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Abstract We prove variants of Korn’s inequality involving the trace-free part of the sym-
metric gradient of vector fields v : Ω → Rn (Ω ⊂ Rn), that is,

ˆ
Ω

h(|∇v|) dx 6 c

ˆ
Ω

h(|EDv|) dx

for functions with zero trace as well as some further variants of this inequality. Here, h is
an N -function of rather general type. As an application we prove partial C1,α-regularity of
minimizers of energies of the type

ˆ
Ω

h(|EDv|) dx,

occurring, for example, in general relativity.

Keywords Generalized Korn inequalities in Orlicz-Sobolev spaces · Variational problems ·
Nonstandard growth · Regularity

Mathematics Subject Classification (2000) 49N60, 74B99, 83C99

1 Introduction and formulation of the main results

A cruicial tool in the mathematical approach for the behavior of Newtonian fluids is Korn’s
inequality: Given a bounded domain Ω ⊂ Rn (n > 2) with Lipschitz boundary ∂Ω, we have
for all v ∈ W̊ 1,2(Ω; Rn) ˆ

Ω

|∇v|2 dx 6 2
ˆ

Ω

|Ev|2 dx, (1.1)

wherein Ev := 1
2 (∇v+∇Tv) denotes the symmetric part of the gradient ∇v of v. For smooth

vector fields v with compact support (1.1) follows by integration by parts, whereas in the
general case (1.1) is proved by approximation. We note that L2-variants of Korn’s inequality
are due to Courant and Hilbert [10], Friedrichs [23], Èidus [15] and Mihlin [34].
Many problems in mathematical theory of generalized Newtonian fluids and mechanics of
solids lead to the following question (compare, for example, the monographs of Málek, Necǎs,
Rokyta and Růžička [36], Duvaut and Lions [11] as well as Zeidler [47]): Is it possible to
control a certain energy depending on ∇v by the corresponding one depending just on Ev,
that is, does ˆ

Ω

|∇v|p dx 6 c(p,Ω)
ˆ

Ω

|Ev|p dx (1.2)

hold for functions v ∈ W̊ 1,p(Ω; Rn)?
As shown by Gobert [27]-[28], Necǎs [38], Mosolov and Mjasnikov [35], Temam [45], and
later by Fuchs [19] the inequality (1.1) is true for all 1 < p < ∞. (It should be emphasized
that inequality (1.1) does not hold in case p = 1; see [39], or [9].) We also like to remark that
the case of Sobolev spaces W̊ 1,p(·)(Ω; Rn) with variable exponents, which are the natural
spaces for the study of electro-rheological fluids (compare [40]), is considered in [12].
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In order to generalize (1.2), we replace t 7→ tp by an N -function h (see, for example, [1] for
a definition) of rather general type and consider the inequality

ˆ
Ω

h(|∇v|) dx 6 c(ϕ,Ω)
ˆ

Ω

h(|Ev|) dx (1.3)

for functions v ∈ W̊ 1,h(Ω; Rn). A first step is mentioned in [2]: Acerbi and Mingione prove a
variant of (1.3) (in the Luxemburg norm, and not in the integral version) for the N -function
h(t) = (1 + t2)

p−2
2 t2 with p > 1. Although, they just consider a special case, they provide

the necessary tools to deal with much more general situation. Moreover, the more general
result (1.3) is proved in [13], [21], [8], and [7] with the result: (1.3) holds if h satisfies ∆2-
and ∇2-conditions (a precise definition is given below).
In this note we prove Korn inequalities of the above type, where Ev is replaced by its trace-
free part EDv := Ev− 1

n (div v)I, that is, we prove an EDv-version of (1.3) (and variants of this).
Korn inequalities involving the trace-free part of the symmetric gradient have applications
in general relativity, Cosserat elasticity, and geometry; compare [26], [17], [43], and the
references therein. On the other hand, since the kernel of the operator

W 1,p(Ω; Rn) → Lp(Ω; Mn), v 7→ EDv

(Mn denoting the space of trace-free matrices of order n) is much larger than the kernel of
the operator

W 1,p(Ω; Rn) → Lp(Ω; Rn×n), v 7→ Ev

such Korn-type inequalities are also of great interest from the mathematical point of view.
Contributions to these issues can be found, for example, in [42], [43] as well as [44] with the
result: ˆ

Ω

|∇v|p dx 6 c(p,Ω)
ˆ

Ω

|EDv|p dx

for all v ∈ W̊ 1,p(Ω; Rn) and all 1 < p <∞.
It should be emphasized that even the case p = 2 requires hard mathematical arguments
being totally different from those needed in situation of (1.1). Moreover, the ideas from the
Orlicz setting used to prove (1.3) are not applicable here. Specifically, the proof of (1.3)
presented in [13] (Theorems 6.13 and 5.17) is based on the inequality (and a generalization
of Nečas’ lemma [38])

|∇2v| 6 c|∇Ev|,

which does not hold for n > 3 if we replace Ev by EDv on the right-hand side. In [21] the
main tool in the proof of (1.3) is a regularity theorem for elliptic equations in Orlicz spaces
(see [31]) and the representation

Lv = div V

with an elliptic differential operator L of second order (here the Laplace operator) and a
suitable vector field V depending on elements of Ev. In case n > 3 this technique is also not
applicable to the situation, where Ev is replaced by EDv.
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As an application of our new Korn-type inequalities we discuss the regularity of local mini-
mizers of functionals of the form ˆ

Ω

h(|EDv|) dx,

defined on an appropriate Orlicz-Sobolev class, wherein h is an N -function of rather general
type. Corresponding results are shown by the first author and Fuchs [8] in the context of
the nonlinear Stokes problem, where the density of the functional depends on the symmetric
gradient.
Let us give a detailed formulation of our results: Assume that h : [0,∞) → [0,∞) is a
function of class C2 that satisfies the conditions

(H1) h is strictly increasing and convex

(H2) h′′(0) > 0 and lim
t↘0

h(t)
t

= 0

(H3)
h′(t)
t

6 h′′(t) 6 A(1 + t2)ω/2 h
′(t)
t

(H4) h(2t) 6 Kh(t)

for all t > 0 with constants A,K > 0 and an exponent ω > 0. Let us give some remarks
on the above conditions; the details can be found in [3] and [8]. Examples of functions h
satisfying (H1)–(H4) are given in [22].

Remark 1.1 i) Conditions (H1)–(H3) imply that h is an N -function (according to the
definition of Adams [1], Section 8.2). In particular, h(0) = 0 = h′(0) and h′(t) > 0 for
all t > 0. Note also h′′(0) = limt↘0 h

′(t)/t.
ii) Condition (H4) states that h fulfills a global ∆2-condition. In particular,

h(s+ t) 6
K

2
(
h(s) + h(t)

)
, h(λt) 6 Kλβh(t) (1.4)

for all λ > 1 and s, t > 0 with β := logK/ log 2. Note that for λ 6 1 we clearly have
h(λt) 6 λh(t). Moreover, (H3) implies that h fulfills a global ∇2-condition, that is,

h(t) 6
1

2L
h(Lt)

for all t > 0 with some L > 1; compare [41], Section 2.3.
iii) From the lower bound in (H3) we deduce that the function t 7→ h′(t)/t is increasing and

h(t) >
h′′(0)

2
t2, h′(t) > h′′(0)t (t > 0). (1.5)

Moreover, from (H4) and the convexity of h it follows

h′(t)t
K

6 h(t) 6 h′(t)t (t > 0). (1.6)
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iv) There is an exponent q > 2 such that

h(t) 6 c(1 + t2)q/2,
h′(t)
t

6 c(1 + t2)q/2−1 (1.7)

for all t > 0.

Let us state our main results.

Theorem 1.2 Let (H1)–(H4) be fulfilled. For each v ∈
◦
W 1,h(Ω; Rn) we have

ˆ
Ω

h(|∇v|) dx 6 c(n, h,Ω)
ˆ

Ω

h(|EDv|) dx.

For further variants of this inequality and some comments we refer the reader to Theorem
2.1 and Remark 2.2 in the next section.
Let Ω ⊂ Rn (n > 2) denote a bounded Lipschitz domain, and let H : Mn → [0,∞) be a
function on the space Mn of trace-free matrices of order n. Assume that H has the special
structure H(σ) = h(|σ|) with a function h as above. From (H3) we deduce the ellipticity
condition

h′(|σ|)
|σ|

|τ |2 6 D2H(σ)(τ, τ) 6 A(1 + |σ|2)ω/2 h
′(|σ|)
|σ|

|τ |2 (1.8)

for all σ, τ ∈ Mn. Using (1.7) we conclude with q := q + ω (recall (1.5))

h′′(0)|τ |2 6 D2H(σ)(τ, τ) 6 Λ(1 + |σ|2)q/2−1|τ |2 (1.9)

for all σ, τ ∈ Mn with a positive number Λ, which means that H is of anisotropic (2, q)-
growth.
We consider the functional

J [v] = J [v;Ω] :=
ˆ

Ω

H(EDv) dx (1.10)

among vector fields v from the class K := u0 +
◦
W 1,h(Ω; Rn) with prescribed Dirichlet

boundary data u0 from the Orlicz-Sobolev space W 1,h(Ω; Rn) generated by h; see [1] for
a definition. Then we have the following existence and regularity theorem, which in the
two-dimensional is already proved by Fuchs [19].

Theorem 1.3 Let (H1)–(H4) hold.

a) The minimization problem J → min in K admits a unique solution u.
b) If n > 3 and ω < 4/n, there is an open set of full Lebesgue measure such that u ∈

C1,α(Ω0; Rn) for each α ∈ (0, 1).
c) Let n = 2 and ω < 2. Then u ∈ C1,α(Ω; R2) for each α ∈ (0, 1).

Remark 1.4 i) In the proof of part b) of the above theorem we use a blow-up argument,
which generalizes the approach used in [8], where an E-version of the above theorem is
proved, but only in case n = 3. We are able to extend this result to arbitrary dimensions
owing to our Korn-type inequalities.
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ii) Regularity results for functionals of this type for n > 3 are only known if the density
H behaves like a power of EDu [43], or in the anisotropic case under restrictive assump-
tions concerning the growth rates [44]. In our approach the range of anisotropy can be
arbitrary high (remember (1.9)).

Corollary 1.5 Let (H1)–(H4) hold and suppose that u is a local J-minimizer, that is,
u ∈W 1,h

loc (Ω; Rn) fulfills for each subdomain Ω′b Ω the conditions

J [u;Ω′] <∞ and J [u;Ω′] 6 J [v;Ω′]

for all v ∈W 1,h
loc (Ω; Rn) such that spt(u−v) b Ω′. Then the statements b) and c) of Theorem

1.3 continue to hold.

2 Generalized Korn-type inequalities in Orlicz-Sobolev spaces

In this section we collect variants of Korn’s inequality in Orlicz-Sobolev spaces involving
the trace-free part of the symmetric gradient. Corresponding versions of these Korn-type
inequalities for Sobolev functions are shown by the second author in [44] and by Fuchs and
the second author in [26].
We denote by KΩ the kernel of the operator

W 1,h(Ω; Rn) → Lh(Ω; Mn), v 7→ EDv,

which for n > 3 is finite-dimensional and coincides with the space of the so-called conformal
Killing vectors (Möbius transformations). For a proof and a precise characterization we
refer to [44]; compare also [42]. In the two-dimensional case KΩ is infinite-dimensional and
coincides with the space of holomorphic functions on Ω.

Theorem 2.1 Let (H1)–(H4) be fulfilled.

a) For each v ∈
◦
W 1,h(Ω; Rn) we have

ˆ
Ω

h(|∇v|) dx 6 c(n, h,Ω)
ˆ

Ω

h(|EDv|) dx. (2.1)

b) Let ∂Ω be Lipschitz. For each v ∈W 1,h(Ω; Rn) there exists χ ∈ KΩ such that
ˆ

Ω

h(|v − χ|) dx 6 c(n, h,Ω)
ˆ

Ω

h(|EDv|) dx. (2.2)

c) Let ∂Ω be Lipschitz and suppose n > 3. Then for each v ∈W 1,h(Ω; Rn) it holds

ˆ
Ω

h(|∇v|) dx 6 c(n, h,Ω)

(ˆ
Ω

h(|v|) dx+
ˆ

Ω

h(|EDv|) dx

)
. (2.3)
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Remark 2.2 i) When Ω is a ball BR = BR(x0) ⊂ Rn the constant c in part a) of the
above theorem is independent of R and x0, which follows by a standard scaling argu-
ment; compare [43]. Moreover, the same argument together with (1.4) shows that the
inequalities in b) and c) take the form

ˆ
BR

h(|v − χ|) dx 6 cRγ

ˆ
BR

h(|EDv|) dx, (2.4)

ˆ
BR

h(|∇v|) dx 6 c

(
1
Rγ

ˆ
BR

h(|v|) dx+
ˆ

BR

h(|EDv|) dx

)
, (2.5)

where γ := max(1, β) and c = c(n, h,K) with β as in (1.4).
ii) The last statement of the above theorem does not hold in the two-dimensional case since

the corresponding Korn-type inequality in Sobolev spaces is not valid in this case; see
[44]. However, we have the following variant of (2.5) for n = 2: Let v ∈ W 1,h

loc (Ω; Rn).
Then for balls Br = Br(x0) and BR = BR(x0) with Br b BR b Ω it holds

ˆ
Br

h(|∇v|) dx 6 c

(
1

(R− r)γ

ˆ
BR

h(|v|) dx+
ˆ

BR

h(|EDv|) dx

)
(2.6)

with c = c(n, h,K).
iii) In the two-dimensional case the proof of part b) requires different methods since in this

case KΩ is not finite-dimensional so that the representation formula of Reshetnyak [42]
used in case n > 3 is not applicable in case n = 2. Here, we can argue as in the proof
of the corresponding Korn-type inequality in Sobolev spaces, that is, we combine the
Cauchy-Pompeiu formula with a well-known estimate for the Riesz potential; compare
[19], or [44].

iv) Part a) of Theorem 2.1 holds for arbitrary bounded domains, whereas the statements
b) and c) hold if Ω is a bounded domain allowing a decomposition of the form

Ω =
L⋃

`=1

Ω` (L ∈ N)

with domains Ω` being star-shaped with respect to a ball B` b Ω`. In particular,
bounded domains satisfying the cone condition allow such a decomposition; see [33].
Moreover, bounded domains with the cone property are decomposable in finitely many
Lipschitz domains.

v) Since |EDv| 6 |Ev|, the statements a) and c) are also valid with EDv replaced by Ev.
The corresponding versions of the Korn inequalities, which are already proved in [7],
[8] and [13], are the essential tools in the study of variational problems for generalized
Newtonian fluids.

vi) Part b) is also true with EDv replaced by Ev if χ is a suitable rigid motion. To the
best of our knowledge, this Korn-type inequality (in the version with Ev) is new. Note
that [42] contains a representation formula for Ev, which is also valid in case n = 2, so



7

that similar arguments as in the proof of b) yield the corresponding inequality with EDv
replaced by Ev.

vii) From our proof of b) we see that the Killing vector χ is independet of h, which means
that (2.2) is true with the same function χ for eachN -function h satisfying the conditions
(H1)–(H4).

The main tool in the proof of Theorem 2.1 is an interpolation argument due to Koizumi [32];
see Lemma 2.4 below. If we use instead the theory of Torchinsky [46], we can control the
constant in a better way; compare [8] (Appendix) for details. The constant now only depends
on the constant K from condition (H4). But the argument only works in the Luxembourg
norm and not in the integral version.

Corollary 2.3 Let (H1)–(H4) be fulfilled.

a) For each v ∈
◦
W 1,h(Ω; Rn) we have

‖∇v‖h 6 c(n,K,Ω)‖EDv‖h. (2.7)

b) For each v ∈W 1,h(Ω; Rn) there exists χ ∈ KΩ such that

‖v − χ‖h 6 c(n,K,Ω)‖EDv‖h. (2.8)

c) Suppose n > 3. Then for each v ∈W 1,h(Ω; Rn) it holds

‖∇v‖h 6 c(n,K,Ω)
(
‖v‖h + ‖EDv‖h

)
. (2.9)

We begin with the proof of Theorem 2.1 now. The main tool in the proof is the following
lemma, which follows from an interpolation argument due to Koizumi [32].

Lemma 2.4 Let (H1)–(H4) be fulfilled, and let T be a linear operator, which is continuous
from Lp(Ω) → Lp(Ω) for every p ∈ (1,∞). Then T is continuous from Lh(Ω) → Lh(Ω).
Moreover, ˆ

Ω

h(|Tv|) dx 6 c(n, h,Ω)
ˆ

Ω

h(|v|) dx

for each v ∈ Lh(Ω).

Proof According to Theorem 4 in [32] it suffices to show that there are numbers 1 < a <

b <∞ such that

h(2t) = O(h(t)), (2.10)ˆ ∞

t

h(s)
sb+1

ds = O

(
h(t)
tb

)
, (2.11)

ˆ t

1

h(s)
sa+1

ds = O

(
h(t)
ta

)
(2.12)
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as t→∞ and

h(2t) = O(h(t)), (2.13)ˆ 1

t

h(s)
sb+1

ds = O

(
h(t)
tb

)
, (2.14)

ˆ t

0

h(s)
sa+1

ds = O

(
h(t)
ta

)
(2.15)

as t→ 0. Clearly, (2.10) and (2.13) follow immediately from (H4). For the other conditions,
we choose a ∈ (1, 2), b > max(a,K) and observe (recall (1.6))

d
dt

(
h(t)
tb

)
=
h′(t)t− bh(t)

tb+1
6 0.

We deduce ˆ ∞

t

h(s)
sb+1

ds =
ˆ ∞

t

h(s)
sK

sK−b−1 ds 6
h(t)
tK

ˆ ∞

t

sK−b−1 ds = c
h(t)
tb

,

ˆ ∞

t

h(s)
sb+1

ds >
ˆ 2t

t

h(s)
sK

sK−b−1 ds >
h(t)
tK

ˆ 2t

t

sK−b−1 ds > c
h(t)
tb

.

On the other hand, using (1.6) and (H4), we find
ˆ t

1

h(s)
sa+1

ds 6
ˆ t

1

h′(s)
s

s1−a ds 6
h′(t)
t

ˆ t

1

s1−a ds 6 c
h(t)
ta

,

ˆ t

1

h(s)
sa+1

ds > c
h′(t)
t

ˆ t

t/2

s1−a ds > c
h(t)
ta

.

This proves (2.11) and (2.12). The remaining conditions (2.14) and (2.15) follow by similar
calculations.

Proof (of Theorem 2.1) Assume n > 3 and that Ω is star-shaped with respect to a ball
B ⊂ Ω. Then, according to formula (2.43) in [42] each v ∈ C∞(Ω; Rn) can be represented
as

v(x) = χ(x) +R(EDv)(x), (2.16)

where χ = χ(v) is a suitable element of KΩ (compare (2.40) in [42]) and R is a singular
integral operator (compare (2.41) in [42]) given by

R(ϕ) := S(ϕ) + T (ϕ) (ϕ ∈ C∞(Ω; Rn×n))

with (i ∈ {1, . . . , n})

Si(ϕ)(x) :=
ˆ

Ω

ωi
kl(x, e)

|x− z|n−1
ϕkl(z) dz (2.17)

T i(ϕ)(x) :=
ˆ

Ω

θi
kl(x, z)ϕ

kl(z) dz
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for x ∈ Ω with summation with respect to k, l ∈ {1, . . . , n}. Here, ωi
kl(x, e) are smooth

functions (e := (x−z)/|x−z|), and θi
kl(x, z) are bounded continuous functions; see [42] after

(2.38). (Note that the representation formulas from [42] are also used in the paper [5].)
Now, assume v ∈ C∞

0 (Ω; Rn). Then we have χ ≡ α
ffl

B
v dz (compare (10) in [25]) with a

certain constant α = α(n) so that from (2.16) we deduce

∇v(x) = ∇R(EDv)(x) = ∇S(EDv)(x) +∇T (EDv)(x). (2.18)

After dropping all indices for notational simplicity we see that the right-hand side of (2.17)
is of the form (note that we can extend v to the hole space by setting v = 0 outside Ω)

V (x) :=
ˆ

Rn

K(x− z)ϕ(z) dz (x ∈ Rn)

with K being essentially homogeneous of degree 1−n in the sense of Morrey [37]. From part
b) of Theorem 3.4.2 in [37] and the subsequent remark we deduce

∂jV (x) = c(j)ϕ(x) + lim
ρ↘0

ˆ
Rn−Bρ(x)

(∂αK)(x− z)ϕ(z) dz (2.19)

for each j ∈ {1, . . . , n} and almost every x ∈ Rn. If we consider the right-hand side of (2.19)
as a function of ϕ, it is continuous from Lp(Ω) → Lp(Ω) for each p ∈ (1,∞) according to
the Calderon-Zygmund theory (compare [37], Theorem 3.4.2 b)) so that from Lemma 2.4
we infer ˆ

Ω

h(|∇S(EDv)|) dx 6 c(n, h,Ω)
ˆ

Ω

h(|EDv|) dx. (2.20)

On the other hand, we have (compare [42], p. 325)

∂jT i(ϕ)(x) =
ˆ

Ω

(∂jθ
i
kl)(x, z)ϕ

klv(z) dz (2.21)

with ∂jθ
i
kl(x, z) being bounded and continuous when x 6= z. Therefore, the right-hand side

of (2.21) is also continuous from Lp(Ω) → Lp(Ω) for each p ∈ (1,∞) so that from Lemma
2.4 we obtain ˆ

Ω

h(|∇T (EDv)|) dx 6 c(n, h,Ω)
ˆ

Ω

h(|EDv|) dx. (2.22)

Hence, returning to (2.18), the latter estimate together with (2.20) shows
ˆ

Ω

h(|∇v|) dx 6 c(n, h,Ω)
ˆ

Ω

h(|EDv|) dx

for every w ∈ C∞
0 (Ω,Rn), which by approximation gives us part a) of the theorem.

To prove part b), we assume v ∈ C∞(Ω; Rn). On account of (2.16) we have
ˆ

Ω

h(|v − χ|) dx =
ˆ

Ω

h(|R(EDv)|) dx
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and since R is continuous from Lp(Ω) → Lp(Ω) for each p ∈ (1,∞) we obtain by Lemma
2.4 ˆ

Ω

h(|v − χ|) dx 6 c(n, h,Ω)
ˆ

Ω

h(|EDv|) dx.

The continuity of R follows since the coefficients of T are smooth and bounded (compare
[42] after (3.38)), whereas for S one can argue by the Calderon-Zygmund theory [37] (The-
orem 3.4.2). Hence, b) is valid for smooth functions; in the general case it follows from an
approximation argument stated in [25] after (13).
So far, we have established the first inequalities in a) and b) in case n > 3. We remark
that for n = 2 the proof of a) is outlined in [21]. To prove b) for n = 2, we argue as in the
proof of Lemma A.1 in [19] (compare also [44]): Assume v ∈ C∞(Ω; C). Then there exists a
holomorphic function χ : Ω → C such that

|v(z)− χ(z)| 6 1
π

ˆ
Br

∂zv(ζ)
|ζ − z|

dL2(ζ),

wherein ∂zv is the Wirtinger derivative 1
2 (∂xv+i∂yv) of v = v(z) = v(x, y), and

´
Br

has to be
calculated with respect to the two-dimensional Lebesgue measure L2. Using |EDv| =

√
2 |∂zv|

the right-hand side is bounded from above by

1
π
√

2

ˆ
Br

|EDv(ζ)|
|ζ − z|

dL2(ζ) =:
1

π
√

2
V1/2(|EDv|)(z).

Here, V1/2(|EDv|)(z) is the Riesz potential of |EDv| defined in [30], formula (7.31), with the
choices µ = 1/2 and n = 2. Since the Riesz potential is continuous from Lp(Ω) → Lp(Ω) for
each p ∈ (1,∞) and since

‖V1/2(|EDv|)‖p 6 2
√
|B1||Ω| ‖EDv‖p

(see Lemma 7.12 in [30]), the claim follows from Lemma 2.4 and a standard approximation
argument.
For c), we assume as before v ∈ C∞(Ω; Rn) and observe that according to (2.40’) in [42] we
have

χi(x) =
∑

06|α|62

xα

ˆ
Ω

Hi
αk(z)vk(z) dz

with smooth functions Hi
αk. Hence, ‖∇χ‖p 6 c‖v‖p for all p ∈ (1,∞) so that Lemma 2.4

gives us ˆ
Ω

h(|∇χ|) dx 6 c(n, h,Ω)
ˆ

Ω

h(|v|) dx.

By combining (2.16) with the estimates (2.20) and (2.22), we end up with
ˆ

Ω

h(|∇v|) dx 6 c(n, ϕ,Ω)

(ˆ
Ω

h(|v|) dx+
ˆ

Ω

h(|EDv|) dx

)

valid for all v ∈ C∞(Ω; Rn), from which c) follows by an approximation argument.



11

3 Existence of minimizers: proof of Theorem 1.3 a)

Let (um) ⊂ K be a J-minimizing sequence, that is,

J [um] m−→ inf
K
J.

Since um − u0 ∈
◦
W 1,h(Ω; Rn), the Poincaré-type inequality from [24] (Lemma 2.4) in com-

bination with the Korn-type inequality (2.7) yields

‖um − u0‖h 6 k‖∇um −∇u0‖h 6 k‖EDum − EDu0‖h.

On the other hand, J [um] 6 c, which implies

‖EDum‖h 6
ˆ

Ω

h(|EDum|) dx+ 1 ≤ J [um] + 2 6 c

for all m� 1. By using (2.7) once more, we deduce that um is bounded in W 1,h(Ω; Rn) so
that we have um

m−⇁: u with a function u ∈W 1,h(Ω; Rn) (at least for a subsequence). Note
thatW 1,h(Ω; Rn) is reflexive since h satisfies global∆2- and∇2-conditions (as a consequence
of (H3) and (H4); compare Remark 1.1 iii)); see [1]. Moreover, from um−u0 ∈

◦
W 1,h(Ω; Rn)

we infer u−u0 ∈
◦
W 1,h(Ω; Rn) (compare Theorem 2.1 in [24]) so that the lower semicontinuity

of J shows that u is a J-minimizer in the class K. Finally, the uniqueness of u is a consequence
of (H1).

4 Regularization and higher integrability

Let u be a (local) J-minimizer under the assumptions (H1)–(H4) with ω < 4/n and let (u)ρ

denote a mollification of u. As usual we consider for a fixed ball BR = BR(x0) b Ω the more
regular functional (compare [8])

Jδ[w] :=
ˆ

BR

Hδ(EDw) dx

among vector fields w ∈ (u)ρ +
◦
W 1,h(BR; Rn), where

Hδ(σ) := H(σ) + δ(1 + |σ|2)q/2 (σ ∈ Mn)

with exponent q > 2 as in (1.9) and

δ = δ(ρ) :=
(
1 + ρ−1 + ‖ED(u)ρ‖2q

q;BR

)−1
.

Then Hδ is strictly convex and of isotropic q-growth and Jδ admits a unique minimizer uδ

in the class (u)ρ +
◦
W 1,h(BR; Rn). As in [44] we see that uδ enjoys the regularity properties

collected in the following lemma.
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Lemma 4.1 Let (H1)–(H4) hold, and let Γδ := 1 + |EDuδ|2.

a) uδ ∈W 2,2
loc(BR; Rn) and τδ := DHδ(EDuδ) ∈W 1,q/(q−1)

loc (BR; Mn).

b) Γ
q/4
δ ∈W 1,2

loc(BR).

c) uδ ⇁ u in W 1,2(BR; Rn) as δ ↘ 0.

d)
ˆ

BR

h(|EDuδ|) dx is uniformly bounded and δ

ˆ
BR

Γ
q/2
δ dx→ 0 as δ ↘ 0.

The main aim in this section is the following theorem.

Theorem 4.2 Let (H1)–(H4) be fulfilled with ω < 4/n.

a) h(|EDu|) ∈ Ln/(n−2)
loc (Ω).

b) ψ :=
ˆ |EDu|

0

√
h′(t)
t

dt ∈W 1,2
loc(Ω).

In the proof we need the Caccioppoli-type inequality contained in the following lemma.

Lemma 4.3 Let (H1)–(H4) hold. Then for all η ∈ C∞
0 (BR) and χ ∈ KBR

we have the
estimate ˆ

BR

η2D2Hδ(EDuδ)(∂kEDuδ, ∂kEDuδ) dx

6 c

ˆ
BR

|∇η|2Γω/2
δ

h′(|EDuδ|)
|EDuδ|

|∇uδ −∇χ|2 dx

+ cδ

ˆ
BR

|∇η|2Γ q/2−1
δ |∇uδ −∇χ|2 dx,

where c is independent of δ and R.

Proof From (5.7) in [44] we deduce the starting inequality
ˆ

BR

η2D2Hδ(EDuδ)(∂kEDuδ, ∂kEDuδ) dx

6 −2
ˆ

BR

ηD2Hδ(EDuδ)(∂kEDuδ, (∇η � ∂k(uδ − χ))D) dx.
(4.1)

On the right-hand side of (4.1) we apply the Cauchy-Schwarz and Young’s inequality. After
absorbing terms on the left-hand side (4.1) turns into

ˆ
BR

η2D2Hδ(EDuδ)(∂kEDuδ, ∂kEDuδ) dx

6 c

ˆ
BR

D2Hδ(EDuδ)((∇η � ∂k(uδ − χ))D
, (∇η � ∂k(uδ − χ))D) dx

so that, using (1.8) on the right-hand side, the desired inequality follows at once.
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Proof (of Theorem 4.2) We fix a ball Bρ(x) b BR and a function η ∈ C∞
0 (BR), η > 0, with

η ≡ 1 in Bρ(x) for some radius ρ < r, η ≡ 0 outside Br(x), and |∇η| 6 c/(r − ρ). Since
h(|EDuδ|)1/2 ∈W 1,2(BR), we get with κ := n/(n− 2)

ˆ
Bρ(x)

h(|EDuδ|)κ dx 6 c

(ˆ
Br(x)

|∇[ηh(|EDuδ|)1/2]|2 dx

)κ

6 c

(ˆ
Br(x)

|∇η|2h(|EDuδ|) dx+
ˆ

Br(x)

η2h
′(|EDuδ|)
|EDuδ|

|∇EDuδ|2 dx

)κ

6 c

(ˆ
Br(x)

|∇η|2h(|EDuδ|) dx+
ˆ

Br(x)

|∇η|2Γω/2
δ

h′(|EDuδ|)
|EDuδ|

|∇uδ −∇χ|2 dx

+ δ

ˆ
Br(x)

|∇η|2Γ q/2−1
δ |∇uδ −∇χ|2 dx

)κ

=: c(I1 + I2 + δI3)κ,

where we used (1.6) as well as (1.8) combined with the Caccioppoli-type inequality from
Lemma 4.3. According to part d) of Lemma 4.1 we clearly have I1 6 c/(r−ρ)2. To estimate
I2 we distinguish the cases x ∈ Br(x) ∩ [|EDuδ| 6 |∇uδ − ∇χ|] and x ∈ Br(x) ∩ [|EDuδ| >
|∇uδ−∇χ|]. In the first case the monotonicity of t 7→ h′(t)/t together with the lower bound
in (1.6) gives us

Γ
ω/2
δ

h′(|EDuδ|)
|EDuδ|

|∇uδ −∇χ|2 6 Kh(|∇uδ −∇χ|),

where h(t) := (1 + t2)ω/2h(t). In the latter case we obtain

Γ
ω/2
δ

h′(|EDuδ|)
|EDuδ|

|∇uδ −∇χ|2 6 Kh(|EDuδ|)

so that

I2 6
c

(r − ρ)2

(ˆ
Br(x)

h(|∇uδ −∇χ|) dx+
ˆ

Br(x)

h(|EDuδ|) dx

)
.

Now, we observe that h is an N -function that satisfies the conditions (H1)–(H4) so that we
may apply the Korn-type inequality (2.2), that is, we may choose χ ∈ KBr(x) such that

ˆ
Br(x)

h(|uδ − χ|) dx 6 c

ˆ
Br(x)

h(|EDuδ|) dx, (4.2)

where c does not depend on δ. By combining (4.2) with the Korn-type inequality (2.3), we
get

I2 6
c

(r − ρ)2

ˆ
Br(x)

h(|EDuδ|) dx.
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By applying Young’s inequality we can estimate

δI3 6 δ
c

(r − ρ)2

(ˆ
Br(x)

|∇uδ −∇χ|q dx+
ˆ

Br(x)

Γ
q/2
δ dx

)
.

For the first integral on the right-hand side we obtain
ˆ

Br(x)

|∇uδ −∇χ|q dx 6 c

(ˆ
Br(x)

|uδ − χ|2 dx+
ˆ

Br(x)

|EDuδ|q dx

)

6 c

(ˆ
Br(x)

h(|uδ − χ|) dx+
ˆ

Br(x)

Γ
q/2
δ dx

)

6 c

(ˆ
Br(x)

h(|EDuδ|) dx+
ˆ

Br(x)

Γ
q/2
δ dx

)
,

where we combined the interpolation inequality (2.2) from [44] (recall q > 2) with (1.5) and
(4.2). Summarizing the various estimates we have established:

ˆ
Bρ(x)

h(|EDuδ|)κ dx 6
c

(r − ρ)2κ

(
1 +

ˆ
Br(x)

h(|EDuδ|) dx+ δ

ˆ
Br(x)

Γ
q/2
δ dx

)κ

and since the last integral on the right-hand side is uniformly bounded according to Lemma
4.1 d), we end up with

ˆ
Bρ(x)

h(|EDuδ|)κ dx 6
c

(r − ρ)2κ

[
1 +

(ˆ
Br(x)

h(|EDuδ|)|EDuδ|ω dx

)κ]
.

But now, we are exactly in the same situation as in (2.7) of [8], and we can proceed as in
[8] (recall ω < 4/n) with the result:

h(|EDuδ|) ∈ Ln/(n−2)
loc (BR) uniformly with respect to δ. (4.3)

Going through the above calculations, we get from the Caccioppoli-type inequality from
Lemma 4.3: ˆ

Bρ(x)

D2H(EDuδ)(∂kEDuδ, ∂kEDuδ) dx

6
c

(r − ρ)2

[
1 +

ˆ
Br(x)

h(|EDuδ|)|EDuδ|ω dx

]
,

(4.4)

where the integral on the right-hand side is uniformly bounded on account (4.3) and our
assumption ω < 4/n. Hence, from (1.8) we infer ∂kEDuδ ∈ L2

loc(BR; Rn) uniformly with
respect to δ for each k ∈ {1, . . . , n} so that according to Theorem 2.1 in [44] (recall also
Lemma 4.1, c)) uδ ∈W 2,2

loc(BR; Rn) uniformly with respect to δ. Therefore,

u ∈W 2,2
loc(Ω; Rn), uδ ⇁ u in W 2,2

loc(BR; Rn),

and ∇uδ → ∇u a.e. in BR as δ ↘ 0,
(4.5)
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where the convergences hold after passing to a subsequence of uδ not being relabeled. Hence,
part a) of Theorem 4.2 follows by combining (4.5) with (4.3). To prove b), we observe that
on account of (4.4) and (1.8) the functions

ψδ :=
ˆ |EDu|

0

√
h′(t)
t

dt

are bounded in W 1,2
loc(BR) uniformly with respect to δ so that ψδ ⇁ ψ in W 1,2

loc(BR) as δ ↘ 0
(recall (4.5)).

Remark 4.4 From the Caccioppoli-type inequality stated in Lemma 4.3 we deduce the fol-
lowing limit version by passing to the limit δ ↘ 0 (compare Remark 2.1 in [8], or the proof
of Lemma 6.3 in [44]): For each η ∈ C∞

0 (BR) and χ ∈ KBR
it holds

ˆ
BR

η2D2H(EDu)(∂kEDu, ∂kEDu) dx

6
ˆ

BR

|∇η|2|D2H(EDu)||∇u−∇χ|2 dx.
(4.6)

Alternatively, we may replace D2H(EDu)(∂kEDu, ∂kEDu) on the left-hand side of (4.6) by
|∇ψ|2 or |∇EDu|2 as a consequence of (1.8) and (1.9), respectively. Moreover, on the right-
hand side we may replace ∇χ by an arbitrary matrix Q ∈ Rn×n.

5 Partial Regularity: proof of Theorem 1.3, b)

Following the lines of [8] and consider the excess

(Eu)x0,r :=
 

Br(x0)

|EDu− (EDu)x0,r|2 dx+
 

Br(x0 )̃

h(|EDu− (EDu)x0,r|) dx,

for balls Br(x0) b Ω, where h̃(t) := h(t)tω is an N -function. Note that (Eu)x0,r is well-

defined since u ∈ W 1,eh
loc (Ω; Rn) as a consequence of Theorem 4.2 a) combined with (2.1)

(with h replaced by h defined in the proof of Theorem 4.2; note h̃ 6 h) and Poincaré’s
inequality in Orlicz spaces [24] (Lemma 2.4).

Lemma 5.1 Let L > 0 be given. Then there is a positive constant c∗ = c∗(L) with the
property: To each τ ∈ (0, 1) there exists a positive number ε = ε(L, τ) such that for every
ball Br(x0) b Ω for which

|(EDu)x0,r| < L and (Eu)x0,r < ε

hold, we have

(Eu)x0,τr 6 c∗τ
2(Eu)x0,r.
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From the above lemma we deduce by a standard iteration procedure (compare [29]) that
EDu is of class C0,α on the set

Ω0 :=
{
x ∈ Ω : sup

r>0
|(EDu)x,r| <∞ and lim inf

r↘0
(Eu)x,r = 0

}
.

Moreover, Ω0 is an open set of full Lebesgue measure. On account of u ∈W 2,2
loc(Ω; Rn) (recall

(4.5)) we then can argue as in [44] (Section 6) to obtain the statement in part b) of Theorem
1.3.

Proof (of Lemma 5.1) As usual (compare [8] or [44]) we argue by contradiction: Assume
that for some τ ∈ (0, 1) there exists a sequence of balls Brm

(xm) b Ω such that

|(EDu)xm,rm | < L, (Eu)xm,rm =: λ2
m

m−→ 0,

(Eu)xm,τrm
> c∗τ

2λ2
m.

(5.1)

We define

um(z) :=
u(xm + rmz)− rmAmz − χm(z)

λmrm
(z ∈ B1),

where Am := (EDu)xm,rm
and χm ∈ KB1 is chosen according to Theorem 2.1 such that

(compare Remark 2.1 vii))
ˆ

B1

h(|λmum|) dz +
ˆ

B1

h(|λm∇um|) dz 6 c(h)
ˆ

B1

h(|λm EDum|) dz (5.2)

for all N -functions h satisfying the conditions (H1)-(H4).
Observing EDum = λ−1

m [EDu(xm + rmz)−Am], the definition of λm implies
 

B1

|EDum|2 dz + λ−2
m

 
B1̃

h(|EDum|) dz = 1, (5.3)

which together with (5.2) with h(t) = t2 and (5.3) leads to
ˆ

B1

|∇um|2 dz = λ−2
m

ˆ
B1

|λm∇um|2 dz

6 cλ−2
m

ˆ
B1

|λm EDum|2 dz = c

ˆ
B1

|EDum|2 dz 6 c.

Hence, we have boundedness of (um) in W 1,2(B1; Rn) and therefore (at least for a subse-
quence being not relabeled)

um
m−⇁: u in W 1,2(B1; Rn)

λm EDum
m−→ 0 in L2(B1; Mn) and a.e. in B1.

(5.4)

Moreover, Am
m−→: A (for a subsequence) with a matrix A ∈ Mn, |A| 6 L, and u fulfills

ˆ
B1

D2H(A)(EDu, EDϕ) dz = 0 (5.5)
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for all ϕ ∈ C1
0(B1; Rn), which can be shown as in [4] (Proposition 5.1).

By virtue of (5.5) and Lemma 4.1 in [44] u belongs to C∞(B1; Rn) and satisfies

 
Bτ

|EDu− (EDu)0,τ |2 dz 6 c∗τ2

 
B1

|EDu− (EDu)0,1|2 dz 6 c∗τ2 (5.6)

with a constant c∗ = c∗(L), where in the last step we used (EDu)0,1 = 0 (which follows from
(EDum)0,1 = 0 and (5.4)) as well as (5.3). Suppose that we can show

EDum
m−→ EDu in L2

loc(B1; Mn), (5.7)

λ−2
m

 
Br̃

h(λm|EDum|) dz m−→ 0 for r < 1. (5.8)

Then (5.6) turns into

lim
m

 
Bτ

|EDum − (EDum)0,τ |2 dz + λ−2
m

 
Bτ

h̃(|EDum − (EDum)0,τ |) dz 6 c∗τ2.

But then, choosing c∗ = 2c∗, we get a contradiction to our assumption (5.1) since the third
condition in (5.1) is equivalent to

 
Bτ

|EDum − (EDum)0,τ |2 dz + λ−2
m

 
Bτ

h̃(|EDum − (EDum)0,τ |) dz > c∗τ
2.

Therefore, it remains to prove (5.7) and (5.8). For this purpose we use (4.6) in the version
with |∇EDu|2 on the left- and a matrix Q ∈ Rn×n on the right-hand side. If we consider a
radius 0 < t < 1 and choose η with η ≡ 1 in Btrm

(xm) and |∇η| 6 c/(rm(1 − t)) in this
version of (4.6), we obtain after scaling the inequality (compare the proof of Lemma 6.3 in
[44] for similar calculations)

ˆ
Bt

|∇EDum(z)|2 dz

6 c(1− t)−2λ−2
m

ˆ
B1

|D2H(EDu(xm + rmz))||∇u(xm + rmz)−Q|2 dz,

from which we deduce
ˆ

Bt

|∇EDum|2 dz 6 c(1− t)−2

ˆ
B1

|D2H(Am + λm EDum)||∇um|2 dz (5.9)

by choosing Q := Am +r−1
m ∇χm. To estimate the right-hand side, we observe that according

to (1.8) and the monotonicity of t 7→ h′(t)/t (recall |Am| < L) we have

|D2H(Am + λm EDum)||∇um|2 6 c(K) |∇um|2
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on the set [λm|EDum| 6 K], whereas on the set [λm|EDum| > K] it holds (for sufficiently
large K)

|D2H(Am + λm EDum)||∇um|2

6 c(K)
[
1 + (λm|EDum|)ω h

′(λm|EDum|)
λm|EDum|

]
|∇um|2

6 c(K)λ−2
m h(λm|∇um|).

Here, we abbreviated h(t) := (1+t2)ω/2h(t), which is an N -function satisfying the conditions
(H1)–(H4). From (5.9) we infer (compare (3.20) in [18])

ˆ
Bt

|∇EDum|2 dz 6 c(1− t)−2λ−2
m

ˆ
B1

h(λm|∇um|) dz

so that, using (5.2) together with (5.3), we obtain
ˆ

Bt

|∇EDum|2 dz 6 c(1− t)−2λ−2
m

ˆ
B1

h(λm|EDum|) dz

6 c(1− t)−2

(ˆ
B1

|EDum|2 dz + λ−2
m

ˆ
B1̃

h(λm|EDum|) dz

)
6 c(1− t)−2,

(5.10)

Note that in the second step we distinguished the cases λm|EDum| 6 1 and λm|EDum| > 1,
where in the first case we used h(t) 6 ct2 (valid for all t 6 1 according to (1.6) and (1.7))
and h(t) 6 ch̃(t) (valid for all t > 1) in the latter case.
Owing to (5.10) |∇EDum| is bounded in L2

loc(B1) uniformly with respect to m. Consequently,
by combining Theorem 2.1 a) (with h(t) = t2) with (5.4), we get with respect to m uniform
W 2,2

loc-bounds of um. Upon passing to a subsequence (being not relabeled) we have

um
m−⇁ u in W 2,2

loc(B1; Rn),

which leads to the desired local strong convergence (5.7) according to Kondrachov’s Theo-
rem.
Now, we introduce the auxiliary functions

Ψm := λ−1
m

(ˆ |Am+λm EDum|

0

√
h′(t)
t

dt−
ˆ |Am|

0

√
h′(t)
t

dt

)

and observe that according to Remark 4.4 the estimate (5.9) remains valid if we replace
∇EDum by ∇Ψm on the left-hand side. Hence, we also get a corresponding variant of (5.10),
from which we deduce ˆ

Bt

|∇Ψm|2 dz 6 c(t). (5.11)
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On the other hand, following the lines of [18] (after (3.22)) with ∇ replaced by ED, we obtain´
B1
|Ψm|2 dz 6 c so that with (5.11) we end up with

‖Ψm‖1,2;Bt
6 c(t) <∞ for all t ∈ (0, 1).

But now we can argue exactly as in [18] (after (3.23)) to get the desired local strong con-
vergence (5.8). Note that the condition

tω 6 c
(
1 + h(t)2

)
(t > 0)

required in [18] clearly is satisfied in our context as a consequence of the superquadratic
growth of h (recall (1.7)) and our hypothesis ω < 4/n. This completes the proof of the
blow-up lemma Lemma 5.1, and thus of our partial regularity result Theorem 1.3 b).
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Liege 3–4, 182–191 (1962)
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