σ−→ C(σn(T )) −→ 0,

where the symbol homomorphism σ satisfies σ(Tf ) = f |σn(T ) for every f ∈ C(∂A).

Proof. Let C ⊂ TC(T ) denote the commutator ideal. In view of the simple identity
[Tf , Tg] = TfTg − Tgf − (TgTf − Tgf ) with f, g ∈ C(∂A), the assumption on T to be
not normal, and part (d) of the previous lemma, we conclude that

0 6= C ⊂ SCC(T ) ⊂ K(H).

In particular, it follows that TC(T ) ∩ K(H) 6= 0. Hence TC(T ) ⊃ K(H) by the
assumed irreducibility (see, e.g., Theorem 5.39 in [12]). So both C and SCC(T ) are
non-zero closed ideals of K(H). Since K(H) is known to contain no proper closed
ideals, we conclude that C = SCC(T ) = K(H). Hence the asserted short exact
sequence is just the one established in Corollary 3.7. �

4 The essential commutant of HT

The essential commutant of an arbitrary subset F ⊂ B(H) is defined as

EssCom(F) = {C ∈ B(H) : CY − Y C ∈ K(H) for all Y ∈ F}.

In other words, an operator C belongs to EssCom(F) if and only if its image π(C)
in the Calkin algebra belongs to the commutant (π(F))′. Obviously, EssCom(F)
is always a norm-closed subalgebra of B(H). This section is devoted to a detailed
study of the essential commutant of the dual algebra HT associated with a regular
essentially normal A-isometry. The following two simple observations show how the
assumption on T to be essentially normal influences the structure of EssCom(T ).

4.1 Lemma. If T ∈ B(H)n is an essentially normal regular A-isometry, then we
have EssCom(T ) = EssCom(TC(T )), and this is a C∗-algebra.
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Proof. To prove the non-trivial inclusion, fix an element R ∈ EssCom(T ). Since
π(R) commutes with the commuting normal elements π(Ti) (i = 1, . . . , n), it com-
mutes with C∗(π(T )). By Lemma 3.8 the map C(∂A) → C(H), f 7→ π(Tf ) is a
C∗-algebra homomorphism. The theorem of Stone-Weierstrass implies that π(Tf ) ∈
C∗(π(T )) for all f ∈ C(∂A) and hence that π(TC(T )) ⊂ C∗(π(T )). Therefore
R ∈ EssCom(TC(T )). Since TC(T )) ⊂ B(H) is a self-adjoint subset, its essential
commutant is a C∗-algebra. �

For an arbitrary element f ∈ L∞(µ), we define the support supp(f) to be the support
of the measure µf induced by f via the formula µf (ω) =

∫
ω
|f |dµ for every Borel

subset ω ⊂ ∂A. By definition, supp(f) ⊂ ∂A is closed and supp(f)c is the largest
open set G ⊂ ∂A with the property that f = 0 µ-almost everywhere on G. Morover,
if g ∈ C(∂A) is a function with g = 1 on supp(f), then (1 − g) · f = 0 and gf = f
µ-almost everywhere on ∂A.

4.2 Lemma. Suppose that T ∈ B(H)n is an essentially normal A-isometry and
that R ∈ EssCom(T ). Then, for every choice of operators Y1, Y2 ∈ (U)′ and every
pair of elements f1, f2 ∈ L∞(µ) with disjoint supports, we have

(
PH(ΨU (f1)Y1)|H

)
R

(
PH(ΨU (f2)Y2)|H

)
∈ K(H).

Proof. Let us abbreviate the factors on both sides of R by X1 = PH(ΨU (f1)Y1|H
and X2 = PH(ΨU (f2)Y2)|H. By Urysohn’s lemma, we can choose a continuous
function h : ∂A → [0, 1] with h = 1 on supp(f1) and h = 0 on supp(f2). With this
choice of h, an application of Lemma 3.8 (c) guarantees that

π(X1) = π(X1Th) and π(ThX2) = 0.

Since R ∈ EssCom(T ) = EssCom(TC(T )) (see Lemma 4.1), we obtain that

π(X1RX2) = π(X1ThRX2) = π(X1RThX2) = 0,

as desired. �

As most ideas occurring in this section, the previous lemma goes back in its original
form to Davidson [6]. Our study of EssCom(HT ) has been inspired by corresponding
results of Le [18] and Ding-Sun [11] who developed Davidson’s technique further in
the several-variable case.

For the remainder of this section, we fix a regular A-isometry T ∈ B(H)n with
σp(T ) = ∅ and denote its minimal normal extension as before by U ∈ B(Ĥ)n.

4.3 Lemma. For every element S ∈ EssCom(HT ), there are a weak∗ zero sequence
of isometries (Jk)k≥1 in HT and an operator YS ∈ (U)′ such that the limit

XS = w∗ − lim
k→∞

J∗
kSJk

exists and satisfies XS = PHYS|H.

Proof. Let S ∈ EssCom(HT ) be given. According to Proposition 2.8 there is a
weak* zero sequence (Jk)k≥1 of isometries in HT . By passing to a subsequence we
can achieve that the limit XS = w∗ − limk→∞ J∗

kSJk ∈ B(H) exists. For every
isometry V ∈ HT , we obtain that

V ∗XSV = w∗ − lim
k→∞

J∗
kV

∗SV Jk = w∗ − lim
k→∞

J∗
kSJk = XS .
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Here we have used that [S, V ] ∈ K(H) and that w∗ − limk→∞ J∗
kKJk = 0 for every

compact operator K on H. Thus XS is a T -Toeplitz operator. By Proposition 3.2
there is an operator YS ∈ (U)′ with XS = PHYS |H. �

Before we continue, we need an elementary topological lemma ensuring the existence
of suitable open covers of compact sets Q ⊂ C

n. Since the real dimension is involved,
we formulate it for compact sets in R

m. Given a subset F ⊂ R
m, we denote its

diameter with respect to the Euclidean norm by |F | = supx,y∈F |x− y|.

4.4 Lemma. Let Q ⊂ R
m be compact and let ε > 0 be given. Then there exists a

finite open cover Q =
⋃

j∈J Uj consisting of relatively open sets Uj ⊂ Q with |Uj| < ε
and such that the index set J admits a decomposition J = J1 ∪ · · · ∪ J2m with the
property that each of the families (Ui)i∈Jl

(l = 1, . . . , 2m) consists of pairwise disjoint
sets.

Proof. For the convenience of the reader, we indicate the elementary ideas. Clearly
it suffices to prove the assertion for every compact rectangle Q ⊂ R

m. For m = 1,
the result obviously holds. Suppose that the assertion is true for some m ≥ 1, and
let Q = Q1 × Q2 be a compact rectangle with Q1 ⊂ R, Q2 ⊂ R

m. Choose open
covers (U1

j )j∈J1 for Q1 and (U2
k )k∈J2 for Q2 as in the assertion. Let

J1 = J1
1 ∪ J1

2 and J2 = J2
1 ∪ · · · ∪ J2

2m

be the corresponding decompositions of the index sets. Define open sets

U(j,k) = U1
j × U2

k ⊂ Q (j ∈ J1, k ∈ J2)

and index sets

J = J1 × J2 and J(a,b) = J1
a × J2

b (a ∈ {1, 2}, b ∈ {1, . . . , 2m}).

Then (U(j,k))(j,k)∈J is a cover of Q by open sets of diameter |U(j,k)| ≤ |Uj|+|Uk| < 2ε,
J is the disjoint union of all J(a,b) and the families (U(j,k))(j,k)∈J(a,b)

consist of pairwise
disjoint sets. �

Let Y ∈ (U)′ and S ∈ EssCom(T ) be given operators. By Lemma 3.4 the map

F : L∞(µ) → B(H) by F (f) = TfS − PH(ΨU (f)Y )|H.

is pointwise boundedly SOT-continuous. A straightforward application of Lemma
4.2 (and Lemma 4.1) yields that, for any pair of functions f, g ∈ L∞(µ) with disjoint
supports, each of the products

F (f)F (g), F (f)∗F (g), F (f)F (g)∗ ∈ B(H)

is compact.

Our main result will follow by applying the following general observation to functions
of the above type.

4.5 Proposition. Let F : L∞(µ) → B(H) be a linear map such that

(P1) F is pointwise boundedly SOT-continuous;

(P2) F (χ) is not compact for a characteristic function χ of some Borel set in ∂A;
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(P3) if f, g ∈ L∞(µ) have disjoint supports, then each of the products F (f)F (g),
F (f)F (g)∗, F (f)∗F (g) is compact.

Then there are a positive real number ρ > 0 and a sequence (fk)k≥1 of continuous
functions fk : ∂A → [0, 1] with disjoint supports satisfying ‖F (fk)‖ > ρ for all k ≥ 1.

Proof. Let α = ‖π(F (χ))‖/2 > 0 and define

E = {f ∈ C(∂A) : 0 ≤ f ≤ 1 and ‖F (fχ)‖ > α/(2N)}

with N = 22n. We obtain a decreasing sequence (Ek)k≥1 of closed subsets of ∂A by
defining each Ek as the closure of the set

⋃(
supp(f) : f ∈ E with |supp(f)| ≤ 1

k

)
.

We first prove that the intersection E =
⋂

k≥1Ek is non-empty. Let us assume
the converse. Then ‖F (fχ)‖ ≤ α/(2N) for every f ∈ C(∂A) with 0 ≤ f ≤ 1 and
|supp(f)| ≤ 1/k.

According to Lemma 4.4 we can choose an open cover ∂A = U1 ∪ . . . ∪ Ur such that
|Uj | ≤ 1/k (j = 1, . . . , r) and such that the set {1, . . . , r} is the disjoint union of
sets J1, . . . , JN with the property that each of the families (Ui)i∈Jl

(l = 1, . . . , N)
consists of pairwise disjoint sets. Let (hj)j=1,...,r be a continuous partition of unity
relative to the open cover (Uj)j=1,...,r. In view of the decomposition

π(F (χ)) =
π(F (χ) + F (χ)∗)

2
+ i

π(F (χ) − F (χ)∗)

2i
,

we can choose an ε ∈ {−1,+1} such that ‖π(F (χ) + εF (χ)∗)‖ > α. Then

Aj = π(F (hjχ) + εF (hjχ)∗) (j = 1, . . . , r)

defines a family (Aj)j=1,...,r of normal elements in the Calkin algebra such that
AµAν = 0 whenever µ, ν are different indices in one of the sets Jl (l = 1, . . . , N).

A simple spectral radius argument then yields the estimates

‖
∑

j∈Jl

Aj‖ ≤ max
j∈Jl

‖Aj‖ ≤ 2 · max
j∈Jl

‖F (hjχ)‖ ≤ α/N (l = 1, . . . , N)

which leads to the contradiction

α < ‖
r∑

j=1

Aj‖ ≤
N∑

l=1

‖
∑

j∈Jl

Aj‖ ≤ α.

Thus we have shown that E =
⋂

k≥1Ek 6= ∅ .

Define ρ = α/(2N). In the second step we prove the existence of a sequence (gk)k≥1

in C(∂A) with with 0 ≤ gk ≤ 1 and pairwise disjoint supports such that ‖F (gkχ)‖ >
ρ for all k ≥ 1.

To this end, let us fix a point z0 ∈ E. Suppose that g1, . . . gk ∈ E are functions with
pairwise disjoint supports such that

d = dist
(
z0,

k⋃

j=1

supp(gj)
)
> 0.
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Since z0 ∈ E, there is a function f ∈ E with |supp(f)| < d/3 and dist(z0, supp(f)) <
d/3. If z0 6∈ supp(f), we define gk+1 = f . Otherwise we choose a sequence of
functions (κj)j≥1 in C(∂A) with 0 ≤ κj ≤ 1, z0 6∈ supp(κj) for all j ≥ 1 and

κj(z)
j→ 1 (z ∈ ∂A \ {z0}).

By hypothesis σp(T ) = ∅ and hence µ has no one-point atoms. Therefore (κjfχ)j
is a bounded sequence in L∞(µ) which converges pointwise µ-almost everywhere to
the function fχ. Using condition (P1) we find that

F (fχ) = SOT− lim
j→∞

F (κjfχ)

Since f ∈ E , we can choose a natural number j ≥ 1 with ‖F (κjfχ)‖ > α/(2N). In
this case we define gk+1 = κjf . In both cases we obtain a family (gj)j=1,...,k+1 of
functions in E with pairwise disjoint supports not containing z0.

Inductively, one finds a sequence (gk)k≥1 in E with pairwise disjoint supports and
‖F (gkχ)‖ > ρ for all k ≥ 1.

A standard application of Lusin’s theorem (Theorem 7.4.3 and Proposition 3.1.2 in
[4]) shows that there is a sequence of continuous functions hj : ∂A → [0, 1] such that

(hj)
j−→ χ µ-almost everywhere. Again using hypothesis (P1) we find that

F (gkχ) = SOT− lim
j→∞

F (gkhj)

for every k ≥ 1. Hence, for every k ≥ 1, there is a natural number jk such that
‖F (gkhjk

)‖ > ρ. The observation that the resulting functions fk = gkhjk
have all

required properties completes the proof. �

Now we are able to prove the main theorem of this section. Recall that, by Proposi-
tion 2.7, every spherical isometry is a regular A(Bn)-isometry and therefore fits into
this context.

4.6 Theorem. Let T ∈ B(H)n be an essentially normal regular A-isometry with
σp(T ) = ∅, and let S ∈ B(H) be an operator that essentially commutes with HT .
Then there are a T -Toeplitz operator X ∈ B(H) and a compact operator K ∈ K(H)
with

S = X +K.

Proof. According to Lemma 4.3 there is a sequence (Jk)k≥1 of isometries in HT in
such that the limit

XS = w∗ − lim
k→∞

J∗
kSJk

defines a T -Toeplitz operator. By Proposition 3.2 there is an operator YS ∈ (U)′

with XS = PHYS |H. By Lemma 2.3 we can choose a sequence (θi)i≥1 of bounded
measurable functions θi : ∂A → C with |θi| = 1 on ∂A such that θi, or better its
equivalence class in L∞(µ), belongs to H∞

A (µ) and satisfies Ji = γT (θi) for every
i ≥ 1. As seen before, the continuous map F : L∞(µ) → B(H) defined by

F (f) = TfS − PH(ΨU (f)YS)|H

satisfies the hypotheses (P1) and (P3) of Proposition 4.5. To complete the proof it
suffices to show that F (1) is a compact operator. We even show that

F (L∞(µ)) ⊂ K(H).
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Let us assume that the inclusion does not hold. Since every bounded measurable
function can be approximated uniformly by finite linear combinations of character-
istic functions of Borel sets, there is a characteristic function χ of some Borel set
in ∂A such that F (χ) is not compact. As an application of Proposition 4.5 we find
that there are a real number ρ > 0 and a sequence (fk)k≥1 of continuous functions
fk : ∂A → [0, 1] with pairwise disjoint supports Ak = supp(fk) and ‖F (fk)‖ > ρ for
all k ≥ 1.

Let us fix an index k ≥ 1. Choose a real number t with 0 < t < 4−k and t · ‖F (1)‖ <
ρ/2. Then the function ϕ = fk + t ∈ C(∂A) is strictly positive on ∂A and satisfies
the estimates

‖ϕ‖∞,∂A
≤ 2, ‖ϕ‖∞,∂A\Ak

< 4−k, ‖F (ϕ)‖ > ρ/2.

Since (A|∂A, ∂A, µ) is regular, there is a sequence (ϕj)j≥1 in A with |ϕj | <
√
ϕ on

∂A and |ϕj | j→ √
ϕ µ-almost everywhere on ∂A. Property (P1) implies that

F (ϕ) = SOT − lim
j→∞

F (|ϕj |2).

Choose a natural number j with ‖F (|ϕj |2)‖ > ρ/2 and set gk = ϕj . Then gk ∈ A
satisfies the estimates ‖gk‖∞,∂A

≤ 2 and ‖gk‖∞,∂A\Ak
< 2−k. The identity

F (|gk|2) = Tgkgk
S − PH(ΨU (gkgk)YS)|H

= Tgk

(
Tgk

S − PH(ΨU (gk)YS)|H
)

= Tgk
F (gk)

implies that ‖F (gk)‖ > ρ/4. The observation that

w∗ − lim
i→∞

J∗
i

(
Tgk

JiS − STgk
Ji

)
= w∗ − lim

i→∞

(
Tgk

S − J∗
i SJiTgk

)

= Tgk
S − (PHYS |H)Tgk

= Tgk
S − PH(ΨU (gk)YS)|H

= F (gk)

allows us to choose a natural number i such that

‖Tgk
JiS − STgk

Ji‖ > ρ/4.

The functions hk = gkθi, where for every given k ≥ 1 the index i is chosen as
explained above, satisfy the estimates

‖hk‖∞,∂A
≤ 2 and ‖hk‖∞,∂A\Ak

< 2−k.

Furthermore by construction the functions hk, or better their equivalence classes in
L∞(µ), belong to H∞

A (µ) and the commutators Bk = [Thk
, S] ∈ B(H) are compact

operators with ‖Bk‖ ≥ ρ/4.

By passing to a subsequence, we can achieve that the limit

c = lim
k→∞

‖Bk‖ ∈ [ρ/4,∞)

exists. Since the sequence (hk)k≥1 is uniformly bounded on ∂A and converges to
zero pointwise on ∂A, it follows that both sequences (Bk)k≥1 and (B∗

k)k≥1 converge
to zero in the strong operator topology (see Lemma 3.4). A result proved by Muhly

17



and Xia in [19] (Lemma 2.1) shows that, by passing to a subsequence again, we can
achieve that the series

B =

∞∑

k=0

Bk

converges in the strong operator topology and satisfies ‖π(B)‖ = c ≥ ρ/4. Since
every point z ∈ ∂A belongs to at most one of the sets Ak, the partial sums of the
series

∑∞
k=0 hk are uniformly bounded on ∂A and converge pointwise to a function

h : ∂A → C. Clearly, (the equivalence class of) h belongs to H∞
A (µ) and the identities

Th =
∞∑

k=1

Thk
and [Th, S] =

∞∑

k=1

[Thk
, S] = B

hold in the strong operator topology. But then Th ∈ HT would be an operator
with non-compact commutator [S, Th]. This contradicts the hypothesis and thus
completes the proof. �

4.7 Corollary. Let T ∈ B(H)n be an essentially normal regular A-isometry with
σp(T ) = ∅. Denote by U ∈ B(Ĥ)n the minimal normal extension of T . Suppose that

W ∗(U) ⊂ B(Ĥ) is a maximal abelian von Neumann algebra. Then a given operator
S ∈ B(H) essentially commutes with HT if and only if S has the form S = Tf +K
with a compact operator K ∈ K(H) and a symbol f ∈ L∞(µ) having the property
that the associated Hankel operator Hf is compact.

Proof. Suppose that S ∈ B(H) essentially commutes with HT . Fix a weak∗ zero
sequence of isometries (Jk)k≥1 in HT such that the weak∗ limit

X = w∗ − lim
k→∞

J∗
kSJk ∈ B(H)

defines a T-Toeplitz operator (see Lemma 4.3). By Proposition 3.2 (b) there is a
function f ∈ L∞(µ) such that X = PHΨU(f)|H = Tf . The proof of the preceding
theorem shows that the image of the map

F : L∞(µ) → B(H), F (h) = ThS − PH(ΨU (hf))|H

is contained in K(H). In particular, the operator K = F (1) = S − Tf is compact.
Because of

F (f) = TfS − T|f |2

= TfTf − T|f |2 + TfK

= PHΨU(f)PHΨU (f)|H − PHΨU (f)ΨU (f)|H + TfK

= −PHΨU (f)PH⊥ψU (f)|H + TfK

= −H∗
fHf + TfK

we find that H∗
fHf and hence also Hf is compact.

Conversely, suppose that f ∈ L∞(µ) is a function such that Hf is compact. Then,
for every g ∈ H∞

A (µ), it follows that

TfTg = PHΨU (f)ΨU(g)|H = PHΨU (g)PHΨU (f)|H + PHΨU(g)Hf

= TgTf + PHΨU (g)Hf .

Thus Tf essentially commutes with HT . �

18



The preceding corollary in particular applies to each essentially normal regular
Hardy-space A-isometry T = Tz ∈ B(H2

A(µ))n (cf. Definition 2.2) with empty
point spectrum. To give a concrete example, let D ⊂ C

n be a relatively com-
pact stricly pseudoconvex open set with C2-boundary ∂D. The normalized sur-
face measure σ on the boundary ∂D has no one-point atoms. The associated
Toeplitz tuple Tz = (Tz1 , . . . , Tzn) ∈ B(H2

A(D)(σ))n is a regular Hardy-space A(D)-

isometry (Proposition 2.7). The space H2
A(D)(σ) coincides in this case with the

Hardy space H2(σ) ⊂ L2(σ) on the boundary ∂D (see Section 7 in [22]). In or-
der to identify H∞

A(D)(σ) we use the fact that every function f ∈ H∞(D) possesses

non-tangential boundary values f∗ ∈ L∞(σ) (Theorem 8.4.1 in [17]). The map
r : H∞(D) → L∞(σ), f 7→ f∗ is a weak∗ continuous isometry. To see this, fix
f ∈ H∞(D). Since f belongs to the Hardy space H2(D), there exists a function
f̃ ∈ L2(σ) such that

f(z) = (P f̃)(z) =

∫

∂D

P (z,w)f̃ (w)dσ(w) (z ∈ D),

where P denotes the Poisson kernel of D (Theorem 8.3.6 in [17]). In the proof of
Theorem 8.4.1 in [17] it is shown that r(f) = f̃ . In particular, it follows that f̃
belongs to L∞(σ) and satisfies ‖f̃‖∞,σ ≤ ‖f‖∞,D. Estimating the above Poisson
integral of f̃ we obtain the reverse inequality ‖f‖∞,D ≤ ‖f̃‖∞,σ. Thus the map
r : H∞(D) → L∞(σ) is isometric. As usual we denote its range by H∞(σ). Since
P(r(f)) = f for every f ∈ H∞(D), the inverse of r is the Poisson transformation
P : H∞(σ) → H∞(D).

Standard arguments show that H∞(σ) ⊂ L∞(σ) is weak∗ closed. We briefly indicate
a possible proof. Let (fk) be a sequence in the closed unit ball of H∞(D) such
that g = w∗ − limk r(fk) exists in L∞(σ). By Krein-Smulian’s theorem and the
separability of L1(σ) it suffices to show that g ∈ H∞(σ). By Montel’s theorem we
may suppose that (fk) converges to some function f ∈ H∞(D) uniformly on every
compact subset of D. Since r(f) and g are functions in L∞(σ) such that

P(r(f))(z) = f(z) = lim
k
fk(z) = lim

k

∫

∂D

P (z,w)(rfk)(w)dσ(w) = P(g)(z)

for all z ∈ D, it follows that g = r(f) (cf. the proof of Theorem 8.4.1 in [17]).

As an application one obtains the weak∗ continuity of the map r : H∞(D) → H∞(σ).
Since H∞(D) = (L1(D)/⊥H∞(D))′ has a separable predual, it suffices to show that
(r(fk)) is a weak∗ zero sequence in L∞(σ) for each weak∗ zero sequence (fk) in
H∞(D). But this follows from the observation that

〈[P (z, ·)], r(fk)〉 =

∫

∂D

P (z,w)r(fk)(w)dσ(w) = fk(z)
k→ 0

for all z ∈ D and the fact that the predual L1(σ)/⊥H∞(σ) of H∞(σ) is the closed
linear span of all equivalence classes [P (z, ·)] (z ∈ D).

Since H∞(σ) ⊂ L∞(σ) is weak∗ closed, the inclusion H∞
A(D)(σ) = (A(D)|∂D)

w∗

⊂
r(H∞(D)) = H∞(σ) holds. The reverse inclusion H∞(σ) ⊂ H∞

A(D)(σ) follows from

the weak∗ continuity of r and the fact that there is an open neighbourhood U of D
in C

n such that O(U)|D is sequentially weak∗ dense in H∞(D) (Proposition 2.1.6
in [8]).
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Since γTz(f) = ΨU (f)|H2(σ) = Tf for f ∈ H∞(σ), the dual algebra HTz coincides
with the set of all Toeplitz operators Tϕ with symbol ϕ in H∞(σ). By Theorem
4.2.17 in Upmeier [23] the tuple Tz is essentially normal. So the last corollary
applies to this case and yields a description of the essential commutant of the set of
all analytic Toeplitz operators, which extends Theorem 2 of Ding-Sun [11].

4.8 Corollary. If σ denotes the normalized surface measure on the boundary ∂D
of a strictly pseudoconvex domain D ⊂ C

n with C2-boundary, then an operator
S ∈ B(H2(σ)) essentially commutes with all analytic Toeplitz operators on H2(σ)
if and only if it has the form S = Tf +K with a compact operator K and a symbol
f ∈ L∞(σ), for which the associated Hankel operator Hf is compact. �
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