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Freehand HDR Imaging of Moving Scenes
with Simultaneous Resolution Enhancemen

Henning Zimmer Andrés Bruhn Joachim Weickert

Abstract

Despite their high popularity, common high dynamic range (HDR)
methods are still limited in their practical applicability: They assume
that the input images are perfectly aligned, which is often violated in
practise. Our paper does not only free the user from this unrealistic
limitation, but even turns the missing alignment into an advantage:
By exploiting the multiple exposures, we can create a super-resolution
image. The alignment step is performed by a modern energy-based
optic flow approach that takes into account the varying exposure con-
ditions. Moreover, it produces dense displacement fields with subpixel
precision. As a consequence, our approach can handle arbitrary com-
plex motion patterns, caused by severe camera shake and moving ob-
jects. Additionally, it benefits from several advantages over existing
strategies: (i) It is robust under outliers (noise, occlusions, saturation
problems) and allows for sharp discontinuities in the displacement
field. (ii) The alignment step neither requires camera calibration nor
knowledge of the exposure times. (iii) It can be efficiently implemented
on CPU and GPU architectures. After the alignment is performed, we
use the obtained subpixel accurate displacement fields as input for an
energy-based, joint super-resolution and HDR (SR-HDR) approach.
It introduces robust data terms and anisotropic smoothness terms in
the SR-HDR literature. Our experiments with challenging real world
data demonstrate that these novelties are pivotal for the favourable
performance of our approach.

1 Introduction

One of the major obstacles for the practical application of high dynamic
range (HDR) imaging is the alignment problem. As common HDR tech-
niques compute a weighted average over irradiances obtained from a given
exposure series [19, 6, 28, 27], they rely on perfectly aligned images with-
out displacements in between them. However, this assumption is hardly met
under real world conditions: Displacements are caused by moving objects
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Figure 1: Left: Freehand exposure series. Right: Result after alignment
plus joint dynamic range and resolution enhancement

(persons, clouds, etc.) and by camera shake, unless the effort is taken to use
a tripod. Consequently, there is a strong interest in methods that align the
exposure series by compensating the images for the displacements. However,
a reliable estimation of the displacements is challenging since the images are
taken with varying exposure times that yield severe brightness changes.
In this paper, we show how to adapt a modern energy-based optic flow ap-
proach to cope with these brightness changes. This allows for a robust and
accurate estimation of dense displacement fields between the input images
and yields an alignment method that outperforms existing strategies in chal-
lenging real world scenarios. Additionally, our approach neither requires a
preceding camera calibration nor knowledge of the exposure times and can
be efficiently implemented on CPU and GPU architectures.
As our alignment approach yields displacement fields with subpixel preci-
sion, they not only allow for an accurate alignment, but can also be used for
increasing the spatial resolution of the result. To this end, one can adapt
concepts from super-resolution (SR) approaches [31, 25, 22]. Here, an im-
age with increased spatial resolution is obtained by combining the informa-
tion from several images with some degree of subpixel displacement between
them. This basically allows to fuse different discrete samplings of the same
continuous scene.
In this paper, we propose the first energy-based joint super-resolution and
high dynamic range (SR-HDR) approach that uses a robust data term in
combination with an anisotropic smoothness term. Our experiments show
that this model gives more appealing results than existing techniques such
as [10, 5]. A tone mapped result obtained by our approach is shown in
Fig. 1. In this context, we also wish to note that SR and HDR imaging
nicely complement each other: While the SR methods increase the resolution
of the image domain, HDR techniques increase the resolution of the image
co-domain, i.e. the dynamic range.
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1.1 Related Work

HDR Alignment. A simple and fast approach for aligning exposure series
is to estimate one global transformation per image pair. Ward [32] describes
this transformation by a pure translation, whereas later extensions use a
translation plus a rotation [9, 13]. To cope with the brightness changes due to
the varying exposures, the aforementioned approaches consider mean thresh-
old bitmaps (MTB) obtained by a thresholding at the median of all pixel
values. Using a pyramid of these images, the global displacement can then
be computed by simple shift and difference operations at each pyramid level.
Altough global strategies are thus very efficient, they fail in the presence of
independently moving objects or for camera motions such as zooming and
tiling. Similar restrictions apply to the method in [30] where a homography
is computed from SIFT feature matches [17] that are robust under brightness
changes. Such a strategy is implemented in the align image stack algorithm
of the Hugin toolkit 1. Homography-based approaches are known to fail
for moving objects or camera motions that are more complex than a pure
rotation.
To describe arbitrary camera motions and to handle moving objects in the
scene, dense methods are needed that allow to estimate a different displace-
ment vector for each pixel. This can be achieved by multi-step methods
such as the global-local alignment strategies [15, 14] that first perform some
global alignment and then refine it using a classical, local optic flow ap-
proach [18]. As this optic flow approach assumes a similar intensity at cor-
responding pixels, the measured intensities first need to be transferred to
the irradiance domain. This, however, requires a preceding calibration step
to estimate the camera response function. Another problem is that local
optic flow approaches cannot estimate a displacement in flat image regions
(aperture problem) and give blocky artefacts as they assume a constant (or
parametric) motion model within a local neighbourhood. A more advanced
multi-step method was proposed in [29]. Here, sparse correspondences ob-
tained by feature matching are used to compute a dense displacement field
via weighted linear regression. This result is then refined by a local optic flow
method [18]. To deal with the brightness changes, a normalisation is pro-
posed that gives a partial invariance to the exposure changes without using
the response function.
There also exist dense methods that do not need to apply several process-
ing steps. Menzel and Guthe [20] propose a hierarchical matching of patches
based on cross-correlation to ensure robustness under the brightness changes.
As no smoothness assumption on the displacements is imposed, this method

1http://hugin.sourceforge.net
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is prone to give noisy displacement fields, leading to artefacts in the align-
ment. The only approach that imposes an explicit smoothness assumption
on the displacements can be found in [16]. Here, a stereo method based on
zero-mean normalised cross-correlation is used. This, however, is only possi-
ble for static scenes without moving objects and additionally requires a pair
of cameras with known epipolar geometry.

SR-HDR Reconstruction. One major challenge for joint SR-HDR ap-
proaches is an accurate displacement estimation with subpixel precision.
Thus, some methods rely on special camera hardware to facilitate the dis-
placement estimation: While the methods in [24, 12] use multisampled im-
ages where the pixels on the image sensor are differently exposed, Nakai et
al. [23] influence the displacements by a controlled shift of the image sensor.
Even simpler, Choi et al. [5] assume that the displacements are given.
Evidently, it is more convenient to use standard cameras and to take an
exposure series with varying viewpoints. This strategy is applied in [26]
where the images are first aligned using a frequency domain approach that
gives a global translation and rotation, as in [9, 13]. The SR-HDR result is
then computed by simply interpolating irradiances obtained from the aligned
images. More powerful are approaches that find the SR-HDR image by min-
imising an energy formulation [10, 5]. These works also prove that a joint
SR-HDR reconstruction gives better results than a sequential approach. The
main problem of existing energy-based methods is that they use a prior that
enforces the result to be close to a mean image obtained by averaging all
measurements. Although this prior stabilises the minimisation, it does not
allow to fill in missing information and to smooth the resulting image. How-
ever, our experiments show that an appropriate filling in of information and
smoothing of the result is required to obtain favourable reconstructions.

1.2 Our Contributions

This paper presents two main contributions:
(i) We propose the first HDR alignment strategy that is based on a specif-
ically tailored, modern energy-based optic flow approach. The latter gives
accurate and dense displacement fields that can describe arbitrary motion
patterns caused by complex camera motions and moving objects in the scene.
This allows to outperform existing strategies in challenging real world sce-
narios. To cope with the brightness changes due to the varying exposures,
we rely on a robust version of the gradient constancy assumption in the
data term. This uses edge information which is hardly perturbed by bright-
ness changes. We additionally perform a normalisation in the data term to
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prevent artefacts at image edges. Our smoothness term uses a discontinuity-
preserving strategy that gives sharp edges between areas of different motion.
A further appealing aspect is that we do not require information on the cam-
era response curve or the exposure times. Thus, our method can also be
used to align images for exposure fusion algorithms [21] that do not use the
response curve or the exposure times. Concerning run times, efficient imple-
mentations allow to align exposure series in about one minute on a CPU and
in a few seconds on parallel GPU architectures.
(ii) As we estimate displacements with subpixel precision, they can serve as
input for an energy-based, joint SR-HDR method. As novelties, we propose
a robust data term and the first smoothness term that allows to smooth
the resulting image. Specifically, we design an anisotropic smoothness term
that does not only allow to preserve, but even pronounce edges in the image.
Experiments show that our proposed model achieves notably better results
than existing approaches.

Paper Organisation. We present the energy functions and the minimisa-
tion strategies for the HDR alignment and the SR-HDR approach in Sec. 2
and 3, respectively. Experiments that demonstrate the favourable perfor-
mance of both contributions are shown in Sec. 4. We conclude in Sec. 5 by
a brief summary and an outlook on future work.

2 HDR Alignment with Energy-Based Optic

Flow

Assume we are given an exposure series gk(i, j) : Ω → {0, . . . , 255} for k=
1, . . . ,m. Here, (i, j) ∈ Ω denotes a pixel location in the image domain
Ω = {1, . . . , nx}×{1, . . . , ny}. The alignment of such an exposure series
comes down to estimating displacement vector fields (uk, vk) between images
gk and a reference image gr, where r :=⌈m/2⌉ for simplicity.
To ease presentation, we describe our model for greyscale images, but also
sketch the extension to colour images.

2.1 Energy Formulation.

We compute the dense displacement fields (uk, vk) by minimising an energy
function of the general form

E1(uk, vk) =
∑

(i,j)∈Ω

[

D1(uk, vk) + α S1(∇uk,∇vk)
]

. (1)
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Figure 2: From left to right: (a) – (b) Two images of an exposure series
(expsoure times 1/30 and 1/80 s). (c) – (d) The x-derivatives for the red
channel of the images in (a) and (b)

The data term D1(uk, vk) models how well the displacements match to the
given images, and the smoothness term S1(∇uk,∇vk) reflects the assumption
of a smooth displacement field. Its influence is steered by a smoothness
parameter α > 0. The symbol ∇ := (Dx,Dy)

⊤ denotes a discrete version of
the gradient operator, with Dx and Dy implementing discrete approximations
of the x- and y-derivatives, respectively. Note that here and in the remainder
of this paper, we intentionally misuse concepts borrowed from continuous
models to facilitate notation. Let us now discuss the modelling of the data
and the smoothness term.

Data Term. An appropriate design of the data term is mandatory for
obtaining reasonable results given images with different exposures. We base
our data term on the gradient constancy assumption [3], stating that image
gradients remain constant under their displacement, i.e. ∇gr(i+uk, j+vk)=
∇gk(i, j). This results in using edge information for the alignment, see Fig. 2.
As noted in [32], edges are not completely invariant under exposure changes,
but our experiments will show that they give a sufficient cue when used
within a robust energy-based framework.
In our data term, we perform a robust penalisation of the gradient con-
stancy assumption to render our approach robust against outliers caused by
saturation problems, noise or occlusions. Furthermore, we follow [33] and
normalise the data term to prevent an undesirable overweighting that leads
to artefacts in the displacement fields. Incorporating these concepts leads to
our data term

D1(uk, vk) = ΨD1

(

θx |Dx gr(i+uk, j+vk)−Dx gk(i, j)|2 (2)

+ θy |Dy gr(i+uk, j+vk)−Dy gk(i, j)|2
)

.

For the robust penaliser function ΨD1
we use the regularised L1-norm

ΨD1

(

s2
)

=
√
s2 + 0.0012 as in [3]. The normalisation factors θx and θy are
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defined as

θx :=
1

|∇(Dx gk)|2 + ζ2
, θy :=

1

|∇(Dy gk)|2 + ζ2
, (3)

where the parameter ζ = 0.1 avoids division by zero.
If colour images are to be processed, we sum up all channels in the argument
of ΨD1

in (2). This reduces the influence of a pixel as soon as any channel
produces an outlier.
In preliminary experiments, we investigated data terms that impose con-
stancy of the irradiances to cope with the exposure changes. This, however,
requires a preceding camera calibration and knowledge of the exposure times
as the irradiances are computed via applying the inverse camera response
function and dividing by the exposure time. Since the irradiances make
no sense in saturated regions, and due to possible errors in the calibration,
working in the irradiance domain alone produced unsatisfactory results. By
additionally imposing constancy of the irradiance gradients we could improve
the results. However, we could not obtain better results than with our pro-
posed approach, which is simpler and more efficient as it omits calibration
and irradiance computations. Note that due to the latter, our approach also
allows to align image sets for exposure fusion [21] where no camera response
curve or exposure times are given.

Smoothness Term. Unfortunately, the data term alone does not allow to
obtain a dense displacement field. For example in flat image regions (that
frequently occur in HDR imaging due to saturation problems) the data term
gives no information at all. In such regions, a smoothness term is needed
to fill in the displacement field. As in [3], we use a Total Variation (TV)
regulariser given by

S1(∇uk,∇vk) = ΨS1

(

|∇uk|2 + |∇vk|2
)

, (4)

with the same penaliser function as in the data term, i.e. ΨS1
=ΨD1

. This
regulariser has been chosen since it is known to give sharp discontinuities in
the displacement field.

2.2 Energy Minimisation

A necessary condition for a minimiser (uk, vk) of the energy (1) is given by
the equations

∂uk(i,j)E1 = 0 , and ∂vk(i,j)E1 = 0 , ∀(i, j) ∈ Ω . (5)
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Using the abbreviations

g∗∗ := D∗∗ gr(i+uk, j+vk) , (6)

g∗z := D∗ gr(i+uk, j+vk)−D∗ gk(i, j) , (7)

where ∗∗∈{xx, xy, yy} and ∗∈{x, y}, the equations in (5) can be written as

Ψ′

D1

(

θx g
2
xz + θy g

2
yz

)

·
(

θx gxx gxz + θy gxy gyz
)

(8)

− α div

(

Ψ′

S1

(

|∇uk|2+|∇vk|2
)

∇uk

)

= 0 ,

Ψ′

D1

(

θx g
2
xz + θy g

2
yz

)

·
(

θx gxy gxz + θy gyy gyz
)

(9)

− α div

(

Ψ′

S1

(

|∇uk|2+|∇vk|2
)

∇vk

)

= 0 ,

where Ψ′ denotes the derivative of Ψ w.r.t. its argument and div :=∇⊤ is a
discrete variant of the divergence operator.
We solve equations (8)–(9) in a coarse-to-fine warping framework that com-
putes small displacement increments at different levels of a multiscale pyra-
mid [3]. This reduces the chance of getting trapped in a local minimum
and allows to handle large displacements. For solving the problem at each
pyramid level, we propose two strategies: On sequential CPU architectures,
we use a nonlinear multigrid scheme with a Gauß-Seidel type solver [4]. For
parallel GPU architectures, we adapt the recent work in [11] that is based
on a cascadic, fast explicit gradient descent scheme implemented in CUDA.

3 Energy-based SR-HDR Reconstruction

As the displacement fields resulting from our HDR alignment method are of
subpixel precision, we can use them as input for a joint super-resolution and
HDR (SR-HDR) method. In addition to the input images gk, the exposure
times tk and the estimated displacements (uk, vk), such a method also requires
to specify a zoom factor z > 1. From this, we aim at reconstructing a SR-
HDR image F : ΩH → R

+, where ΩH={1, . . . , z ·nx}×{1, . . . , z ·ny} denotes
the SR image domain. The codomain of F are the positive real numbers,
representing the irradiances.
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3.1 Energy Formulation

As before, we find the SR-HDR image F by minimising a suitable energy.
This time it takes the form

E2(F ) =
∑

(i,j)∈ΩH

[

D2(F ) + λ S2(∇F )
]

, (10)

with a smoothness weight λ > 0.

Data Term. The data term D2(F ) combines common SR and HDR data
constraints. For the SR part we adopt a popular observation model, see e.g.
[22], which can be written as

RBWk G = gk . (11)

It models the assumption that the low-resolution images gk are obtained
from the unknown SR image G : ΩH → {0, . . . , 255} by a backward warping
(Wk), blurring (B) and a downsampling/restriction (R). The warping Wk

uses the estimated displacements (uk, vk) after upsampling to the SR grid.
Note that in the SR-HDR case, the displacements are computed from the
images gk to a reference image gr. For the HDR alignment in Section 2, they
were computed in the opposite direction. The blurring operator B performs
a Gaussian convolution with standard deviation σ. In accordance to the
sampling theorem, we set σ=z ·

√
2/4.

For the HDR part, the standard observation model [6, 28] states that the
unknown irradiances f : Ω → R

+ are obtained as

f =
I(gk)

tk
, (12)

where I is the inverse of the camera response function that describes how
image intensities are related to the amount of light arriving at the image
sensor. From a set of aligned images, the response function can be estimated
by a calibration procedure as in [6, 28]. Thus, we assume the response
function to be given for our SR-HDR approach.
Above constraints are combined in our SR-HDR data term

D2(F ) =
m
∑

k=1

ck ·ΨD2

(

(

RBWk F − I(gk)

tk

)2
)

, (13)

where ck is a HDR weighting function that reduces the influence of too dark
or bright pixels from the reconstruction, as those give less reliable irradiance
information. We use a Gaussian-like weighting function [28] given by

ck = exp
(

−s ·
(

gk(i, j)− 127.5
)2
/ (127.5)2

)

, (14)
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with a scale parameter s= 8. We further set ck = 0 if the weight becomes
smaller than 0.001 to ignore the influence of less reliable pixels. For the
subquadratic penaliser function ΨD2

, we use as before the regularised L1-
norm, i.e. ΨD2

=ΨD1
. This renders our approach robust against outliers due

to noise or incorrect displacement estimates.
If colour images are given, we again sum up the contributions of each channel
in the argument of ΨD2

in (13).

Smoothness Term. The smoothness term plays a major role in the SR-
HDR context as it has to fill in the SR-HDR image in regions where no
information is available. This can be due to saturation problems (where
ck≈0), or in pixels where the warping by the displacements does not provide
information.
For our SR-HDR approach, we propose a novel anisotropic smoothness term
that adapts its smoothing direction to local image structures and is inspired
from [33]. To obtain the required directional information, we consider the
structure tensor [8] computed from an image F 0 that is obtained by upsam-
pling a pure HDR reconstruction computed from the aligned input images.
This leads to the following structure tensor:

J = Kρ1∗
(

∇F 0
ρ2

(

∇F 0
ρ2

)⊤
)

, with F 0
ρ2

= Kρ2∗ F 0 , (15)

where ∗ is the convolution operator. The parameters ρ1 = 0.4 and ρ2 = 0.2
serve as neighbourhood and smoothing scale, respectively. By construction,
the tensor J possesses two orthonormal eigenvectors v1 and v2, which give
the desired direction of local image structures: Whereas v1 points across
image structures, the vector v2 points along them.
Our smoothness term then penalises the projections of the image gradients
onto v1 and v2 differently: Along image edges, we perform a quadratic pe-
nalisation to obtain a strong smoothing that pronounces the edges. In the
orthogonal direction across edges, we use a robust penaliser function that re-
duces the smoothing and helps to preserve edges. This results in the smooth-
ness term

S2(∇F ) = ΨS2

(

(

v⊤

1 ∇F
)2
)

+
(

v⊤

2 ∇F
)2

. (16)

For the robust penaliser ΨS2
, we use the Charbonnier function defined as

ΨS2

(

s2
)

=2µ2
√

1 +
(

s2/µ2
)

, with a contrast parameter µ = 0.1.

For colour images, we sum up the structure tensors of each channel to obtain
a joint edge direction. In the smoothness term, we sum up the projections for
each channel in F . For the first summand, this is done within the argument
of ΨS2

to reduce the smoothing across joint edges.
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3.2 Energy Minimisation

We compute the SR-HDR image F by minimising the energy (10) using a
semi-implicit gradient descent scheme given by

F (l+1)− F (l)

τ
= − ∂FE2 (17)

=
m
∑

k=1

(

W⊤

kBR⊤ck Ψ
′

D2

(l)
(·)

(

I(gk)

tk
−RBWk F

(l)

)

)

+λ div

(

T
(

v1,v2,∇F (l)
)

∇F (l+1)

)

,

where we used the abbreviation

Ψ′

D2

(l)
(·) := Ψ′

D2

(

(

RBWk F
(l) − I(gk)

tk

)2
)

, (18)

and where F (l) denotes the result at iteration l. The parameter τ serves
as a numerical time step size. Concerning the transposed operators, W⊤

k

describes a forward warping, B = B⊤ for Gaussian blurring [22], and R⊤

results in upsampling. The occurring diffusion tensor T is given by

T
(

v1,v2,∇F (l)
)

= Ψ′

S2

(

(

v⊤

1 ∇F (l)
)2
)

v1v
⊤

1 + v2v
⊤

2 . (19)

For solving the scheme (17) at iteration l, we perform a single Jacobi iter-
ation. Experimentally, we found that setting τ = 0.5 is feasible, which is
more than one order of magnitude larger than the step size used in [22].
Further note that due to the complicated structure of the data term (13),
efficient solution strategies as in the optic flow case are more difficult here.
As initialisation we set set F (0) = F 0, see (15).

4 Experiments

All image data and results presented in this paper are
available for download at our supplementary web page
http://www.mia.uni-saarland.de/Research/SR-HDR. There, we also
give additional results for different test scenarios and show limitations of
our method.
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4.1 Alignment for HDR Imaging

The first experiment compares our proposed HDR alignment method from
Sec. 2 to several competing methods. To this end, a real world exposure series
(5 images, 512×340 pixels, exposure times between 1/250 to 1/30 seconds) was
taken freehand using a standard DSLR camera. Some images of the series
are depicted in the first row of Fig. 3. As we can see, the exposure series
suffers from severe displacements due to camera shake and moving clouds,
which are common problems in HDR imaging.
After alignment, we compute HDR reconstructions following the approach
in [28]. For visualising the float-valued HDR data in this and the upcoming
experiments, we then apply the tone mapping operator from [7]. Imple-
mentations of the before mentioned algorithms can be found in the pfstools
package 2.
Let us now compare our method to some other alignment strategies. These
are (i) the global method of Ward [32], (ii) the align image stack algorithm
from the Hugin toolkit which implements a homography-based approach as
in [30], (iii) a variant of our method without data term normalisation, and
(iv) the hierarchical block matching technique of Menzel and Guthe [20].
In Fig. 3 (d) we show the result obtained with the global alignment strategy
from [32], where the black border marks pixels warped outside the image
domain. It becomes clear that a global translation fails to describe the com-
plex displacements between the exposures. We also tried to apply a local
optic flow approach [18] to the globally aligned images after transferring
them to the irradiance domain. We found that such a global-local strategy
as in [15] leads to unusable results due to the poor global alignment. Also
the align image stack algorithm, see Fig. 3 (e), fails to correctly align the
images as the homography computed from feature matches is not expressive
enough to describe the present displacements. In Fig. 3 (f) we show a zoom
in the result of our approach without data term normalisation. Comparing
the latter to the zoom in our final result (Fig. 3 (i)), we realise that the pro-
posed normalisation allows to resolve problems with unpleasant artefacts. Of
course, a larger smoothness weight α would also resolve this problem, but
creates a too smooth displacement field that cannot capture the discontinu-
ity between the buildings and the clouds anymore. A corresponding zoom
in the result obtained with the approach from [20] is shown in Fig. 3 (g).
It turns out that the hierarchical block matching technique yields distract-
ing artefacts at the roof of the house since it does not impose smoothness
assumptions on the displacement field.
In contrast, our final result in Fig. 3 (h) and (i) shows a favourable HDR

2http://pfstools.sourceforge.net
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reconstruction without disturbing artefacts. This becomes possible due to
the robust and accurate displacement estimation of our approach. As an
example consider the displacement field in Fig. 3 (j). For visualising the
flow vectors, we use the colour code illustrated in the lower left corner of
the image. As we can see, the motion of the clouds and the shift of the
buildings due to camera shake are nicely discriminated. Aligning the whole
exposure series took 75 seconds using our CPU version with unoptimised C
code on a 3.2 GHz Intel Pentium 4. An optimised parallel implementation
on a GeForce GTX 480 reduced the runtime to less than 3 seconds for the
whole series. For computing this and all further results (also the ones on our
supplementary web page) we set α= 2.0 and presmoothed the images by a
Gaussian convolution with standard deviation 0.5. The downsampling factor
for the multiscale pyramid was set to 0.95. However, smaller values that lead
to a further speed up are often possible.

4.2 SR-HDR Reconstruction

The second experiment concerns our joint super-resolution and HDR (SR-
HDR) method described in Sec. 3. As before, a real world exposure series (9
images, 268×178 pixels, exposure times from 1/800 to 1/8 seconds) was taken
freehand. As zoom factor we choose z = 2. Some of the input images are
shown in the first row of Fig. 4. In the same figure we also compare our result
to (i) an upsampled HDR result (based on bicubic interpolation) computed
from the aligned images, (ii) a SR-HDR method similar to [10, 5] using a
quadratic data term and a mean prior, and (iii) a variant of our method where
we use an isotropic TV smoothness term ΨS2

(∇F ) =
√

|∇F |2 + 0.0012, as
in our optic flow alignment approach.
Comparing the results in Fig. 4 (d)–(g) and focusing on the zooms in (h)–
(k), the following drawbacks of the competing methods become obvious: An
upsampled HDR result (Fig. 4 (d) and (h)) looks rather dull and pixelated.
Also existing SR-HDR approaches [10, 5] (Fig. 4 (e) and (i)) hardly improve
the results, which we attribute to the mean prior that does not smooth
the resulting image. Considering our result with a TV smoothness term
(Fig. 4 (f) and (j)), we see that a prior that allows to fill in information and
that smoothes the result allows to tangibly improve the quality. However,
the edges in the image are rather jagged, as can be seen at the planks in
the zoom in Fig. 4 (j). Using our proposed anisotropic smoothness term
(Fig. 4 (g) and (k)) allows to obtain a better reconstruction of edges due to
the pronounced smoothing in edge direction. The reduced smoothing in the
orthogonal direction allows to preserve image details, as can be seen at the
plant in the zoom in Fig. 4 (k). Concerning parameter settings, we propose
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Figure 3: HDR imaging under severe displacements due to moving clouds
and camera shake. First row, from left to right: (a) – (c) Image 1, 3
(reference) and 5 of the exposure series. Second row, from left to right: (d)
Tone mapped HDR image after alignment with the method from [32]. (e)
Same using align image stack. Third row, from left to right: (f) Zoom in our
result without data term normalisation. (g) Same for the method from [20].
(h) Same for our final result from (i) Fourth row: (i) Our result. (j) One
displacement field.
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to only tune the value of the smoothness weight λ to get a visually appealing
result. All other parameters can be kept fixed as given in this paper.

5 Conclusions and Outlook

This paper presented two contributions:
(i) We adapted a modern energy-based optic flow approach to reliably align
exposure series for HDR imaging. This shows how the HDR community can
profit from the intensive research on optic flow within the last three decades.
The main advantage of our proposed strategy is that the resulting dense dis-
placement fields can describe arbitrary complex motion patterns, which is
indispensable when dealing with complex camera motions or moving objects
in the scene. Another attractive aspect is that we do not require knowl-
edge of the camera response curve or the exposure times, which makes our
method also applicable to align input data for exposure fusion algorithms
[21]. Concerning efficiency, reasonable runtimes can be achieved on sequen-
tial CPU architectures, whereas parallel GPU implementations reduce the
computation times to a few seconds. We thus hope that our method can be
used for an online alignment in portable HDR capturing devices such as the
Frankencamera [1].
(ii) As our proposed alignment method yields displacements with subpixel
precision, they can serve as input for a joint super-resolution and HDR (SR-
HDR) approach, which allows to turn the problem of displacements between
the input images into an advantage. In this paper, we presented the first
energy-based SR-HDR framework that uses a robust data term in combi-
nation with an anisotropic smoothness term. Our experiments showed that
especially an appropriate strategy for filling in of missing information and
for smoothing the result is a key for obtaining visually appealing results.
Concerning future work, one remaining issue with our optic flow-based align-
ment strategy is that large displacements of small objects cannot be esti-
mated within the used coarse-to-fine warping framework. An example for
this problem is shown on our supplementary web page. Possible solutions
could be using a feature-matching prior [2] or applying an anti-ghosting tech-
nique [15]. Furthermore, a joint estimation of displacements and SR-HDR
reconstruction seems interesting, but it is questionable if the more difficult
minimisation will pay off in terms of quality.

Acknowledgements. This work has been partially funded by the Inter-
national Max-Planck Research School and the Cluster of Excellence “Mul-
timodal Computing and Interaction” within the Excellence Initiative of the
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Figure 4: SR-HDR reconstruction on a real world exposure series. First row,
from left to right: (a) – (c) Image 1, 5 (reference) and 9 of the exposure
series. Second row, from left to right: (d) Upsampled HDR result (bicubic
interpolation), tone mapped. (e) Tone mapped SR-HDR result of a method
similar to [10, 5] (quadratic data term, mean prior, λ = 5.0, τ = 0.1, 25
iterations). Third row, from left to right: (f) Same with our method, but
using a TV smoothness term (λ = 0.4, τ = 0.5, 1000 iterations). (g) Same
using our proposed method with an anisotropic smoothness term (λ= 0.3,
other parameters as in (f)). Fourth row, from left to right: (h) – (k) Zooms
in (d)–(g)
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grid platform for real-time motion computation with discontinuity-
preserving variational methods. International Journal of Computer Vi-
sion, 70(3):257–277, December 2006.

[5] J. Choi, M.K. Park, and M.G. Kang. High dynamic range image recon-
struction with spatial resolution enhancement. The Computer Journal,
52(1):114–125, 2009.

[6] P.E. Debevec and J. Malik. Recovering high dynamic range radiance
maps from photographs. In Proc. ACM SIGGRAPH, pages 369–378,
1997.

[7] R. Fattal, D. Lischinski, and M. Werman. Gradient domain high dy-
namic range compression. In Proc. ACM SIGGRAPH, pages 249–256,
2002.

[8] W. Förstner and E. Gülch. A fast operator for detection and precise
location of distinct points, corners and centres of circular features. In
Proc. ISPRS Intercommission Conference on Fast Processing of Pho-
togrammetric Data, pages 281–305, Interlaken, Switzerland, June 1987.

17



[9] T. Grosch. Fast and robust high dynamic range image generation with
camera and object movement. In L. Kobbelt, T.Kuhlen, T. Aach, and
R. Westermann, editors, Proceedings of Vision, Modeling, and Visual-
ization (VMV) 2006, pages 277–284. AKA Heidelberg, 2006.

[10] B.K. Gunturk and M. Gevrekci. High-resolution image reconstruction
from multiple differently exposed images. IEEE Signal Processing Let-
ters, 13(4):197–200, 2006.

[11] P. Gwosdek, H. Zimmer, S. Grewenig, A. Bruhn, and J. Weickert. A
highly efficient GPU implementation for variational optic flow based
on the Euler-Lagrange framework. In Proc. 2010 ECCV Workshop on
Computer Vision with GPUs, Heraklion, Greece, September 2010.

[12] H.B. Haraldsson, M. Tanaka, and M. Okutomi. Reconstruction of a high
dynamic range and high resolution image from a multisampled image
sequence. In Proc. 14th International Conference on Image Analysis and
Processing (ICIAP), pages 303–310, Modena, Italy, September 2007.

[13] K. Jacobs, C. Loscos, and G. Ward. Automatic high-dynamic range
image generation for dynamic scenes. IEEE Computer Graphics and
Applications, 28:84–93, 2008.

[14] T. Jinno and M. Okuda. Motion blur free HDR image acquisition using
multiple exposures. In Proc. 2008 IEEE International Conference on
Image Processing, pages 1304–1307, San Diego, CA, USA, October 2008.

[15] S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High dynamic
range video. In Proc. ACM SIGGRAPH, pages 319–325, 2003.

[16] S.J. Kim and M. Pollefeys. Radiometric alignment of image sequences.
In Proc. 2004 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, volume 1, pages 645–651, Washington, DC,
June 2004. IEEE Computer Society Press.

[17] D.G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, 2004.

[18] B. Lucas and T. Kanade. An iterative image registration technique
with an application to stereo vision. In Proc. Seventh International
Joint Conference on Artificial Intelligence, pages 674–679, Vancouver,
Canada, August 1981.

18



[19] S. Mann and R.W. Picard. On being ‘undigital’ with digital cameras:
Extending dynamic range by combining differently exposed pictures. In
Proc. 48th IS&T Annual Conference, pages 442–448, Washington DC,
USA, May 1995.

[20] N. Menzel and M. Guthe. Freehand HDR photography with motion com-
pensation. In H.P.A. Lensch, B. Rosenhahn, H.-P. Seidel, P. Slusallek,
and J. Weickert, editors, Proceedings of Vision, Modeling, and Visual-
ization (VMV), pages 127–134. AKA Heidelberg, 2007.

[21] T. Mertens, J. Kautz, and F. Van Reeth. Exposure fusion: A simple
and practical alternative to high dynamic range photography. Computer
Graphics Forum, 28(1):161–171, 2009.

[22] D. Mitzel, T. Pock, T. Schoenemann, and D. Cremers. Video super res-
olution using duality based TV-L1 optical flow. In J. Denzler, G. Notni,
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