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Dominic Breit and Lars Diening
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Abstract

We show that Korn’s inequality in Orlicz spaces holds if and only if the Orlicz
function satisfies the ∆2- and the ∇2-condition. This result applies to several
types of Korn’s inequality. In particular we show that Korn’s inequality is
false in L1, in L logL, in Exp and in L∞.

MSC (2000): 74 B, 74 G, 76 D, 49 J.

Keywords: Korn’s inequality in L logL, Korn’s inequality in Orlicz spaces,
counter example, Prandtl-Eyring fluids

1 Introduction

A crucial tool in the mathematical approach to the behavior of Newtonian
fluids is Korn’s inequality: Given a bounded open domain Ω ⊂ Rd, d ≥ 2,
with Lipschitz boundary ∂Ω we have for all u ∈ W̊ 1,2(Ω,Rd)∫

Ω

|∇u|2 dx ≤ 2

∫
Ω

|ε(u)|2 dx, (1)

where ε(u) = 1
2
(∇u + (∇u)T ) denotes the symmetric part of the gradient.

For smooth functions with compact support the proof of (1) follows from
integration by parts and the general case is treated by approximation. We
note that L2-variants of Korn’s inequality go back to the works of Courant
and Hilbert [CH], Friedrichs [Fr], Èidus [Ed] and Mihlin [Mi]. Many prob-
lems in the mathematical theory of Generalized Newtonian fluids and in the
mechanics of solids lead to the following question (compare for example the
monographs of Málek, Necǎs, Rokyta and Růžička [MNRR], of Duvaut and
Lions [DL] and of Zeidler [Ze]): is it possible to bound a suitable energy
depending on ∇u by the corresponding one in dependence on ε(u), i.e.,∫

Ω

|∇u|p dx ≤ c(p,Ω)

∫
Ω

|ε(u)|p dx (2)
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for functions u ∈ W̊ 1,p(Ω,Rd)? As shown in Gobert [Go1]-[Go2], Necǎs [Ne],
Mosolov and Mjasnikov [MM], Temam [Te] and later by Fuchs [Fu1] this is
true for all 1 < p < ∞ (we remark that the inequality fails in case p = 1,
see [Or] and [CFM]). The case of the Sobolev spaces W̊ 1,p(·)(Ω), spaces with
variable exponents, is considered in [DR]. This are the natural spaces for the
study of electro-rheological fluids, compare [R].
In order to characterize the specific behavior of Prandtl-Eyring fluids in a
bounded Lipschitz domain Ω ⊂ Rd, d = 2, 3, (for example lubricants) Eyring
[E] suggested the following constitutive law, which relates the stress tensor
σ : Ω→ Rd×d and the symmetric gradient ε(u) of the velocity field u : Ω→
Rd (note that we neglect the physical constants and use a potential W which
is C2-close to the original one):

σD = DW (ε(u)), W (ε) = |ε| log(1 + |ε|). (3)

Hence the natural function space for weak solutions is

V̊0(Ω) :=

{
w ∈ L1(Ω,Rd) :

∫
Ω

W (ε(u)) dx <∞, divw = 0, w|∂Ω = 0

}
.

Note that we assume no-slip boundary conditions: u|∂Ω = 0 and that the fluid
is incompressible, hence u has to be divergence-free. The space V̊0(Ω) was
already used in [FuS] inspired by ideas of Frehse and Seregin [FrS]. Fuchs
and Seregin [FuS] prove existence and (partial) regularity of solutions to
the Prandtl-Eyring fluid system under the assumption of a slow flow (thus
the convective term can be neglected leading to a variational approach not
applicable in general).
The existence of weak solutions to the equations of Prandtl-Eyring fluids
in the space V̊0(Ω) in 2D is proven in [BrDF]. An open question are their
regularity properties. A crucial tool in the regularity approach would be
Korn’s inequality in L logL, i.e.,∫

Ω

ϕ(|∇u|) dx ≤ c

∫
Ω

ϕ(|ε(u)|) dx, (4)

where ϕ(t) = t log(1 + t) and u ∈ W̊ 1,ϕ(Ω). We have the following intuition:
if Korn’s inequality in L logL fails then one main tool to proving regularity
of solutions to the Prandtl-Eyring model is missing. Hence the failure of (4)
for ϕ(t) = t log(1 + t) is a first step in showing irregularity of solutions. Two
indications give us the suggestion about this failure:

• L logL is related to L1, in which the failure of Korn’s inequality is
known since many years (compare [Or] for the first approach).
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• One way to prove Korn’s inequalities is the use of the representation
formula

∇u = T (ε(u)),

where T is a singular integral operator. T is continuous from Lp → Lp,
1 < p < ∞, and in suitable Orlicz spaces (compare [CMP], [BrF,
appendix]) but not from L1 → L1 and not from L logL→ L logL.

Of course, these facts are no proof of the failure but motivate us to show it.

A first step in the generalization of (2) is mentioned in [AM]: Acerbi and
Mingione prove (4) for the N-function

ϕ(t) = (1 + t2)
p−2
2 t2.

Although they only consider a special case they provide tools for a much
more general situation. Finally, the general case is proven in [DRS], [Fu1]
and [BrF] with the result: (4) is true if ϕ is a N-function and satisfies the
∆2- and ∇2-condition (in the sense of [Ad]). A N-function ϕ satisfies the
∆2-condition if and only if there is a constant K > 0 such that

ϕ(2t) ≤ Kϕ(t) for all t ≥ 0. (5)

The ∇2-condition is the ∆2-condition of the conjugate N-function ϕ∗ defined
by

ϕ∗(t) := sup
s≥0

(st− ϕ(s)).

Since we have for the conjugate N-function of ϕ(t) = t log(1 + t) the relation

ϕ∗(t) ≈ t(exp(t)− 1),

the ∇2-condition fails in this case. Moreover, the results mentioned above
lead to the question if the ∇2-condition and the ∆2-condition are sharp con-
ditions for Korn-type inequalities in Orlicz spaces. The following Theorem
gives the answer. In order to be a little bit more general we consider Φ-
functions in place of N-functions.
A convex, left-continuous function ϕ : [0,∞)→ [0,∞] with

ϕ(0) = 0, lim
t→0+

ϕ(t) = 0, lim
t→∞

ϕ(t) =∞

is called a Φ-function. The following property will be very useful in our proof:
The convexity of ϕ and ϕ(0) = 0 implies

ϕ(λu) ≤ λϕ(u) for all λ ∈ [0, 1] (6)

and all u ≥ 0. Now, let us state our main result.
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THEOREM 1.1. Let ϕ be a Φ-function. Then the following are equivalent:

(a) ϕ satisfies the ∆2- and the ∇2-condition.

(b) There exists a constant A1 > 0 such that

‖∇u‖ϕ ≤ A1‖ε(u)‖ϕ

for all u ∈ C∞0 (Rd).

(c) There exists a constant A2 > 0 such that∫
Rd

ϕ(|∇u|) dx ≤
∫
Rd

ϕ(A2 |ε(u)|) dx

for all u ∈ C∞0 (Rd).

(d) There exists a constant A3 > 0 such that

‖∇u− 〈∇u〉B‖Lϕ(B) ≤ A3‖ε(u)− 〈ε(u)〉B‖Lϕ(B)

for all u ∈ W 1,ϕ(B) and all (one) balls B ⊂ Rd.

(e) There exists a constant A4 > 0 such that∫
B

ϕ(|∇u− 〈∇u〉B|) dx ≤
∫
B

ϕ(A4 |ε(u)− 〈ε(u)〉B|) dx

for all u ∈ W 1,ϕ(B) and all (one) balls B ⊂ Rd.

If (a) is satisfied then the constants in the other parts only depend on the ∆2-
and the ∇2-constants of ϕ.

Many of the implications in Theorem 1.1 are obvious. The implications
(c)⇒(b) and (e)⇒(d) follow from the fact that modular estimates are always
stronger than norm estimates. The implications (e)⇒(c) and (d)⇒(b) follow
from the fact that 〈∇u〉B = 〈ε(u)〉B = 0 for every ball that contains the
support of u ∈ C∞0 (Rd). These considerations show that (e) is the strongest
one and (b) is the weakest one among (b)–(e).
Therefore, for the proof of Theorem 1.1 it suffices to prove that (a)⇒(e)
and (b)⇒(a). The implication (a)⇒(e) is non-trivial but has already been
shown in [DRS, Theorem 6.13]. Let us mention that the implication (a)⇒(c)
has also been shown in [Fu2].
Hence, it only remains to prove the implication (b)⇒(a). We will split this
implication into to steps. Firstly, we show in Section 2, Lemma 2.1, that (b)
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implies that ϕ satisfies the ∆2-condition. This step is based on the construc-
tion a sequence of functions concentrating at the origin. Secondly, we show in
Section 3, Lemma 3.1, that (b) and the ∆2-condition of ϕ proves that ϕ also
satisfies the ∇2-condition. This step is based on the technique of laminates
developed in [CFM] for counter examples to Korn’s inequality in L1. These
two steps conclude the proof of Theorem 1.1.

Remark 1.2. A simple scaling and translation argument shows that if (d)
and (e) holds for one ball then it stays true for all balls. From the results
in [DRS] if follows that we can even replace the ball B by an arbitrary bounded
John domain (see [DRS] for the definition of a John domain), which includes
in particular all bounded domains with Lipschitz boundary.

Remark 1.3. It follows in particular from Theorem 1.1 that Korn’s in-
equality fails on L1, L logL, Exp and L∞. Indeed, the corresponding Φ-
functions are ϕ1(t), ϕL logL(t) = t ln(1+ t), ϕExp(t) = exp(t)− t−1, ϕ∞(t) =
∞ · χ(1,∞)(t). Now ϕ1 and ϕL logL do not satisfy the ∇2-condition and ϕExp

and ϕ∞ do not satisfy the ∆2-condition.

Remark 1.4. We can conclude from Theorem 1.1 that the ∆2- and the ∇2-
condition are also necessary and sufficient for solving Poisson’s equation in
an Orlicz space generated by a Φ-function ϕ: For f ∈ Lϕ find a weak solution
w with zero boundary data satisfying

∆u = div f

in the sense of distributions such that ∇w ∈ Lϕ. This is possible if ϕ fulfils
the ∆2- and the ∇2 condition (see [JLW]). If ϕ does not, by Theorem 1.1,
we can find a function w with ε(w) ∈ Lϕ and ∇w /∈ Lϕ (and w = 0 at the
boundary). But since ε(w) ∈ L1, w is a weak solution (which is unique) of

∆u = div V (u), Vij(u) = 2εD(u)i,j −
(

1

2
− 1

d

)
(div u)δij, i, j = 1, ..., d,

where εD = ε− 1
d

tr εI. On account of |V (w)| ≤ c|ε(w)| we have V (w) ∈ Lϕ

and ∇w /∈ Lϕ.

2 The ∆2-condition

In this section we show that Korn’s inequality in the form of (b) of Theo-
rem 1.1 implies the ∆2-condition. In particular, the Korn’s inequality must
fail on L∞. This was firstly shown in [LM] in the case of a more general
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operator than u 7→ ε(u). However, let us present a simplified argument for
the failure of Korn’s inequality on L∞. Indeed, define v ∈ W 1,1

0 (B1(0)) by

v(x) := Qx ln |x|

for any anti-symmetric matrix Q ∈ Rd×d with Q 6= 0. Then

ε(u)(x) =
1

|x|2
x⊗sym (Qx),

∇u(x) =
1

|x|2
x⊗ (Qx) +Q ln |x|.

This shows ‖ε(u)‖∞ ≤ |Q| but ∇u 6∈ L∞.
This counterexample suggests that the∇2-condition is needed for the validity
of Korn’s inequality. The proof is based on a slightly modified but similar
function, which is additionally in C∞0 .

Lemma 2.1. Let ϕ be a Φ-function such that there exists a constant A > 0
such that

‖∇u‖ϕ ≤ A‖ε(u)‖ϕ

for all u ∈ C∞0 (Rd). Then ϕ satisfies the ∆2-condition, where the ∆2-constant
only depends on A.

Proof. We will first show that there exists a constant K > 0 such that for all
balls B and all t ≥ 0 the following implication holds

|B|ϕ(t) ≤ 1 ⇒ |B|ϕ(2t) ≤ K. (7)

We will show later by iteration that this implies the ∆2-condition of ϕ.
So let B be a ball and t ≥ 0 such that |B|ϕ(t) ≤ 1. Let rB denote the radius
of B. Choose ηk ∈ C∞0 (2−kB) with χ2−k−1B ≤ ηk ≤ χ2−kB and |∇ηk| ≤
2k+2r−1

B . Take Q ∈ Rn×n antisymmetric with |Q| = 1
4
t and fix m ∈ N with

m ≥ 8A. We consider the C∞0 (B) function

u(x) :=
m∑
k=1

ηk(x)Qx.

Then

ε(u)(x) =
m∑
k=1

∇ηk(x)⊗sym (Qx),

∇u(x) =
m∑
k=1

∇ηk(x)⊗ (Qx) +Q

m∑
k=1

ηk.
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The estimate

|ε(u)| ≤
m∑
k=1

χ2−kB\2−k−1B2k+2r−1
B |Q|2

−krB ≤ t

shows that ε(u) is bounded and∫
ϕ(|ε(u)|) dx ≤ |B|ϕ(t) ≤ 1.

This implies that ‖ε(u)‖ϕ ≤ 1, so by assumption ‖∇u‖ϕ ≤ A, which gives∫
ϕ(|∇u|/A) dx ≤ 1.

On the other hand we see that

|∇u(x)| = m|Q| for all x ∈ 2−m−1B

using the fact, that η1 = · · · = ηm = 1 on 2−m−1B. Hence,

1 ≥
∫
ϕ

(
|∇u|
A

)
dx ≥ |2−m−1B|ϕ

(
m

4A
t

)
≥ 2−(m+1)d|B|ϕ(2t).

This proves (7) with K := 2(m+1)d.
If ϕ(t) = 0 for some t > 0, then it follows by iteration of (7) (and the
convexity of ϕ) that ϕ(t) = 0 for all t ≥ 0, which contradicts limt→∞ ϕ(t) =
∞. Hence, we have ϕ(t) > 0 for all t > 0.
On the other hand limt→0 ϕ(t) = 0 implies that there exists a t0 > 0 such
that ϕ(t0) < ∞. Now the repeated use of (7) shows that ϕ(t) < ∞ for all
t > 0. Now the convexity of ϕ enforces that ϕ is continuous.
Let t > 0, then ϕ(t) > 0 implies that we can choose B in (7) such that
|B|ϕ(t) = 1 and therefore

ϕ(2t) ≤ K
1

|B|
= Kϕ(t).

This proves that ϕ satisfies the ∆2-condition.

3 The ∇2-condition

In this section we show that Korn’s inequality implies the ∇2-condition. Our
approach is based on the technique of laminates as in [CFM]. In general a
first order laminate is a probability measure ν on Rd×d given by

ν = λδA + (1− λ)δB
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where λ ∈ (0, 1) and rank(A − B) = 1. Here δF denotes the Dirac measure
supported on the matrix F . We say ν has average C if λA+ (1− λ)B = C.
We obtain a second order laminate if we replace δA (resp. δB) by a first order
laminate with average A (resp. B). Iteratively we can define laminates of
arbitrary order with a given average. For a detailed discussion we refer to
the work of Müller and his cooperators in [KMS], [M] and [MS].

Lemma 3.1. Let ν be a laminate with average C, then there is a sequence
of uniformly Lipschitz continuous functions ui : (0, r)2 → R2 with boundary
data Cx such that∫

(0,r)2
Φ(∇ui) dx −→ r−2

∫
R2×2

Φ(F ) dν(F ),

for every continuous function Φ : R2×2 → R.

Proof. The result for r = 1 is from [CFM, pg. 293, (5)]. The other case
follows by scaling.

Lemma 3.1. Let ϕ be a Φ-function such that there exists a constant A > 0
such that

‖∇u‖ϕ ≤ A‖ε(u)‖ϕ

for all u ∈ C∞0 (Rd). Then ϕ satisfies the ∇2-condition, where the ∇2-
constant only depends on A.

Proof. We already know from Lemma 2.1 that ϕ satisfies the ∆2-condition
and is therefore continuous, everywhere finite and positive on (0,∞). Now
the space W̊ 1,ϕ(Ω) can be defined in the usual way (see [Ad]) and if Korn’s
inequality holds for all u ∈ C∞0 (Rd) it also holds for all u ∈ W̊ 1,ϕ(Rd),
especially for all u ∈ W̊ 1,∞((0, r)d,Rd). For simplification we argue in case
d = 2 but everything extends to higher dimension (see [CFM], especially
Lemma 3). We define µa,b := δGa,b

. Now, we define a sequence µ(n) of
laminates of order 2n by

µ(0) := δt,t,

µ(n) := 1
3
δ2−nt,−2−nt + 2

3

(
1
4
δ−21−nt,21−nt + 3

4
µ(n−1)

)
= 1

3
δ2−nt,−2−nt + 1

6
δ−21−nt,21−nt + 1

2
µ(n−1)

for n ∈ N. Firstly we want to clarify why µ(n) is a laminate for n ≥ 1. Since
we have rank(G−t,t − Gt,t) = 1 the term in brackets is for n = 1 a laminate
with mean value G2−1t,t. Hence µ(1) is a laminate with mean value G2−1t,2−1t.
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It follows by mathematical induction that µ(n) is a laminate with mean value
G2−nt,2−nt for every n ∈ N. Moreover, we get the representation

µ(n) = 2−nδt,t +
n∑

k=1

(
1
3
2k−nδ2−kt,−2−kt + 1

6
2k−nδ−21−kt,21−kt

)
(8)

for n ∈ N.
Define

Φ1(F ) := ϕ(|F sym −G2−nt,2−nt|),
Φ2(F ) := ϕ(A−1|F −G2−nt,2−nt|).

It follows from Lemma 3.1 for µ(n) that there exists (for fixed n) a sequence
ui : (0, r)2 → R2 with boundary values G2−nt,2−ntx such that

lim
i→∞

∫
(0,r)2

Φj(∇ui) dx = r−2

∫
R2×2

Φj(F ) dν(F ), j = 1, 2. (9)

Let us define vi(x) := ui(x)−G2−nt,2−ntx, then vi ∈ W 1,∞
0 ((0, r)2) and by (9)

it follows that

lim
i→∞

∫
(0,r)2

ϕ(|ε(vi)|) dx = r−2

∫
R2×2

ϕ(|(F sym −G2−nt,2−nt)|) dν(F ), (10)

lim
i→∞

∫
(0,r)2

ϕ(A−1|∇vi|) dx = r−2

∫
R2×2

ϕ(A−1|F −G2−nt,2−nt|) dν(F ). (11)

We calculate∫
ϕ
(
|F sym −G2−nt,2−nt|

)
dµn(F )

≤ 1

2

∫
ϕ
(
2|F sym|) dµn(F ) +

1

2

∫
ϕ
(
2|G2−nt,2−nt|) dµn(F )

=
1

2
2−nϕ(2|Gt,t|) +

1

2
ϕ(2|G2−nt,2−nt|)

≤ 2−nϕ(2|Gt,t|),

where we used the convexity of ϕ in first and last step (see (6)) and in the
second step (8) and that the total mass of a laminate is one. So with (10)
follows

lim
i→∞

∫
(0,r)2

ϕ(|ε(vi)|) dx ≤ r−22−nϕ(2|Gt,t|). (12)
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For fixed t > 0 choose r such that

r−22−nϕ(2|Gt,t|) =
1

2
. (13)

So by neglecting the first elements of the sequence vi we can assume that∫
(0,r)2

ϕ(|ε(vi)|) dx ≤ 1

for all i ∈ N, which implies ‖ε(vi)‖ϕ ≤ 1. Hence by assumption ‖∇vi‖ϕ ≤ A
and therefore ∫

(0,r)2
ϕ(A−1|∇vi|) dx ≤ 1

for all i ∈ N. This and (11) proves

r−2

∫
R2×2

ϕ(A−1|F −G2−nt,2−nt|) dν(F ) ≤ 1.

With the help of (8) we estimate

r2 ≥
∫
ϕ(A−1|F −G2−nt,2−nt|) dµ(n)(F )

= 2−nϕ
(
A−1(1− 2−n)|Gt,t|

)
+

n∑
k=1

(
1
3
2k−nϕ

(
A−1(2−k − 2−n)|Gt,t|

))
+

n∑
k=1

(
1
6
2k−nϕ

(
A−1(21−k − 2−n)|Gt,t|

))
≥

n−1∑
k=1

1
3
2k−nϕ

(
A−1(2−k − 2−n)|Gt,t|

)
≥

n−1∑
k=1

1
3
2k−nϕ

(
A−12−k−1|Gt,t|

)
.

Using
∑n

k=1
1
3
2k−n ≤ 1 and the convexity of ϕ, we get

r2 ≥ ϕ

(
A−1

n−1∑
k=1

1
3
2k−n2−k−1|Gt,t|

)
≥ ϕ

(
A−1n2−n−3|Gt,t|

)
≥ nϕ

(
A−12−n−3|Gt,t|

)
,
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where we used in the second step that n ≥ 4 and (6) in the last step. So by
the choice of r in (13) we get

nϕ
(
A−12−n−3|Gt,t|

)
≤ 21−nϕ(2|Gt,t|).

for all t > 0. Substituting u = 2|Gt,t| we get

n2n−2ϕ
(
A−12−n−4u

)
≤ 1

2
ϕ(u)

for all u ≥ 0. Now, choosing that n ≥ 64A we get

ϕ
(
A−12−n−4u

)
A−12−n−4

≤ 1

2
ϕ(u).

Now, using the fact that the conjugate function of t 7→ αψ(βt) (for a Φ-
function ψ) is αψ(t/(αβ)), we obtain by conjugation

2n+4Aϕ∗(u) ≥ 1

2
ϕ∗(2u).

In particular, ϕ∗ satisfies the ∆2-condition, so ϕ satisfies the ∇2-condition.
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tions aus Dérivées Partielles, Les Presses de l’Université de Mon-
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