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Finland
guo.g.zhang@jyu.fi



Edited by
FR 6.1 – Mathematik
Universität des Saarlandes
Postfach 15 11 50
66041 Saarbrücken
Germany

Fax: + 49 681 302 4443
e-Mail: preprint@math.uni-sb.de
WWW: http://www.math.uni-sb.de/



AMS Classification: 49 N, 35 J 50, 35 Q 30, 76 D 05.

Keywords: entire solutions, Liouville property, the space L log L, Prandtl-Eyring fluids.

Abstract

If u : R
n → R

M locally minimizes the energy with density |∇u| ln(1 + |∇u|),
then we show that the boundedness of the function u already implies its constancy.
The same is true in case n = M = 2 for entire solutions of the equations modelling
the stationary flow of a so-called Prandtl-Eyring fluid. Moreover, in the variational
setting we will present various extensions of the above mentioned Liouville theorem
for entire local minimizers valid in any dimensions n and M .

1 Introduction

In this paper we discuss theorems of Liouville-type for entire local minimizers of func-
tionals defined on the space L log L and for stationary flows in 2D of the Prandtl-Eyring
fluid. To be precise, let us abbreviate

(1.1) h(t) := t ln(1 + t), t ≥ 0 .

We say that a field u : R
n → R

M , n ≥ 2, M ≥ 1, is an entire local minimizer of the
logarithmic energy

(1.2) J [u, Ω] :=

∫

Ω

h(|∇u|) dx, ∇u := (∂αui) 1≤α≤n,
1≤i≤M

,

it u belongs to the local Sobolev space W 1
1,loc(R

n; RM) (see, e.g. [Ad] for a definition) and
if u satisfies J [u, Ω] < ∞ as well as J [u, Ω] ≤ J [v, Ω] for any v ∈ W 1

1,loc(R
n; RM) such that

spt(u− v) ⋐ Ω, where Ω denotes an arbitrary bounded subdomain of R
n. Energies of the

form (1.2) with density given by (1.1) for fields u : R
n → R

n and with ∇u replaced by its
symmetric part

ε(u) :=
1

2

(
∂αui + ∂iu

α
)
1≤α,i≤n

occur for example in the setting of plasticity with logarithmic hardening as studied first
by Frehse and Seregin [FrSe]. Later Seregin and the first author showed in [FuSe1] that
local minimizers of (1.2) are of class C1,α for some α ∈ (0, 1), if the case n = 2 is
considered, whereas for n = 3, 4 partial C1,α-regularity was established. This partial
regularity result was shown to hold in any dimension n ≥ 3 as it is outlined in the paper
[EM] of Esposito and Mingione. The most essential contribution however is a theorem of
Mingione and Siepe [MS], which states that actually full interior C1,α-regularity is true in
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any dimension n ≥ 2. This smoothness result gives rise to the hope that for entire local
minimizers we have some “Liouville property”, and actually on the basis of the work [MS]
we will show:

THEOREM 1.1. Suppose that u : R
n → R

M is an entire local minimizer of the func-
tional J from (1.2) with density h defined in (1.1).

a) Suppose that u satisfies

(1.3) lim
|x|→∞

|x|−1|u(x)| = 0 .

Then u must be a constant vector. In particular, the only bounded entire local
minimizers are the constant functions.

b) Let us replace (1.3) by the weaker assumption that |x|−1|u(x)| stays bounded as
|x| → ∞. Then u is an affine function.

REMARK 1.1. Regularity results in the spirit of [MS] are nowadays available for a
variety of variational integrals with density depending on the modulus of the Jacobian
matrix of the vectorvalued function u. We refer to the papers of Marcellini et al [Ma1-3],
[MP] and to the works [ABF] and [Fu1], where the reader will find further references. In
the future we hope to give extensions of Theorem 1.1 for example to the class of densities
studied in [Fu1].

Let us now pass to the setting of Prandtl-Eyring fluids. Letting

(1.4) H(ε) := h(|ε|)

for symmetric (n× n)-matrices ε we consider a velocity field u : R
n → R

n and a pressure
function π : R

n → R such that

(1.5) div u = 0

and

(1.6) − div [DH(ε(u))] + uk∂ku + ∇π = 0

hold (in the weak sense) on the whole space R
n. (1.5) reflects the incompressibility

condition, and in the equation of motion (1.6) the expression uk∂ku (summation with
respect to k) is the so-called convective term. As explained in the book [FuSe2] (see also
[FuSe3]) the equations (1.5) and (1.6) with H defined according to (1.4) and (1.1) model
the stationary flow of a Prandtl-Eyring fluid. We have

THEOREM 1.2. Let n = 2 and consider an entire (weak) solution u : R
2 → R

2 of (1.5)
and (1.6) with H from (1.1) and (1.4) being of class C1. Then, if we assume that u is
bounded, the velocity field u must be constant.
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REMARK 1.2. The correct class for weak solutions to (1.5) and (1.6) is the space

{
v ∈ L1

loc(R
2; R2) : div v = 0, h (|ε(v)|) ∈ L1

loc(R
2)

}
,

where div v = 0 has to be understood in the sense of distributions and where it is required
that the distributional symmetric gradient is generated by a tensor having the stated local
integrability property. Equation (1.6) reads in its weak form

0 =

∫

Ω

DH (ε(u)) : ε(ϕ) dx −

∫

Ω

ukui∂kϕ
i dx

valid for all ϕ ∈ C∞
0 (Ω; R2), div ϕ = 0, and any bounded subdomain Ω ⊂ R

2. To our
knowledge it is an open problem (even in 2D!), if in the presence of the convective term
these weak solutions are actually regular. So our assumption that the weak solution studied
in Theorem 1.2 is of class C1 seems to be a severe extra hypothesis.

REMARK 1.3. We have no version of Theorem 1.2 being valid for dimensions n ≥ 3.

REMARK 1.4. For the Prandtl-Eyring fluid we have the stress-strain relation

DH(ε) = µ(|ε|)ε

with strongly decreasing viscosity function

µ(t) :=
h′(t)

t
, t ≥ 0 .

We conjecture that it is possible to replace our logarithmic density defined in (1.1) by
any density with decreasing viscosity µ (shear thinning fluids) and to prove a variant of
Theorem 1.2 along similar lines.

REMARK 1.5. Theorems of Liouville-type for stationary flows of shear thickening fluids
in 2D have been the subject of the recent paper [Fu2]. There the constancy of entire
solutions is established under some asymptotic conditions. Probably the methods being
presented here might enable us to get Theorem 1.2 even for shear thickening fluids.

Our paper is organized as follows: in Section 2 we will present the proof of Theorem 1.1.
Let us note that the fluid case requires completely different techniques being applicable
only in 2D, which means that the arguments necessary for the verification of Theorem 1.2
are the subject of a separate Section 3.

2 Proof of Theorem 1.1

The basic ideas for obtaining the statement of Theorem 1.1 can be summarized as
follows: suppose that u is an entire local J-minimizer with J defined according to
(1.1) and (1.2). Suppose further that |x|−1|u(x)| stays bounded as |x| → ∞. Based
on the gradient estimates of Mingione and Siepe [MS] we show in a first step that
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|∇u| is in the space L∞(Rn). More precisely, we will combine the results of [MS] with
a scaling argument and a Caccioppoli inequality to obtain the global boundedness of
∇u. In a second step we derive a differential inequality for the quantity |∇u|2, from
which ∇u ≡ 0 under the assumption (1.3) will follow by applying inequalities valid
for subsolutions in combination with the above mentioned Caccioppoli inequality. We
refer to Remark 1.1 which suggests to extend these arguments to a wider class of densities.

Let us now pass to the details. We start with a crucial result due to Mingione and Siepe
[MS], Theorem 3.1.

Lemma 2.1. Suppose that v ∈ W 1
1,loc(B2(0); RM) locally minimizes

∫
B2(0)

h(|∇v|) dx on

the ball B2(0) := {x ∈ R
n : |x| < 2} with h from (1.1). Then v is of class C1,α on B2(0)

and we have the gradient bound

(2.1) sup
B1/9(0)

|∇v| ≤ c1

[
1 +

∫

B1(0)

h (|∇v|) dx

]β

with c1 = c1(n, M), β = β(n) > 0 independent of v. �

From now on let us fix an entire local J-minimizer u ∈ W 1
1,loc(R

n; RM) as explained in
Section 1. Let us agree to write Bt for the (open) ball of radius t centered at the origin.
For R > 0 we let

(2.2) uR(z) :=
1

R
u(Rz), z ∈ R

n ,

and observe that for any t > 0 we have by the minimizing property of u

∫

Bt

h (|∇uR|) dx ≤

∫

Bt

h (|∇w|) dx

for all w such that w = uR on ∂Bt. For this reason we can apply (2.1) to the functions
uR from (2.2) and obtain after retransformation

(2.3) sup
BR/9

|∇u| ≤ c1

[
1 + R−n

∫

BR

h (|∇u|) dx

]β

.

Next we claim

Lemma 2.2. For a constant c2 being independent of the radius r and the field u it holds

(2.4)

∫

Br

h (|∇u|) dx ≤ c2 r−2

∫

B2r−Br

|u|2 dx .
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Proof of Lemma 2.2: Let η ∈ C1
0(B2r), 0 ≤ η ≤ 1, η = 1 on Br and |∇η| ≤ c/r. In

what follows we agree to denote all constants being independent of u and the particular
ball just by the same symbol c. Of course the numerical value of c may change from line
to line. Letting H(ξ) = h(|ξ|) for matrices ξ ∈ R

nM , we deduce from the minimality of u

0 =

∫

B2r

DH(∇u) : ∇(η2u) dx

=

∫

B2r

η2DH(∇u) : ∇u dx + 2

∫

B2r

ηDH(∇u) : (∇η ⊗ u) dx .

Here “ : ” stands for the scalar product of matrices, and “ ⊗ ” is the tensor product of
vectors. Noting that

DH(ξ) =
h′(|ξ|)

|ξ|
ξ

and using elementary estimates for the density h, we obtain

(2.5)

∫

B2r

η2h (|∇u|) dx ≤ c

∫

B2r

η|∇η|h′(|∇u|)|u| dx .

Let us write
∫

B2r

η|∇η|h′(|∇u|)|u| dx

=

∫

B2r

η (h′(|∇u|)|∇u|)
1/2

|∇η||u|
(
h′(|∇u|)

/
|∇u|

)1/2

dx

≤ δ

∫

B2r

η2h′(|∇u|)|∇u| dx + c(δ)

∫

B2r

|∇η|2
h′(|∇u|)

|∇u|
|u|2 dx ,

where Young’s inequality has been applied. For δ small enough we can absorb the δ-term
in the left-hand side of (2.5). Observing that h′(t)

t
≤ 2 our claim (2.4) directly follows

from the support properties of η. �

Lemma 2.3. Suppose in addition that our entire local J-minimizer u has the property
that |x|−1|u(x)| stays bounded as |x| → ∞. Then it holds

(2.6) sup
Rn

|∇u| < ∞ .

Proof of Lemma 2.3: From (2.3) and (2.4) it follows for any R > 0

sup
BR/9

|∇u| ≤ c1

[
1 + R−n−2c2

∫

BR−BR/2

|u|2 dx

]β

≤ c1

[
1 + c3R

−2 sup
BR−BR/2

|u|2

]β

,
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and since the constants ci, i = 1, 2, 3, do not depend on R, our claim (2.6) follows. �

Let us consider an entire solution u as in Lemma 2.3. Then the scaled functions uR from
(2.2) are also entire local minimizers, and from the discussion after (3.19) in [MS] we
deduce

(2.7) |∇uR(x) −∇uR(y)| ≤ c4(m(R))|x − y|α, x, y ∈ B1 ,

where α is a positive exponent being independent of uR and where m(R) := supB2
|∇uR|.

But according to (2.6) the quantities m(R) stay bounded independent of R, hence (2.7)
implies

(2.8) |∇u(Rx) −∇u(Ry)| ≤ c4|x − y|α, x, y ∈ B1 .

Suppose now that x̃, ỹ ∈ R
n are given. For all R ≫ 1 the points x := x̃

/
R, y := ỹ

/
R

belong to B1, hence by (2.8)

|∇u(x̃) −∇u(ỹ)| ≤ c4R
−α|x̃ − ỹ| −→ 0, R → ∞ ,

so that ∇u is a constant matrix. This proves Theorem 1.1 b). Due to its importance
let us add a further comment concerning the Hölder estimate (2.7) of the gradient. For
simplicity consider an entire local minimizer v such that

L := sup
Rn

|∇v| < ∞ .

Following the construction in [MS], proof of Theorem 2.1, we replace our density h by a

smooth function h̃ of quadratic growth such that h = h̃ on [0, 2L]. Then v is an (entire)
local minimizer of the corresponding energy and we obtain (2.7) for v with m(R) replaced
by L from inequality (1.15) of Tolksdorf’s paper [To] with the choice p = 2. In fact, the
paper [To] contains a much stronger local estimate for the oscillation of the gradient of a
local solution.
Applying this result to the entire local minimizers uR, for which “L” is uniformly
bounded, we arrive at (2.8).

In order to continue we just observe that a) of the theorem directly follows from b): in
fact, it is obvious that the only affine functions satisfying (1.3) are the constants.

For future applications we like to give a separate proof of Theorem 1.1 a), which does
not make use of estimates for the oscillation of the gradients of entire local minimizers,
but only exploits the information (2.6) in combination with assumption (1.3). So let u as
described in Lemma 2.3 and observe that from (2.6) it easily follows

(2.9) u ∈ W 2
2,loc(R

n; RM), |∇u|2 ∈ W 1
2,loc(R

n) .

6



In fact, the second statement of (2.9) is a direct consequence of the first one in combination
with (2.6), and we will add some comments on the first part of (2.9) at the end of this
section. Using (2.9) and the minimality of u it is easy to show that

(2.10) 0 =

∫

Rn

D2H(∇u)(∂α∇u,∇ϕ) dx

holds for α = 1, . . . , n and ϕ ∈ C1
0 (Rn; RM). We select ϕ = η2∂αu, η ∈ C1

0(R
n), and

obtain from (2.10)

(2.11)

∫

Rn

D2H(∇u)
(
∂α∇u,∇η2 ⊗ ∂αu

)
dx ≤ 0 ,

where the convention of summation with respect to indices repeated twice is used again.
We have the formula

D2H(X)(Y, Z) =
h′(|X|)

|X|

[
Y : Z −

(X : Y )(X : Z)

|X|2

]
+ h′′(|X|)

(X : Y )(X : Z)

|X|2

together with the ellipticity estimate

(2.12)
|Y |2

1 + |X|
≤ D2H(X)(Y, Y ) ≤ 2

ln(1 + |X|)

|X|
|Y |2

valid for all matrices X, Y , Z ∈ R
nM . If we introduce

aαβ :=
1

2
δαβ

h′(|∇u|)

|∇u|
+

1

2

[
h′′(|∇u|) −

h′(|∇u|)

|∇u|

∂αu · ∂βu

|∇u|2

]
,

then by (2.12) and (2.6) these functions are bounded generating a uniformly elliptic ma-
trix, moreover, inequality (2.11) implies that w := |∇u|2 ∈ W 1

2,loc(R
n) (recall (2.9)) satis-

fies

(2.13)

∫

Rn

aαβ∂αw∂βη
2 dx ≤ 0 .

Let us select some exponent p > 1. From Theorem 8.17 in [GT] applied to (2.13) we
deduce the existence of a constant c5 not depending on R and u such that

(2.14) sup
BR

w ≤ c5

[
R−n

∫

B2R

wp dx

]1/p

,

and inequality (2.14) is valid for any radius R > 0 (even with the choice p = 1 as suggested
in Theorem 1.1, Chapter 4, of [HL]). We have

|∇u|2p ≤ c(p)h(|∇u|)
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on the set [|∇u| ≤ 1], whereas on [|∇u| ≥ 1] it holds

|∇u|2p ≤
1

ln 2

(
sup
Rn

|∇u|

)2p−1

h(|∇u|) .

Therefore (2.14) implies

(2.15) sup
BR

|∇u|2 ≤ c

[
R−n

∫

B2R

h (|∇u|) dx

]1/p

for any R > 0 with c independent of R. On the right-hand side of (2.15) we apply (2.4)
and get

sup
BR

|∇u|2 ≤ c

[
R−n−2

∫

B4R−B2R

|u|2 dx

]1/p

≤ c

{
sup
|x|≥R

|x|−2|u(x)|2

}1/p

.

Now, if we impose condition (1.3) on the growth of u, we immediately end up with ∇u = 0,
which completes the separate proof of Theorem 1.1 a). �

Finally we briefly comment on (2.9) keeping in mind that we have (2.6). Using the
boundedness of ∇u it is easy to see by testing the system of Euler equations valid for
u with ∆−h(η

2∆hu), where η is a cut-off function and where ∆±hu denote difference
quotients of u (in a fixed direction), that ∆h(∇u) is uniformly bounded in the space
L2

loc(R
n; RnM), which implies (2.9).

Alternatively we can argue via regularisation as done for example in [FuSe1]. Completely
using the notation from [FuSe1] we quote inequality (3.13) from this paper, i.e.

(2.16)

∫

ω1

1

1 + |∇um|
|∇2um|

2 dx ≤ c‖∇η‖2
L∞(ω2)Jm(um, ω2) ,

where Jm(um, ω2) → J(u, ω2) as m → ∞ according to (3.11) of [FuSe1]. We also observe
(see [FuSe1], end of the proof of Lemma 3.1) that ∇um → ∇u in Lr for any r < n

n−2
.

This yields (p > 1)
∫

ω1

|∇2um|
p dx =

∫

ω1

(1 + |∇um|)
−p/2 |∇2um|

p (1 + |∇um|)
p/2 dx

≤ c

[∫

ω1

1

1 + |∇um|
|∇2um|

2 dx +

∫

ω1

(1 + |∇um|)
p

2−p dx

]

≤ c

[∫

ω1

1

1 + |∇um|
|∇2um|

2 dx + 1

]
,

provided p is sufficiently close to 1. Now (2.16) implies

sup
m

∫

ω1

|∇2um|
p dx < ∞ ,

so that at least u ∈ W 2
p (ω1; R

M) together with ∇2um ⇁ ∇2u weakly in Lp. On the left-
hand-side of (2.16) we can apply De Giorgi’s theorem on lower-semicontinuity, hence we
obtain (2.16) “without index m”. But then (2.6) immediately shows the validity of (2.9).

�
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3 Proof of Theorem 1.2

We start with a collection of auxiliary results. The first lemma is a slight extension of a
contribution due to Giaquinta and Modica (compare Lemma 0.5 in [GM]). In this lemma
and also during this section we abbreviate

QR(z) :=
{
x ∈ R

2 : |xi − zi| < R, i = 1, 2
}

, z ∈ R
2, R > 0 .

Lemma 3.1. Let f , f1, . . . , fℓ denote non-negative functions from the space L1
loc(R

2).
Suppose further that we are given exponents α1, . . . , αℓ > 0. Then we can find a number
δ0 > 0 depending on α1, . . . , αℓ as follows: if for δ ∈ (0, δ0) it is possible to calculate a
constant c(δ) > 0 such that the inequality

∫

QR(z)

f dx ≤ δ

∫

Q2R(z)

f dx + c(δ)
ℓ∑

j=1

R−αj

∫

Q2R(z)

fj dx

holds for any choice of QR(z) ⊂ R
2, then there is a constant c with the property

∫

QR(z)

f dx ≤ c

ℓ∑

j=1

R−αj

∫

Q2R(z)

fj dx

for all squares QR(z).

REMARK 3.1. Of course Lemma 3.1 extends to R
n, n ≥ 3, replacing squares by cubes.

Proof of Lemma 3.1: see Appendix. �

Next we recall a standard result concerning the “divergence equation”, see e.g. [Ga] or
[La].

Lemma 3.2. Consider a function f ∈ L2(QR(z)) such that
∫

QR(z)
f dx = 0. Then there

exists a field v ∈
◦

W1
2(QR(z); R2) and a constant C independent of QR(z) such that we have

div v = f on QR(z) together with the estimate

∫

QR(z)

|∇v|2 dx ≤ C

∫

QR(z)

f 2 dx .

We further will make use of the classical L2-variant of Korn’s inequality.

Lemma 3.3. There is a constant C independent of QR(z) such that for all

v ∈
◦

W1
2(QR(z); R2) it holds

∫

QR(z)

|∇v|2 dx ≤ C

∫

QR(z)

|ε(v)|2 dx .
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REMARK 3.2. Clearly Lemma 3.2 and 3.3 hold in R
n, n ≥ 3. Moreover we have the

same statements, if we replace QR(z) by Q2R(z) − QR(z).

From now on we assume that the velocity field u : R
2 → R

2 satisfies the hypothesis
of Theorem 1.2. Then, using the information u ∈ C1(R2; R2) we may argue as done
at the end of Section 2 - now applying an inequality like the one stated after (3.20)
in [FuSe3] - to deduce that u is in W 2

2,loc(R
2; R2). Note that due to the C1- regularity

of u the convective term causes no difficulties. As a matter of fact we may also apply
difference quotients. Recalling the definitions (1.1) and (1.4) we first claim the existence
of a constant c = c(‖u‖L∞(R2)) such that for all QR(x0)

(3.1)

∫

QR(x0)

H (ε(u)) dx ≤ c(R + 1) .

For proving (3.1) we let η ∈ C1
0 (Q2R(x0)) such that η = 1 on QR(x0), 0 ≤ η ≤ 1 and

|∇η| ≤ c/R. The weak form of equation (1.6) states that

(3.2) 0 =

∫

Q2R(x0)

DH (ε(u)) : ε(ϕ) dx +

∫

Q2R(x0)

uk∂ku
iϕi dx

for all ϕ such that div ϕ = 0 on Q2R(x0) and ϕ = 0 on ∂Q2R(x0). We choose ϕ := η2u−w
with w defined according to Lemma 3.2 for the choice f = div(η2u) and with QR(z)
replaced by Q2R(x0). From (3.2) we obtain

∫

Q2R(x0)

DH (ε(u)) : ε(u)η2 dx

+

∫

Q2R(x0)

2
∂H

∂εiα
(ε(u)) ∂αηuiη dx

−

∫

Q2R(x0)

DH (ε(u)) : ε(w) dx +

∫

Q2R(x0)

uk∂ku
iuiη2 dx

−

∫

Q2R(x0)

uk∂ku
iwi dx = 0 .

We have ∫

Q2R(x0)

DH (ε(u)) : ε(u)η2 dx ≥

∫

Q2R(x0)

η2H (ε(u)) dx ,

∣∣∣∣2
∫

Q2R(x0)

∂H

∂εiα
(ε(u)) ∂αηuiη dx

∣∣∣∣

≤ c

∫

Q2R(x0)

h′ (|ε(u)|) |∇η||u|η dx

≤ δ

∫

Q2R(x0)

h′ (|ε(u)|) |ε(u)|η2 dx + c(δ)

∫

Q2R(x0)

h′(|ε(u)|)

|ε(u)|
|u|2|∇η|2 dx ,

10



and if δ is chosen small enough and if we take into account the inequality h′(t)
t

≤ 2 it
follows

∫

Q2R(x0)

η2H (ε(u)) dx ≤ c

[∫

Q2R(x0)

|u|2|∇η|2 dx(3.3)

+

∣∣∣∣
∫

Q2R(x0)

DH (ε(u)) : ε(w) dx

∣∣∣∣

+

∣∣∣∣
∫

Q2R(x0)

uk∂ku
iuiη2 dx

∣∣∣∣ +

∣∣∣∣
∫

Q2R(x0)

uk∂ku
iwi dx

∣∣∣∣
]

=: c [T1 + T2 + T3 + T4] .

The quantities Ti are estimated as follows: it clearly holds

(3.4) T1 ≤ cR−2

∫

Q2R(x0)

|u|2 dx .

We have by Young’s inequality for any δ > 0

T2 ≤ δ

∫

Q2R(x0)

h′ (|ε(u)|)2 dx + c(δ)

∫

Q2R(x0)

|∇w|2 dx

≤ δ

∫

Q2R(x0)

h′ (|ε(u)|)2 dx + c(δ)

∫

Q2R(x0)

| div(η2u)|2 dx

≤ δ

∫

Q2R(x0)

h′ (|ε(u)|)2 dx + c(δ)R−2

∫

Q2R(x0)

|u|2 dx ,

where the estimate from Lemma 3.2 has been applied. Now it is easy to see the validity
of

h′(t) ≤ 2 ln(1 + t), t ≥ 0 ,

and since ln(1 + t)2 ≤ t ln(1 + t) is true for all t ≥ 0, we find h′(t)2 ≤ 4h(t), hence
(replacing δ by δ/4)

(3.5) T2 ≤ δ

∫

Q2R(x0)

H (ε(u)) dx + c(δ)R−2

∫

Q2R(x0)

|u|2 dx .

Next we observe

T3 =
1

2

∣∣∣∣
∫

Q2R(x0)

uk∂k|u|
2η2 dx

∣∣∣∣(3.6)

=
1

2

∣∣∣∣
∫

Q2R(x0)

uk|u|2∂kη
2 dx

∣∣∣∣ ≤ cR−1

∫

Q2R(x0)

|u|3 dx ,

and from ∫

Q2R(x0)

uk∂ku
iwi dx = −

∫

Q2R(x0)

ukui∂kw
i dx

11



it follows using Lemma 3.2 and Hölder’s inequality

T4 ≤

(∫

Q2R(x0)

|u|4 dx

)1/2 (∫

Q2R(x0)

|∇w|2 dx

)1/2

(3.7)

≤ c

(∫

Q2R(x0)

|u|4 dx

)1/2 (
R−2

∫

Q2R(x0)

|u|2 dx

)1/2

= cR−1

[∫

Q2R(x0)

|u|4 dx

∫

Q2R(x0)

|u|2 dx

]1/2

≤ cR−1

[∫

Q2R(x0)

|u|4 dx +

∫

Q2R(x0)

|u|2 dx

]
.

Inserting (3.4) - (3.7) into (3.3) we get

∫

QR(x0)

H (ε(u)) dx ≤ δ

∫

Q2R(x0)

H (ε(u)) dx

+c(δ)

[
R−1

∫

Q2R(x0)

(
|u|2 + |u|3 + |u|4

)
dx + R−2

∫

Q2R(x0)

|u|2 dx

]

for any δ > 0 and all QR(x0). Lemma 3.1 then yields

∫

QR(x0)

H (ε(u)) dx ≤ c

[
R−1

∫

Q2R(x0)

(
|u|2 + |u|3 + |u|4

)
dx + R−2

∫

Q2R(x0)

|u|2 dx

]
,

and since u is bounded we have established (3.1).

Next we like to prove the validity of

(3.8)

∫

R2

D2H (ε(u)) (∂kε(u), ∂kε(u)) dx < ∞ .

Note that from (3.8) we immediately get

(3.9)

∫

R2

1

1 + |ε(u)|
|∇ε(u)|2 dx < ∞ .

For the discussion of (3.8) we return to equation (3.2). Replacing ϕ by ∂αϕ for ϕ ∈
C∞

0 (Q 3

2
R(x0); R

2) with div ϕ = 0 we obtain by partial integration

0 =

∫

Q 3
2

R
(x0)

D2H (ε(u)) (∂αε(u), ε(ϕ)) dx(3.10)

−

∫

Q 3
2

R
(x0)

uk∂ku
i∂αϕi dx, α = 1, 2 .
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Let η ∈ C∞
0 (Q 3

2
R(x0)) such that η = 1 on QR(x0), 0 ≤ η ≤ 1 and |∇η| ≤ c/R. Let

fα := div(∂αuη2) = ∂αu · ∇η2 and select wα according to Lemma 3.2 from the space
◦

W1
2

(
Q 3

2
R(x0); R

2
)

such that

(3.11)

div wα = fα on Q 3

2
R(x0) ,

∫

Q 3
2

R
(x0)

|∇wα|
2 dx ≤ c

∫

Q 3
2

R
(x0)

|∂αu · ∇η|2 dx .

Finally we choose ϕ := η2∂αu−wα in (3.10) and agree from now on to take the sum also
with respect to α. Equation (3.10) then yields

∫

Q 3
2

R
(x0)

D2H (ε(u)) (∂αε(u), ∂αε(u)) η2 dx(3.12)

= −

∫

Q 3
2

R
(x0)

D2H (ε(u))
(
∂αε(u),∇η2 ⊙ ∂αu

)
dx

+

∫

Q 3
2

R
(x0)

D2H (ε(u)) (∂αε(u), ε(wα)) dx

+

∫

Q 3
2

R
(x0)

uk∂ku
i∂α

(
η2∂αui

)
dx −

∫

Q 3
2

R
(x0)

uk∂ku
i∂αwi

α dx

=: −S1 + S2 + S3 − S4 ,

where “⊙” is the symmetric product of vectors. Using the Cauchy–Schwarz inequality for
the bilinear form D2H(ε(u)) in combination with Young’s inequality we obtain for any
δ > 0

|S2| ≤ δ

∫

Q 3
2

R
(x0)

D2H (ε(u)) (∂αε(u), ∂αε(u)) dx

+
1

δ

∫

Q 3
2

R
(x0)

D2H (ε(u)) (ε(wα), ε(wα)) dx

≤ δ

∫

Q 3
2

R
(x0)

D2H (ε(u)) (∂αε(u), ∂αε(u)) dx

+
2

δ

∫

Q 3
2

R
(x0)

∇wα : ∇wα dx

(3.11)

≤ δ

∫

Q 3
2

R
(x0)

D2H (ε(u)) (∂αε(u), ∂αε(u)) dx + c(δ)

∫

Q 3
2

R
(x0)

|∇u|2|∇η|2 dx ,

hence

(3.13) |S2| ≤ δ

∫

Q 3
2

R
(x0)

ω dx + c(δ)

∫

Q 3
2

R
(x0)

|∇u|2|∇η|2 dx .
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Here we have abbreviated

(3.14) ω := D2H (ε(u)) (∂αε(u), ∂αε(u)) .

By applying exactly the same arguments to S1 we see

(3.15) |S1| ≤ δ

∫

Q 3
2

R
(x0)

ω dx + c(δ)

∫

Q 3
2

R
(x0)

|∇η|2|∇u|2 dx ,

and (3.15) is valid for any choice of δ > 0.

Next we look at S3 : it holds

S3 =

∫

Q 3
2

R
(x0)

uk∂ku
i∂α

(
η2∂αui

)
dx = −

∫

Q 3
2

R
(x0)

∂α(uk∂ku
i)η2∂αui dx

= −

∫

Q 3
2

R
(x0)

∂αuk∂ku
i∂αuiη2 dx −

∫

Q 3
2

R
(x0)

uk∂α∂ku
i∂αuiη2 dx ,

and since we are in the 2D-case, the first integral on the right-hand side vanishes. This
shows

|S3| =
1

2

∣∣∣∣∣∣

∫

Q 3
2

R
(x0)

uk∂k|∇u|2η2 dx

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣

∫

Q 3
2

R
(x0)

u · ∇η2|∇u|2 dx

∣∣∣∣∣∣
,

and we obtain

(3.16) |S3| ≤ cR−1

∫

Q 3
2

R
(x0)

|∇u|2 dx

for a constant c depending on ‖u‖L∞(R2). Finally we discuss S4 again using the bounded-
ness of the velocity field:

|S4| ≤ c

∫

Q 3
2

R
(x0)

|∇u||∂αwα| dx

(3.11)

≤ c




∫

Q 3
2

R
(x0)

|∇u|2 dx




1/2 


∫

Q 3
2

R
(x0)

|∇η|2|∇u|2 dx




1/2

,

thus

(3.17) |S4| ≤ cR−1

∫

Q 3
2

R
(x0)

|∇u|2 dx .
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Putting together our estimates (3.13) - (3.17) and returning to (3.12) we have shown for
any δ > 0 the validity of the inequality

∫

Q 3
2

R
(x0)

η2ω dx ≤ δ

∫

Q 3
2

R
(x0)

ω dx(3.18)

+c(δ)


R−2

∫

Q 3
2

R
(x0)

|∇u|2 dx + R−1

∫

Q 3
2

R
(x0)

|∇u|2 dx




with c(δ) also depending on ‖u‖L∞(R2). In order to control Dirichlet’s integral on the right-
hand side of (3.18) in an appropriate way, let us select ϕ ∈ C∞

0 (Q2R(x0)), 0 ≤ ϕ ≤ 1,
ϕ = 1 on Q 3

2
R(x0), |∇ϕ| ≤ c/R. We have by Lemma 3.3

∫

Q 3
2

R
(x0)

|∇u|2 dx ≤

∫

Q2R(x0)

ϕ2|∇u|2 dx

≤ c

[∫

Q2R(x0)

|∇(ϕu)|2 dx +

∫

Q2R(x0)

|∇ϕ|2|u|2 dx

]

≤ c

[∫

Q2R(x0)

|ε(ϕu)|2 dx +

∫

Q2R(x0)

|∇ϕ|2|u|2 dx

]

≤ c

[∫

Q2R(x0)

ϕ2|ε(u)|2 dx + R−2

∫

Q2R(x0)

|u|2 dx

]
,

and if we recall the support property of η, inequality (3.18) in combination with the above
estimates implies

∫

QR(x0)

ω dx ≤ δ

∫

Q2R(x0)

ω dx(3.19)

+c(δ)

[
R−4

∫

Q2R(x0)

|u|2 dx + R−3

∫

Q2R(x0)

|u|2 dx

+R−2

∫

Q2R(x0)

ϕ2|ε(u)|2 dx + R−1

∫

Q2R(x0)

ϕ2|ε(u)|2 dx

]
.
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We have by Hölder’s and Young’s inequality
∫

Q2R(x0)

ϕ2|ε(u)|2 dx =

∫

Q2R(x0)

εij(u)εij(u)ϕ2 dx

= −

∫

Q2R(x0)

ui∂j

(
εij(u)ϕ2

)
dx

= −

∫

Q2R(x0)

ui∂jεij(u)ϕ2 dx −

∫

Q2R(x0)

uiεij(u)∂jϕ
2 dx

≤ c

[∫

Q2R(x0)

|∇ε(u)| dx + R−1

∫

Q2R(x0)

|ε(u)| dx

]

= c

[∫

Q2R(x0)

(1 + |ε(u)|)−1/2 |∇ε(u)| (1 + |ε(u)|)1/2 dx

+R−1

∫

Q2R(x0)

|ε(u)| dx

]

≤

[(∫

Q2R(x0)

|∇ε(u)|2

1 + |ε(u)|
dx

)1/2 (∫

Q2R(x0)

(1 + |ε(u)|) dx

)1/2

+R−1

∫

Q2R(x0)

|ε(u)| dx

]

≤ τ

∫

Q2R(x0)

ω dx + cτ−1

∫

Q2R(x0)

(1 + |ε(u)|) dx

+cR−1

∫

Q2R(x0)

|ε(u)| dx ,

where τ is any positive number. Choosing

τ = δc(δ)−1R2, c(δ) from (3.19) ,

we get with a new constant c̃(δ) recalling also (3.14)

c(δ)R−2

∫

Q2R(x0)

ϕ2 |ε(u)|2 dx ≤ δ

∫

Q2R(x0)

ω dx(3.20)

+c̃(δ)

[
R−4

∫

Q2R(x0)

(1 + |ε(u)|) dx + R−3

∫

Q2R(x0)

|ε(u)| dx

]
,

whereas the choice
τ := δc(δ)−1R

leads to

c(δ)R−1

∫

Q2R(x0)

ϕ2 |ε(u)|2 dx ≤ δ

∫

Q2R(x0)

ω dx(3.21)

+c̃(δ)

[
R−2

∫

Q2R(x0)

(1 + |ε(u)|) dx + R−2

∫

Q2R(x0)

|ε(u)| dx

]
.
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With (3.20) and (3.21) we return to (3.19) writing again c(δ) for constants depending on
δ (and ‖u‖L∞(R2) ) and replacing the parameter δ by δ/3. We obtain:

∫

QR(x0)

ω dx ≤ δ

∫

Q2R(x0)

ω dx + c(δ)

[
R−4

∫

Q2R(x0)

|u|2 dx(3.22)

+R−3

∫

Q2R(x0)

|u|2 dx + R−4

∫

Q2R(x0)

(1 + |ε(u)|) dx

+R−3

∫

Q2R(x0)

(1 + |ε(u)|) dx + R−2

∫

Q2R(x0)

(1 + |ε(u)|) dx

]
.

To estimate (3.22) we can apply Lemma 3.1 and get for all squares QR(x0) with c =
c(‖u‖L∞(R2))

∫

QR(x0)

ω dx ≤ c

[
R−4

∫

Q2R(x0)

|u|2 dx(3.23)

+R−3

∫

Q2R(x0)

|u|2 dx + R−4

∫

Q2R(x0)

(1 + |ε(u)|) dx

+R−3

∫

Q2R(x0)

(1 + |ε(u)|) dx + R−2

∫

Q2R(x0)

(1 + |ε(u)|) dx

]
.

Now, if the case R ≥ 1 is considered, inequality (3.23) implies the bound

(3.24)

∫

QR(x0)

ω dx ≤ c

[
1 + R−2

∫

Q2R(x0)

|ε(u)| dx

]
.

Clearly we have (Q± := Q2R(x0) ∩
[
|ε(u)|>

≤
1
]
)

∫

Q2R(x0)

|ε(u)| dx =

∫

Q−

|ε(u)| dx +

∫

Q+

|ε(u)| dx

≤

(∫

Q−

1 dx

)1/2 (∫

Q−

|ε(u)|2 dx

)1/2

+
1

ln 2

∫

Q+

H (ε(u)) dx

≤ cR

(∫

Q2R(x0)

H (ε(u)) dx

)1/2

+
1

ln 2

∫

Q2R(x0)

H (ε(u)) dx

and since we still assume that R ≥ 1, we get from (3.1) the bound

(3.25)

∫

Q2R(x0)

|ε(u)| dx ≤ cR3/2 .

Now, if we insert (3.25) into (3.24), our claims (3.8) and (3.9) are clearly established.

In a final step we show

(3.26)

∫

R2

ω dx = 0 .
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Obviously (recall (3.14)) equation (3.26) gives ∇ε(u) = 0, hence ∇2u = 0 so that u must
be affine. But since we assume u ∈ L∞(R2; R2), the claim of Theorem 1.2 clearly follows.
It remains to prove (3.26): let

ω∞ :=

∫

R2

ω dx .

Going through the calculations leading to (3.18) with the choice x0 = 0, a closer look at
the quantities Si, i = 1, . . . , 4, implies the inequality

∫

QR

ω dx ≤ δ

∫

Q 3
2

R

ω dx + c(δ)



R−2

∫

T 3
2

R

|∇u|2 dx(3.27)

+R−1

∫

T 3
2

R

|∇u|2 dx + R−1




∫

Q 3
2

R

|∇u|2 dx




1/2 


∫

T 3
2

R

|∇u|2 dx




1/2


 ,

where we have abbreviated T 3

2
R := Q 3

2
R −QR and where on the right-hand side of (3.27)

the integration over T 3

2
R has to be performed in appropriate places due to the support

properties of ∇η. In the calculations after (3.18) we estimated
∫

Q 3
2

R

|∇u|2 dx, but of course

we can bound
∫

T 3
2

R

|∇u|2 dx in the same way with the help of Lemma 3.3 and Remark 3.2

by choosing ϕ ≡ 1 on T 3

2
R, 0 ≤ ϕ ≤ 1, |∇ϕ| ≤ c/R and spt ϕ ⊂ Q2R −QR/2 =: T2R. This

yields

(3.28)

∫

T 3
2

R

|∇u|2 dx ≤ c

[∫

T2R

ϕ2|ε(u)|2 dx + R−2

∫

T2R

|u|2 dx

]

and from the arguments used after (3.19) we deduce

∫

T2R

ϕ2|ε(u)|2 dx ≤ c

[(∫

T2R

ω dx

)1/2 (∫

T2R

(1 + |ε(u)|) dx

)1/2

(3.29)

+R−1

∫

T2R

|ε(u)| dx

]
=: Φ(R) .

Putting together (3.28) and (3.29) and going back to (3.27) we obtain choosing δ = 1/2

∫

QR

ω dx ≤
1

2
ω∞ + c

{
R−4

∫

Q2R

|u|2 dx + R−3

∫

Q2R

|u|2 dx(3.30)

+R−2Φ(R) + R−1Φ(R)

+ R−1




∫

Q 3
2

R

|∇u|2 dx




1/2 


∫

T 3
2

R

|∇u|2 dx




1/2




.
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Clearly R−4
∫

Q2R
|u|2 dx + R−3

∫
Q2R

|u|2 dx −→ 0 as R → ∞, and from (3.25) we obtain

(R ≥ 1)

Φ(R) ≤ c

[
R

(∫

T2R

ω dx

)1/2

+ R1/2

]
,

hence R−2Φ(R) + R−1Φ(R) −→ 0 as R → ∞ on account of (3.8). At this stage we like to
remark that here it is essential to integrate ω just over the set T2R. Let us finally look at
the quantity

Ψ(R) := R−1




∫

Q 3
2

R

|∇u|2 dx




1/2 


∫

T 3
2

R

|∇u|2 dx




1/2

.

By (3.28) and (3.29) we have

∫

T 3
2

R

|∇u|2 dx ≤ c

[
R−2

∫

T2R

|u|2 dx + Φ(R)

]
,

thus

Ψ(R) ≤ c


R−1

∫

Q 3
2

R

|∇u|2 dx




1/2 (
R−3

∫

T2R

|u|2 dx + R−1Φ(R)

)1/2

and the second factor on the right-hand side goes to zero as R → ∞ as observed earlier.
Returning to our previous bound

∫

Q 3
2

R

|∇u|2 dx ≤ c

[
R−2

∫

Q2R

|u|2 dx

+

(∫

Q2R

ω dx

)1/2 (∫

Q2R

(1 + |ε(u)|) dx

)1/2

+ R−1

∫

Q2R

|ε(u)| dx

]

we see in combination with (3.25) and (3.8) that R−1
∫

Q 3
2

R

|∇u|2 dx stays bounded, which

means that also Ψ(R) −→ 0 as R → ∞. Therefore the passage to the limit in (3.30)
finally yields our claim ω∞ = 0. �

Appendix: Proof of Lemma 3.1

We completely adopt the notation introduced in the proof of Lemma 0.5 of [GM]. As
done there we work in the space R

n with n ≥ 2. For x0 ∈ R
n and σ > 0 we consider the

cube Q := Q 3

2
σ(x0). We will make use of the following inequalities:

(A1) d(x) < σ2−k+1 on Qk
j ,
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(A2) d(x) ≥ σ2−k−1 on Q
k

j ,

(A3) d(x) < σ2−k+2 on Q
k

j ,

where the last inequality is not explicitly stated in [GM] but follows from the inclusion

Q
k

j ⊂ Ck−1 ∪ Ck ∪ Ck+1 .

Let α := max{α1, . . . , αℓ}. It holds
∫

Qk
j

dαf dx ≤ σα2(−k+1)α

∫

Qk
j

f dx

≤ σα2(−k+1)αδ

∫

Q
k
j

f dx + c(δ)σα2(−k+1)α

ℓ∑

m=1

(σ2−k)−αm

∫

Q
k
j

fm dx

on account of our assumption imposed on the functions f , f1, . . . , fℓ. Moreover, we made
use of (A1), whereas from (A2) we get

σα2(−k+1)α

∫

Q
k
j

f dx ≤ 4α

∫

Q
k
j

fdα dx ,

and (A2) in combination with (A3) implies

σα2(−k+1)α
ℓ∑

m=1

(σ2−k)−αm

∫

Q
k
j

fm dx

≤ 4α
ℓ∑

m=1

(σ2−k)−αm

∫

Q
k
j

fmdα dx

≤ 4α

ℓ∑

m=1

(σ2−k)−αm
(
σ2−k+2

)αm

∫

Q
k
j

fmdα−αm dx

= 4α
ℓ∑

m=1

4αm

∫

Q
k
j

fmdα−αm dx .

Putting together these estimates, we deduce:
∫

Qk
j

dαf dx ≤ δ4α

∫

Q
k
j

f dx(A4)

+c(δ)16α
ℓ∑

m=1

∫

Q
k
j

fmdα−αm dx .

This inequality is in correspondence to the estimate stated in the last line of p.178 of the
paper [GM], and with the help of (A4) we can now finish the proof of Lemma 3.1 exactly
along the lines of p.179 in [GM]. �
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