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Abstract

We consider entire solutions of the equations for stationary flows of shear thicken-
ing fluids in 2D and prove Liouville results under conditions like global boundedness
of the velocity field or finiteness of the energy.

1 Introduction

In our paper we study entire solutions v : R? — R2, 7 : R2 — R of the following set of
equations

(11) —div [T(e(u))] + ufOpu + Vr = 0,
' divu=0 in R?

and derive Liouville-type results under rather natural assumptions to be made precise be-
low. In physical terms (1.1) describes the stationary flow of an incompressible generalized
Newtonian fluid, u denoting the velocity field, = the pressure function, and 7' represents
the stress tensor. As usual e(u) stands for the symmetric derivative of u, i.e.

1 1 -
e(w) = 5 (Vu+Vu') = 50" + O hicinca

and u*Opu (summation w.r.t. k = 1,2) is the so-called convective term. We assume that
the stress tensor T’ comes from a potential H : S* — [0, c0) defined on the space S? of all
symmetric (2 x 2)-matrices and that H satisfies the structural condition

(1.2) H{(e) = hle])
with % : [0,00) — [0, 00) at least of class C?. Note that (1.2) implies

DH(E) = plel)e. uit) =" 1 =g,

which means that the viscosity coefficient may depend on the modulus of £ as proposed
by Ladyzhenskaya on p.193 of her book [Lal. For further mathematical and physical
explanations the reader is referred to the monographs of Galdi [Gal,2] and of Mélek,
Necas, Rokyta, Ruzicka [MNRR| (compare also [FS]). Here we concentrate on shear
thickening fluids, which means by definition (see [MNRR], Def. 1.68 on p.14) that pu(|e|)
is an increasing function. Of course the case of the stationary Navier-Stokes system falls
into this category but we can also cover the (nondegenerate) p-case with p > 2, in which
the function h grows like # generating a strongly nonlinear behaviour of the leading part



in the first equation in (1.1).

Let us recall what is known about Liouville theorems for entire solutions of the Navier-
Stokes system in 2D: from the work of Giaquinta and Modica (see Remark 1.6 in [GM])
it follows that in case

(1.3) |Vul?dr < oo
R2

the velocity field is a constant vector, provided the convective term is neglected in
(1.1). This restriction was removed by Galdi (see [Ga2]|, Chapter X, Theorem 3.1) so
that the constants are the only entire solutions having finite energy of the stationary
Navier-Stokes system in the plane.

Recently Koch [Ko] and Koch, Nadirashvili, Seregin, Sverdk [KNSS| investigated the
situation for the instationary Navier-Stokes equation in two spatial variables replacing
(1.3) by the condition

(1.4) |u(x,t)| < const
and showing that (1.4) implies

u(z,t) = b(t) on R?* x (—o0,0)
for a bounded function b : (—o0,0) — R

In order to describe our results we now give a precise formulation of the properties of the
potential h. Henceforth we assume:

h is strictly increasing and convex
(A1) together with A”(0) > 0 and lir% @ =0.
(A2) (doubling property) there exists a constant
such that h(2t) < ah(t) forallt>0.
/
(A3) we have hT(t) < h"(t) foranyt > 0.

From (A1) - (A3) it immediately follows:

i) u(t) = @ is an increasing function, thus we are in the shear thickening case. (For
the proof we just quote (A3).)



ii) We have h(0) = h/(0) = 0 and
(1.5) h(t) > %h”(O)tQ.

For (1.5) we observe that by i) for all ¢ > 0

UAQRSENAC)

t T s—0 s

= 1"(0),
hence h(t) = [} h'(s)ds > h"(0) [y s ds.

iii) The function h satisfies the balancing condition, i.e.

(1.6) %h’(t)t < h(t) < () < tH(), £ > 0.

In fact, the second inequality is a consequence of the convexity of h. We further have by

(A2)
h(t) > %h(Qt) _ 1/ W (s)ds > 1/ B (s)ds > %th’(t), >0,

a a
and (1.6) follows.

iv) For an exponent m > 2 and a constant ¢ > 0 it holds
(1.7) h(t) <c(t™+1),t>0,
which is an immediate consequence of (A2).

In order to formulate our results we assume from now on that u € C*(R%* R?) and 7 €
C1(IR?) are entire solutions of (1.1) with T'= DH and H satisfying (1.2), h being defined
according to (A1) - (A3). Note that this degree of smoothness is motivated by the results
in [Ful,2] and the non-degeneracy of D?>H, however it will become clear from the proofs
that we could also consider weak solutions with (second) derivatives having a sufficient
degree of local integrability. Our first theorem is in the spirit of Giaquinta and Modica
[GM] and of Galdi [Gaz2].

THEOREM 1.1. Suppose that we have a finite energy solution in the sense that

(1.8) /R2 h(le(u)]) de < oo
1S true.

a) If the convective term vanishes, then u must be a rigid motion, and reduces to a
constant vector, if (1.8) is replaced by the stronger assumption that [4, h(|Vul) dz
is finite.



b) If we allow the convective term to be non-zero, but require in addition to (1.8) the
validity of

(1.9) |u|? dz < o0,
R2

then wu is identically zero.

Next we consider bounded solutions. We have

THEOREM 1.2. Suppose that u is in the space L>®(R*R?). Then u is a constant
vector, if

i) the convective term vanishes
or

i) sup |u—us| — 0 as R — oo for some vector uy, € R?.
R2—Bx(0)

REMARK 1.1. We conjecture that any bounded solution u must be a constant vector,

but we are unable to prove this. From (4.19) it follows that

/ h(le(uw)])dx < cR
Br(0)
for any R > 1, and the choice v = r~1 in (5.24) implies

b (le(w)]) 2
/R2 W|V€(u)| dr < o0,

in particular [, |V2u|? dx < 0o, and a more careful analysis might yield Vu = 0.

REMARK 1.2. From the proof of Theorem 1.2 it will become evident that the condition
required in ii) of the theorem can be replaced by the hypothesis that [g, |u— us|? dz < co.

Let us finally say a few words concerning our notation: throughout this paper the
convention of summation with respect to indices repeated twice is used. All constants are
denoted by the symbol “c¢”, and the value of ¢ may change from line to line. Whenever
it is necessary we will indicate the dependence of ¢ on parameters. As usual Bg(z)
denotes the open disc with center xy and radius R > 0, and the symbols “:7, “.” will
be used for the scalar products of matrices and vectors, respectively, | - | denoting the

associated Euclidean norms.

Our paper is organized as follows: in Section 2 we present a measure theoretic result
originating in the work of Giaquinta and Modica [GM] and being of crucial importance
for proving Theorem 1.2. Moreover, we collect in Section 2 various technical tools. Section
3 presents the proof of Theorem 1.1. In Section 4 we derive an energy estimate for bounded
solutions, which is used during the proof of Theorem 1.2 to be presented in Section 5.
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2 Auxiliary results

Our first and most important tool originates in the work of Giaquinta and Modica and
formulates the “e”-lemma 0.5 of [GM] for the situation at hand.

Lemma 2.1. Suppose that we are given a function f > 0 in Li (R?) and some number

s > 0. Then we can find By := Bo(s) > 0 as follows: if for some 5 € (0, 5y) it is possible
to calculate a constant c() > 0 such that the inequality

/ fde <p fdx +c(B) {/ 1dm+R_s/ 1dm}
Qr(zo) Q2r(z0) Q2r(0) Q2r(0)

holds for all squares Qgr(xo) C R?, then we obtain the inequality

/ fd:rgc[/ 1d:)5—|—R_8/ ldx}
Qr(zo) Q2r(z0) Q2r(0)

again for all squares.

REMARK 2.1. For z € R? and R > 0 we have by definition Qr(z) = {x € R? :
|z; — z;| < R,i =1,2}. In Sections 4 and 5 Lemma 2.1 will be applied on discs in place
of squares, but this modification can be justified by some elementary considerations.

REMARK 2.2. In Lemma 0.5 of [GM] it is formally required that f is in L*(Qq) for
some cube Qy. But going through the calculations it is easy to see that actually Lemma 2.1
will follow. Of course we could give a more general form of Lemma 2.1, but this simple
variant is sufficient for our purposes.

The next result can be traced in [Gal], Chapter III, Section 3 (see also [F'S], Lemma 3.0.4,
for further references).

Lemma 2.2. Suppose that we are given numbers 1 < p; < p < ps < 00. Then there
exists a constant ¢ = c(py1,pa) with the following property: if f € LP(Bgr(xo)) satisfies

jfBR(mo)fdx = 0, then there exists a field v in the Sobolev space V([)/Il)(BR(:L’O); R?) satisfying
dive = f

together with the estimate

/ \W\degc/ ] da
Br(wo) Br(o)

for any exponent s € [p1,p]. The same is true if the disc Br(xq) is replaced by the annulus
TR(SL’O) = BQR<SL’0) — BR(SL’O).

We also need the following inequalities, which for simplicity we take from Acerbi and
Mingione (see Proposition 2.7 in [AM]), who callected these estimates in a form being
suitable for our applications. Moreover, in [AM] the reader will find more on the history
of these results.



Lemma 2.3. a) (Korn type inequality) Let p € (1,00).
Then for fields v €W (Bn(wo); R2) it holds

VUl Lo(Br@) < clle()llzr(Bria)
with ¢ independent of R.

b) Let w € W3 (Bgr(xo); R?) and q € (1,2). Then there is a rigid motion y such that
* . 2
(¢" = Q—_qq)
cRlle(w)l 2(8r@0)) »
clle(w)ll asaao

with ¢ being indepent of R. The same statements hold if we replace Br(xq) by
TR(ZEQ) = BQR(ZL'Q) - BR(ZIZ'Q).

{ lw = r2Br@ey <
<

[Jw — “YHLq*(BR(mO))

The next lemma goes back to Ladyzhenskaya (see [La], Lemma 1 on p.8)

Lemma 2.4. For smooth functions ¢ : R> — R with compact support we have

/ <p4dx§2/ gozdx/ |Vl da .
R? R2 R?

We finish this section with an elementary result concerning the growth of A and h'.

Lemma 2.5. There is a number 7 € (1,2) such that
W(t) <c(h(t) +1)

or equivalently
|DH ()| < e (H()Y™ +1)

holds for allt > 0 and € € S®. Moreover we even have the sharper estimate
W) <clh@®Y"+1t], t>0.
Proof: For ¢t > 1 it follows from (1.6) and (1.7) that

om
1-6 t

< ch(t)

provided 4 is sufficiently small. Letting 7 := 115 and recalling that 2'(t) < ct for ¢ € [0,1],
all our claims follow. O



3 Finite energy solutions: proof of Theorem 1.1

Suppose that our entire solution u satisfies (1.8). Fix discs Br C Bsg centered at the
origin, let T := By — B and choose 1 € C§°(Bag) such that 0 <n < 1,7 =1 on Bg,
|IVn| < c¢/R. Welet p:=71/(1r —1) > 2 with 7 from Lemma 2.5 and use Lemma 2.3b) to
find a rigid motion ~ such that

(3.1) lu — ~|? dr < ¢ R? |le(u)|? dz
Tr Tr
and
1/p 1/q
(3.2) ( lu — [P dx) <c ( |£(u)|qu) ,
Tr Tr

where ¢ := z% € (1,2). Quoting Lemma 2.2 with f := div [n*(u — v)] we find
w EI/?/}?(TR; R?) such that

divw = div [*(u — )] = Vn? - (u — ) on Ty,
(3-3) VWl Lagrey < eIV - (w =)Lz ,

IVwllzoirey < eV - (uw =)o) -

In order to justify the application of Lemma 2.2 we have to check that fTR fder=0:ifv
denotes the exterior unit normal to 97Ty, then (since n =0 on 0By and n = 1 on 0Bg)

/TRfdx:/TRdiV[ﬁz(u—v)] dm:/ P —~) - v dH

TR

=/ n2(u—v)~vdH1=—/ (u—7) - = dH!
9B R

dBg
= / div(u — ) dz =0.
Br

We now let
| u—7 in Bg
7T Plu—n) —w in Tg,

thus ¢ = 0 outside of By and div ¢ = 0. Let us assume for the moment that u*d,u = 0.
Then the multiplication of (1.1) with ¢ and integration by parts yields

0= DH(e(uw)) :e(u)dx+ | DH(s(u)) : e(n*lu—~+])dv+ [ DH(e(u)) : e(—w) dx,

Br Tr Tr

hence

/B "’ DH(e(u)) : e(u) dx

(3.4) < 2/T nh/(\ﬁ(U)\)WnHu—v\de/T W (le(u)]) le(w)] da

=: U1+U2.



Clearly we have by (1.6)

(3.5) Lh.s. of (3.4) > c/ h(|le(u)]) dx.

Br

From the last inequality in Lemma 2.5 we infer
i<l [ neD 19allu=aldo+ [ e@iValla=ldo| =l + v
Tr Tr

with

Us §c{/TRh(|5(u)|) dx+ R7? |u—7|pdx]

Tr
and

U4§c[ le(u))? do + — /|u—7|2d:)3].

Using (3.1) and recalling (1.5) we find by (3.4), (3.5) and the above estimates

Tr

(3.6) /BRh(\g(u)\)dxchTRh(\g(u)\)dx+R—p |u—7\pdx+\U2\}.

Tr

Similar to the discussion of U; we have
U, < ¢ U h(e(u)” \a(w)|dm+/ |a(u>||a(w)\dx]
Tr Tr
< ¢ U W) de+ [ le@)Pdz+ | |e(u)de + \5(w)|2dx}
Tr Tr

Tr Tr
(3.3),(1.5)

s [/ h(le@)]) dz+ B2 | u—~f?dz+ R ‘“‘”'pdx}
Tr Tr

Tr

and by quoting (3.1) one more time (3.6) implies

(3.7) /BRh(|5(u)|) dr < ¢ [/TRh(|5(u)|) da:+R"’/TR |u—7|pdx} .
By (3.2) it holds

|e<u>|qu)p/q

p/q

R7? lu—~Pde <cR7? (

Tr Tr

IN

a/2
cR™P (T |5(u)|2d:13) L3(Tr) 92
R

|e<u>|2dx)p/2 <R ( / () dx)p/2 |

8

— ¢RPRZ DS (

Tr



and with (3.7) it is shown

(3.8) /BR h(le(w)]) de < ¢ [/TR h(le(w)]) dz + R*% (/TR h(Je(u)]) dx)m] |

Now on account of (1.8) the r.h.s. of (3.8) vanishes as R — oo, thus e(u) = 0 and therefore
u is a rigid motion.

Next we drop our hypothesis u*9u = 0 and assume in addition to (1.8) the validity of
(1.9). From Lemma 2.3a) it follows

1
Vul2ds < ¢ U e(w)Pde + —
Bt B2t t

hence by (1.8) and (1.9)

|u|2d4 |

Bay

(3.9) / |Vul*dr < .
R2

Therefore u is in the space Wy (R?*; R?) :I/([)/’é(R2; R?) and Lemma 2.4 yields

(3.10) /|u|4d3:§c/ \u\2dx/ IVl dz .
R2 R2 R2

In the presence of the convective term on the r.h.s. of (3.4) the additional quantity
fBZR uFOpu - ¢ dx occurs. It holds

/ uFOpuip’ do = —/ uFuioypt da
B2R B2R
= [ whued == [ el s
B2R B2R
—l—/ uFule(w) g, doe = —Vi + Vs,
Tr

where

V5| < / lu|?|e(w)| dz < ¢ [/ lu|* d + |E(w)|2d9§}
Th Th

Tr
(3.1),(3.3) ) )
< c / |u|* dx + le(u)|” dx
T T

and by (3.10) and (1.8) we see
(3.11) lim V5 =0.
Next we observe (recall n =1 on Bpg)

V= / w'uPe(u)yy, do + / u'uPe(?(u —))ipdr =: Vs + V.
Br Tr

9



V, is estimated as follows:

Vi, = / u'uFne(u)y, dr + 2/ u'uFn Om(ub — ) da
Tr

Tr

1
< W el + g [ TPl ds]
Tr

1
< clullin, {ne(u)nwm + - vnmm]

(3.1) ,
< cllullzagy le(@) L2y »

thus

(3.12) lim V; =0.

R—o0

Finally we look at V3: it holds

Vs :/ wuk o’ de = O [u’uku’] dx —/ uFopuinl dr
Br Br

Br

thus (recall the choice of 1)

Vs = 1/ O [uF|ul’] dox = 1/ |u|?u” x—del
2 /B, 2 JoBg R

This yields

V3] < ¢ [— u|? dx + |u|2|Vu|da:}
Tr Tr
1 4 o 2(1-3 2
< el g ([ mitds) RO ullg I Vulmg

and we may apply (3.9) and (3.10) to get

(3.13) Jlim V5=0.

Summing up it follows from (3.11) - (3.13) that fBQR uFOu - ¢ dr vanishes as R — oo,
and we again arrive at (u) = 0. But (3.9) implies that u is constant, and from (1.9) we
finally deduce that v = 0. This completes the proof of Theorem 1.1. O

10



4 Energy estimates for bounded solutions

We start with the following result concerning the growth of the energy.

Lemma 4.1. Suppose that u is a bounded (smooth) solution of problem (1.1) under the
conditions (A1)-(A8) concerning h. Then it holds

(4.1) /B( H () do < elt 1)

for all discs By(xg) C R

Proof: Consider an arbitrary disc Bgr(x) and a cut-off function n € C5°(Bg(xo)) such
that 0 <7 <1,n =1 on Bgs(zy) and |Vn| < ¢/R. From (1.1) we deduce as usual

(4.2) / DH(e(u)) : e(p) dx + / uFopu - pdr =0
Br(zo) Br(zo)
for any ¢ vanishing on 0Bgr(zg) and satisfying div = 0. For £ € N to be specified later

we let ¢ := n?u —w, where w GI/?/;(BR(xO); R?) is defined in Lemma 2.2 with the choices
p = 7/(t — 1), 7 from Lemma 2.5, and f := div(n*u) = Vn?* - u, thus we have the
estimates

(4.3) { |Vl oorian < el VI - ulloontan
Vw28 r@oy < VI - ull 2B @0)) -

From (4.2) we get
(4.4) /B . DHIE) ) da

= —/ DH(s(u)) : (u® Vn*) da —i—/ DH(e(u)) : e(w) dx
Br(o) Br(wo)
— / uFOpu - un®* do + / uFopu - w dx
Br(zo) Br(zo)
= NT+T+T3+ 1Ty,

and the balancing property (1.6) implies

(4.5) Lhs. of (4.4) >c / H(e(u))n* da .

Br(zo)

We further have on account of our assumption that the field u is bounded (with ¢ de-
pending on £ and on ||ul|zec(r2))

Ty < e / V| |DH (e(w))] de
Br(zo)
<c / P2 [He(u) YT + |e(u)]] de,
Br(zo)

11



where we have used Lemma 2.5. Young’s inequality yields for any 6 > 0

T < 5/ YT H(e(u)) dz + ¢(6) / |Vn|P dx
Br(zo)

Br(zo)

+5/ nz(zz_l)\e(u)\2dx+c(5)/ (Vn|* d .
Br(zo) Br(wo)

Let us choose £ so large that (2¢ — 1)7 > 2¢. Observing that by (1.5)

[ e ewPde<e [ H((w) ds
Br(zo)

Br(z0)

we can absorb the d-terms occurring in the estimate for 7} into the r.h.s. of (4.5), hence
we deduce from (4.4) after § being fixed

(4.6) / P H(e(w) de < ¢ [L+ B + | Ty + T3] + T]] -
Br(zo)
Next we use (4.3) and Young’s inequality:

T <c UBR<mo> IE(U)IIE(w)IdI+[gR(xO) H(E(U))”Tls(wﬂdx]

5 /B L H(E) dr () { /B R /B » |Vw|de}
5 /B | Hlew) o e0) L+ B

IN

IA

where § is an arbitrary parameter. Inserting this bound for 75 into (4.6), we find

(4.7) /B( )Wﬂ(g(u))dggga/ H(e(u)) de +e(8) [L + B%] + c[|Ty| + |Tu])

Br(zo)

For discussing T3 we observe

/ uFOputu'n® de = —/ u'oy [uFu'n®] da
Br(zo)

Br(zo)

= —/ ukuiﬁkuin%dz—/ uF|ul?0pn* da
Br(zo)

Br(zo)

hence

1
T3] = 5

5 <cR,

/ uF|u20pn* da
Br(zo)

and for Ty we finally get

T, = / uFoputw’ de = —/ u' O (uFw?) do = —/ vuFow' dr
Br(zo) Br(zo) Br(zo)

12



thus (4.3)
T < c/ [Vwlde < cR|[Vwl 28a(0)) < cR.
Br(zo)

Returning to (4.7) it is shown that

(4.8) / ( )H(g(u)) dr < 5/ H(e(u))dz + c(0) [1 + R+ R*77]
Bpy2(zo

Br(zo)

valid for discs Br(zo) and any 6 > 0. In case R < 1 it holds

1+R+R2‘p§cR‘P/ ldz,

BR(Z‘())

whereas for R > 1 we have

1+R+R2_p§cR§c/ ldx,

Br(zo)

thus in both cases we obtain

1+R+R2_p§c{/ 1d:v+R_p/ 1d:)3}.
Br(zo) Br(zo)

Therefore (4.8) implies

(4.9) / ( )H(e(u)) dzx < 5/ H(e(u)) dx
Bry2(zo

Br(zo)

+c(9) {R‘p/ 1dx—|—/ 1dm} .
Br(zo) Br(zo)

If we apply Lemma 2.1 to inequality (4.9), we find
(4.10) / H (=(u)) dz < ¢ [r—p/ 1 de +/ 1d1} |
B, j2(%0) Br(z0) By (o)
and (4.10) holds for all discs B, (zg). Clearly (4.10) implies the growth estimate

(4.11) /B( H(e(w) de < et

for all radii ¢ > 1. Going through our calculations again (cf. (4.6)), we can restate our
result in the form (0 < R < 00)

/ H(e(u))dv < c[1+ R*P + Ty + T3] + |Th]] |
Bprya(zo)

13



where the term 1+ R?>7? comes from the discussion of T}, and the bounds derived for T3,

T4 yleld

(4.12) / H(e(u))dx <c [1 +R+R*P + |T2|} )
Bry2(zo)

Now we estimate 15 as follows:

15| < c ||5(u)||L2(BR(I0))||E(w)||L2(BR(xO))

+(f Helw) i) " ||e<w>||m<BR<xo»]

and if we assume R > 1, then the application of (4.11) yields

43)
C

Ts| < c[R+R¥"R'R¥?] = cR.

In combination with (4.12) it is therefore shown that in place of (4.11) we have

(4.13) /B( )H(E(u)) dr < ct

for all t > 1. If t is in (0, 1), then by (4.13)
/ H(a(u))de/ H(e(w)) dz < c,
B¢ (zo)

hence we have established (4.1) and Lemma 4.1 is proved.

Y

O

In the following we will use (4.13) to derive an estimate (see (4.19)) for fBR H(e(u)) de,
Br = Bg(0), R > 1, which incorporates the quantity sup |u — us|. At this stage us

R2-Bg

denotes some arbitrary vector and we just assume u to be a bounded function without

requirering sup ... — 0 as R — oco. We return to (4.2) choosing now

@ =0 (U —ux) —w,

where 7 is as before, but w is an element of the space VF/}H(BR; R?) with f := Vn? (u—us)
and exponent p in (4.3) replaced by m, where m is defined according to (1.7). Note that

(1.7) can be replaced by

(4.14) h(t) < cft™+?], t>0.

14



We get as in the proof of Lemma 4.1

(4.15) H(e(u))dx

Br/2

<elf ()= ]l do
- (eI d -+
/Bukaku-wdx}::ciﬂ*.

Let Tk := Br—Bpg/» (with a slight abuse of notation compared to Section 2) and a € (0, 1).
Then we get (h* denoting the conjugate function to h)

/ uFOpu - (u — uos)n® da
Bpr

+

* o
T; =/ ol (Je(w)) S - une] [V do
Tr «

< [ W@ (etwD) do+ |

T

1
h (—\u — uooHVn|) dx
a

< a/TR B (K(e(w)))) d:)s+c/TRh (%) dx

where we just used the boundedness of |u — us| and Young’s inequality for h and h*.
Recall that h*(h'(t)) + h(t) = th/(t) holds for all ¢ > 0. Moreover, it follows from (1.6)
that th/(t) < ah(t) is true, hence h*(R'(t)) < ah(t). We find - choosing a = R~/ and
quoting (4.13)

1
« 2/3 2
T; <cR*4+¢R h(R2/3) )
For t <1 (4.14) implies h(t) < ct?, thus we deduce
(4.16) Ty < cRY3.

The quantity 73 is handled in a similar way:

T; < /B ol (|e(w)]) He(w)] dr

(4.14)
< a/ h(le(u)]) dm+oz_2/ |5(w)\2dx—|—ofm/ le(w)|™ dx
Br Br Br
and the choice of w implies
Ty §a/ h(le(uw)|) do+ a2 (V2 |u — ueo|® d
Bgr

Tr

+a ™" IVn|™u — too|™ d .
Tr

15



With o := R™'/3 inquality (4.13) gives (again exploiting only |u — us| € L®(R?))
Ty <c[RP+ RT™PRPR™]

and since we assume R > 1 we get

(4.17) Ty < cRY3.

We next have

/ ut O’ (u' — i)y de = — / W'y [ul(u' = uio)n’] de
Br

Br
— —/ (u' — ul)Ok [uf(u' — ul)n?] da
Br
= —/ (u' — vl )uFop(u' — ul )n? da
Br
—/ (u' — vl uF(u' =l )opn? da
Br

and therefore .
T = =
579

/ U — uoo|°V1? - udz|
Br

hence

(4.18) Ty <cR sup |u—uql*.
RQ—BR/Z

Finally it holds by the properties of w

T, = / uFopuiw’ dx| = / uFulopw' dx
Br Br
< c/ |Vw| dx < ¢ R||Vw|| 128y
Br
< CR||V772'(U_UOO)HL2(TR) <cR sSup |u_uoo|

]RZ—BR/Q

By combining this estimate with (4.15) - (4.18) we have shown the validity of

(4.19) H(e(u))dx <c

Bgr

R¥P 4+ R sup |u— | + R sup |u— tel?
R2—Bp R2—Bp

valid for R > 1 and bounded solutions u, u., denoting an arbitrary vector in R2. Note
that in case u*0u = 0 (4.19) just reduces to ... < ¢ R?/3, O

16



5 Estimates for the second derivatives of bounded
solutions: proof of Theorem 1.2

In order to prove Theorem 1.2 we have to combine the inequalities from Section 4 with
certain estimates for the second derivatives, which finally will give V?u = 0. We start
with the derivation of suitable bounds for V?u: consider a disc B,(x) and choose 1 €
CgO(B%T(xO)) such that 0 <n <1, 7 =1 on Br(xp) and [Vn| < ¢/r with radius r for the
moment being arbitrary. We also assume the validity of the bound |V?p| < ¢/r?.

Let ¢ € CSO(B%T(xO); R?) and k € {1,2}. We multiply (1.1) with dxp and use integration
by parts to obtain (o := T'(¢(u)) := DH (e(u)))

/ Oko : e(p) dr — / V7. Oppdx
B, (x0) B3, (z0)

—/ u'Ou - Oppdr =0.
B, (z0)

Choosing ¢ := n?0yu this equation gives (from now on we again use the summation
convention)

(5.1) / oo : e(Opu)n? da
B3, (z0)

= 2/ o : 0k [NV © Ogu] dx — 2/ w0k [NV1 - Opu] dx
By (zo) B3 (z0)
4 4
+/ u'Opu - Oy, (nz-ﬁku) de =T\ +T5+T3.
B, (wo)

By definition we have

oo - e(Opu) = D*H (e(u)) (Ore(u), Ope(u))
o W(ew)) :
> mm{h <|e<u>|>,w} Ve(w)l?,

and (A3) shows

(5.2) Lhs. of (5.1) 2/

B, (x0)

B
|

17



Furthermore it holds for arbitrary 6 > 0 using Young’s inequality and estimate (1.6)

T < c[/B ( )h’(|€(U)I)IVUI(|V?7l2+ V) dx

n /B () )| V][9] di

(wo)

2

< ¢ 7“_2/ h/(\a(u)\)2dx+r_2/ IVl dz
B, (z0) By, (z0)

ROE@D o ooy
”/Bir(m) EO A

() / IICRITS

and for § small enough the J-term can be absorbed in the r.h.s. of (5.2) so that we deduce
from (5.1), (5.2) and the subsequent estimates

le(u)]

< CT_2[/BiT(:L‘0) h(|€(u)|)dm+/B - B (le(u)])? dx

3r
+/ |Vul? dx
B, (z0)

Korn’s inequality from Lemma 2.3a) together with (1.5) easily gives (using the bounded-
ness of u)

(5.4) / IVl dz < ¢ [/ |£(u)|2dx+r_2/ |u|2dx}
B%T(x()) Br(xo) Br(xo)

< ¢ UBT(%) h(le(w)]) dz + 1} .

Next we look at T5 observing that

(5.3) /B ( )n27h/(|5(u)|)|V5(u)|2d:):

+c[|T2| + |T3|} )

T = 2/ (m —70)0k [NV - Ogu] d

18



where we have abbreviated A, := B%T(SL’O) — Bz (x0) and my := o, mdr. We get (again
for any 6 > 0)

7 < [ [ vl = ) vl ds
Ar

+f |7r—7rouw|<|vm2+|v2n|>dx]
Ar

< 05/ n2|Vs(u)|2d9§+c(5)r—2/ |7 — mo|? d
B3 (z0)
Z’f’

T

+cr? / |Vu|2d:)3+/ T — mo|?dw 3,
B%T(xo) JANS

and if § is small, the d-term can be put into the Lh.s. of (5.3). Using also (5.4) it follows

W@ oo
(5.5 / o VT

< cr? /Br(xo)h(\a(u)\)dij/ R (le(u)|)? dx + 1

B3, (zo0)
4

"‘/ |7T—7T0‘2dl’:| +C|T3|
We have the identity

/ u' 0! O (O’ ) dax = — / O (U Ou? )n*Opu? d
B3 (z0)

B3 (o)
4

= —/ O’ Oy’ O da:—/ u' 0,0 O dx
B%T(.’Eo) B%T(wo)

1

= —/ 8kui8iuj8kujn2 dr — _/ uzaz‘vu|2n2 dl’,
B%T(ro) 2 B%r(xo)

and since we are in the 2D- case the first integral on the r.h.s. is equal to zero. We
therefore have

1

T3] = = / u'0;|Vul*n? dv
2 B, (x0)

1
= —/ Vn? - u|Vul? dr
2 /By (o)

cr_l/ |Vul*dx .
B, (z0)

19
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To the last integral we apply (5.4) and deduce from (5.5)

(5.6) /B %Ws(u)ﬁm

5 (z0)

< [ / M [ wewiras

(z0)
+/ |T — 7ol dx
Ay

Note that in case u¥Oyu = 0 the last term in (5.6) does not occur. In a next step we

3
4

+cr! {/Br(:co) h(le(u)]) de+1

discuss the pressure term: by Lemma 2.2 we can construct w €W3(A,; R?) such that

divw =7 —my on A, ,
(5.7)

||Vw||L2(AT) < c||m - 7TO||L2(AT) .

Equation (1.1) gives

/a:e(w)dm+/ ukﬁku-wdz:/ divw(r — mp) dz
A»,« A'r

Ar

and therefore we get from (5.7) with Young’s inequality
T — [P dx < ¢ {/ lo|? dx + |S|} :
(5.8) & &
S = / uFOpu - wdr .
A'r

Noting that

S = / uFopuiw' dr = / u* o, (uZ - ugo) w'dr = —/ u® (uZ — uf)o) Opw' dx
A»,« A'r AT
we find (recall (5.7))
51 < cllu = tcllzmian [ [Vwldo <5 [ [Fudo+ e@)r?u = el
AT Ar

and for ¢ small enough this together with (5.8) implies

(5.9) / T —mo|?dr < ¢ [/ |a|2d:)5—|—7’2||u—uoo||%oo(Ar)
Ay Ay
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Inserting (5.9) into (5.6) it is shown that

W (le(u)]) 2
(5.10) /BT(IO)W|V5(U)| dx

2

< er? /Br(xo)h(\e(u)\)dx—i—/ R (le(uw)|)? dx + 1

B3, (zo0)
4

1 1
+c{]|u—uoo!|%oo(Ar)+—/ h(|£(u)|)dx+—} ,
T BT‘(Z‘O) T

where {...} does not occur in case u*dpu = 0. Let us remark that from (5.10) we could
already deduce V2u = 0 by passing to the limit r — oo, provided we are in the situation of
Theorem 1.2 (using the estimates (4.1) and (4.19)) and if we could neglect the unpleasant
term involving 2/(|e(u)|)?. Unfortunately we have to discuss this quantity in an next step.
For any L > 0 it holds (recall (1.6))

1
(5.11) / R (le(uw)|)?dx < ¢ [r?R/(L)* + — / h(le(w)|)? dz
By, (z0) L Bs,(z0)

Consider a “new” cut-off function 7 now satisfying n = 1 on B%T(ato), sptn C B.(z,),
0 <n<1and |Vn| <c¢/r. Sobolev’s inequality implies

h(le(w)|)? dx h(le(u 2 qr
/BW (wde< [ h(=w)

By (zo)

< e [ / A e+ / PRACRINEE] dxr

o2 </Br(mo) h(le(u)]) dx)z +e (/Br(mo) R (le(u)])Ve(u)l d:)s)2 ,

moreover we have

UBT@O) h’(\e(u)\)\Va(u>|dx)2 < C/BT.@O) h(\g(u)\)dx/&(m)wdx,

where we have abbreviated w := hlg?g;‘)') |Ve(u)|?. Returning to (5.11) we get the inequal-

ity

IN

(5.12) /B ( )h'(|5(u)|)2 dr < c|r*h(L)?

—l—i2 h(|€(u)|)da:/ wdx| .
L? [, (w0) By (x0)
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Case 1: v 0,u=0

Now we just have the information that u is a bounded solution, and the combination of
(5.10) (without {...}!) and (5.12) gives

(5.13) / wdz < 202/ h(|5(u)|)/ wdx
B,/ (o) r2L% B, (o) By (zo0)

1+ /BT@O) h(le(u)|) dz + r2h' (L)

i (/B,.(xo) Ml () da:)2

Note that (5.13) is true for all L > 0 and any disc B,(zo). We let L := % for some v > 0.
(5.13) then takes the form

(5.13)* / wdr < 072/ h(|e(u)|) dx/ wdx
B /2(0) B (z0) B (z0)
1\2
r—2 —|—r‘2/ h(|e(u)|) dx + A’ <—)
By (z0) r

e ([ T(ﬁ@)h(\a(u)\)dxﬂ .

We apply (4.1) and deduce from (5.13)*

+er?

+c

1 2
7“_2 + 7“_1 + h/ (%) + ’727’_2(’/“ + 1)2

/ wdxgcvz(r+1)/ wdx +c
B%(wo) BT(ZBO)

For a positive number (§ we define

1= /B / VeVTTT
and obtain

2
s1) [ wwr<s [ wdeeo) e on (5

From the proof of Lemma 2.5 it is immediate that we have the inequality

T
2

(5.15) Wty <c[t" ! +t],t>0,
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and (5.15) clearly implies the bound

W (%WY <c(B) 1477

with exponent s (w.l.o.g.) > 2. Inserting this into (5.14) it is shown that

(5.16) | win<s [ wdoses) (1]

£ (%0) Br(z0)

for all discs B,(xy) and any # > 0. Noting the validity of

1+r‘s§c[/ 1dx+r_s_2/ 1dm}
By (z0) By (z0)

we deduce from (5.16) with the help of Lemma 2.1

(5.17) / wdz <c[r*+7r7°] .
Br'(x())

Now let zy = 0 and consider > 1. Then (5.17) shows

/ wdr < crz,
By (zo)

and if we insert this estimate in (5.13)* choosing v = 1/r, we immediately arrive at

1+ (1+ 7’_2)/ h(le(u)|) dx + r~* (/

T T

(5.18) /Brmwdx <ec h(|e(u)]) dx>2]

valid for all » > 1. Quoting (4.19) we obtain from (5.18) the upper bound
(5.19) / wdr < ct?® t>1.
By

With (5.19) we again go back to (5.13)* using (4.19) for the integrals involving h and get

1\2
/ wdr < ey e |r 2 478 L N <—) + A28 e >
Brjs r

thus the choice v = r~1*° for some small positive § immediately yields by passing to limit

T PO oz e
/R2 () |Ve(u)|*de =0.

On account of (A3) and 1”(0) > 0 we find V2u = 0, hence  is affine, but the boundedness
of u shows that v must be constant.
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Case 2:  ui0,u not necessarily zero

Now we have to take care about the expression

1 1
= e us||Te = h dr + =
S s SR R COIEES

from (5.10), which means that in place of (5.13)* we get the inequality (valid for all v > 0
and any disc B,(xg))

(5.20) /B L wdr S (b of (513)) el ).

T
2

On the r.h.s. of (5.20) we bound all integrals involving h with the help of (4.1) and
|2 — Uoo||Loo(a,) 1s estimated through a constant. As a result we get in place of (5.16)
(following the arguments outlined after (5.13)*)

/ wdr <8 wdr +c(B)[1+77% + [l +r71],
B,./a(wo) Br(wo)

hence with new ¢(3)

/ wdr < f8 wdzr + c(B)[1 4+ r~7
B,./2(wo) By(z0)

< g wdz + ¢(B) {/ 1d:)3+7“_5_2/ 1d93] :
By (zo) By (z0) By (z0)

The arbitrariness of § and B,(xy) then again yields (5.17) by an application of Lemma
2.1. Next let 29 = 0 and consider » > 1. As in case 1 we insert (5.17) into the r.h.s. of
(5.20) and choose v = 1/r. In place of (5.18) we get

1+ (1+772) / h(|e(u)]) dz + r~ (/ h(|e(u)]) da:)2 el )

(5.21) / wdr <c
B'r/2

We here know that
a(r) == sup |u—ux| — 0, 7 — 00,
R2— B,
and by quoting (4.19) it is immediate that

{.} =0, r—o00.

For large ¢ inequality (4.19) states that

/B h(le(w)]) dz < (1),

O(t) := t¥° + ta(t) + ta(t)?,

(5.22)
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and it is easy to see that (5.21) implies the same bound for [, wdz, i.e.

(5.23) / wdr <cO(r), r>1.

r

Finally, we again return to (5.20) using (5.22) and (5.23) on the r.h.s. with the result

1

2
(5.24) / wdr < ey*0(r)? +c [r 2+ 1r720(r) + I <—) + 42 20(r)? | +¢{.. .},
Byys r

and the r.hus. of (5.24) disappears as r — oo for the choice v := L min{r/4, ﬁ} : in

fact we have as r — 0o

2
yr = min { 74, ! — 00, I (i) — 0,
a(r) r

and
Y*0(r)* < cv? r*3 4 r2a(r)? + r2a(r)4]
< c {7“_27’4/37“1/2 + ——a(r)* + La(r)‘l}
a(r) a(r)
= c [7’_1/6 +a(r)+ a(r)3] — 0.
As in case 1 we deduce u = const, and the proof of Theorem 1.2 is complete. O
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