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Abstract

We discuss several variants of the TV-regularization model used in image recov-
ery. The proposed alternatives are either of nearly linear growth or even of linear
growth, but with some weak ellipticity properties. The main feature of the paper is
the investigation of the analytic properties of the corresponding solutions.

1 Introduction

In our note we investigate the existence and the regularity of solutions for some variational
problems related to variational and PDE methods used in image recovery as outlined for
example in the papers of Rudin, Osher and Fatemi [ROF], Aubert and Vese [AV], Vese
[Ve], Chan, Shen and Vese [CSV] and of Kawohl [Ka].
Suppose that we are given a bounded Lipschitz domain Ω ⊂ R2 together with a function

f : Ω → R, for which we assume
f ∈ L2(Ω) . (1.1)

Here f acts as an “observed image”, and our goal is to reconstruct the “original image”
u: Ω → R from f , where the quality of “data fitting” is measured through the quantity

E[u,Ω] :=

∫
Ω

(u− f)2 dx .

In the variational approach towards the deconvolution of images in its most elementary
form one tries to find the original image u by minimizing a functional of the type

E[w,Ω] + α

∫
Ω

Ψ(|∇w|) dx

among functions w: Ω → R from a suitable space. Here α is a (small) positive parameter,
and Ψ is supposed to be an increasing and convex function being under our disposal.

i) A common choice is to perturb E with Dirichlet’s energy or – as a first generalization
– to work with the power function

Ψp(t) := tp , t ≥ 0 , (1.2)

for a fixed exponent 1 < p < ∞. This is the classical setting and quite well
understood.

AMS Subject Classification: 49N60, 49Q20
Keywords: image recovery, functions of bounded variation, variational problems of linear growth, varia-
tional problems of nearly linear growth, regularity of solutions
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ii) In the limit case, i.e. if p = 1 is included in (1.2), we obtain the so-called TV-
regularization, which means that we are looking for minimizers u of (for notational
simplicity we let α = 1) ∫

Ω

(w − f)2 dx+

∫
Ω

|∇w|

in the space BV(Ω) (= TV(Ω)) of functions of bounded (= finite total) variation.
For a definition and the investigation of this function space we refer to the textbook
of Giusti ([Gi]). Here we may also pass to more regular (in the sense of ellipticity)
energy densities still having linear growth, where the minimal surface integrand
serves as the most prominent example.

iii) Of course the regularizing function has not to be of power growth as stated in (1.2).
In particular, we can study examples satisfying a “nearly linear growth” condition
like (“L logL case”)

h(t) := t ln(1 + t) , t ≥ 0 , (1.3)

or any finite iteration of the logarithm.

In all these cases, the minimization is done w.r.t. comparison functions of the natural
energy class and, as a model problem, we may fix Dirichlet boundary data u0 in a
suitable sense. However, unconstrained problems without boundary data are included in
our considerations as well.

In the following we both discuss the L logL and some linear growth alternatives for the
TV-regularization, which have to be handled in quite different analytical frameworks.
Nevertheless, there is a one-parameter family of regularizations connecting these cases

and a series of numerical experiments may be inspired by this family exploiting the
interesting features depending on the range of the parameter being involved.

Before going into details we want to describe and interprete our analytical results.

i) Superlinear problems in the sense of L logL or with densities of p-growth for some
exponent p > 1 on the one hand admit regular solutions. This “nice” analytical
behavior on the other hand may lead to the problem of “over smoothing” which
means that bad data always produce smooth solutions. Here L logL-growth should
be seen as a first compromise between the cases p > 1 and p = 1 in (1.2): going
through the regularity proof in the L logL case it becomes evident that, although we
have a priori estimates, the constants are quite bad in comparison to those obtained
for superlinear power growth.

ii) In the linear growth situation we are faced with several difficulties: for instance,
working with a Dirichlet-boundary condition, the boundary data in general are not
attained as the trace of a minimizer. Instead of this a penalty term measures the
deviation from the boundary data.
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Another feature is more serious: even though we will approximate the TV-density
|∇w| by a strictly convex integrand F (∇w), the required linear growth of F allows
only very weak and anisotropic ellipticity conditions, thus the study of smoothness
properties such as continuity and differentiability of generalized minimizers is a quite
delicate problem, and in Theorem 1.5 we will clearly see, how regularity depends on
the modulus of ellipticity.

Roughly speaking, we have to distinguish two subcases being related to the exponent
µ > 1 introduced in (1.11) giving a lower bound for D2F (∇u) in terms of (1 +
|∇u|)−µ:

(a) If F is “close” to |∇u| ln(1+ |∇u|), i.e. if we require µ ∈ (1, 2), then – despite of
the other particular problems occuring in connection with integrands of linear
growth – the regularity theory can be carried out along similar lines as in
the L logL-case leading to comparable results, but with a reduction of over
smoothing effects.

(b) In case µ ≥ 2 we still have the following results for the exact minimizer u:

• The solution u locally is of class Lt for any finite exponent t.

• If the observed image f has first weak derivatives in the space L2
loc, then

so does u.

• It is well known (see, e.g., [AFP], Lemma 3.76, p. 170) that subsets of Ω,
which in a measure theoretic sense are smaller than an edge, are not recog-
nized by the vector measure ∇u, which means that ∇u cannot concentrate
on sets of vanishing H1-measure.

• Suppose that the solution u coincides with the observed image f on some
disk B in Ω. Then on B the variation of the vector measure ∇f can be
bounded in terms of the one-dimensional Hausdorff-measure.

• If we know the local boundedness of the solution, then we have local bounds
for the measure |∇u| through the measure H1.

We think that for the choice µ = 2 we have reached a kind of limit case in the
sense that for values of µ in the interval [2,∞) no further smoothness properties of
a BV-minimizer can be expected, and this even concerns the existence of the first
weak partial derivatives in the space L1

loc: as it is outlined in [Bi1], examples of
BV-solutions exist at least for µ > 3, whose distributional gradient is not generated
by a function in L1

loc.

However, there is another “regularity feature” of our problem, which is valid for
all exponents µ > 1. Suppose we have a minimizing sequence usually consisting
of smooth functions as constructed for example in Lemma 3.2 below. Then
this minimizing sequence converges towards the BV-minimizer strongly in L2,
i.e. we have convergence in the norm induced by the quantity E, which in par-
ticular is the best degree of convergence we can expect for numerical approximations.
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Now let us be more precise: logarithmic growth is treated in Part I of our note, in Part
II we concentrate on linear growth problems.

Part I. The logarithmic regularization (1.3) on the one hand is very close to the linear
growth of Ψ1 (recall (1.2)), on the other hand it still leads to minimizers with rather good
smoothness properties. We consider (1.3) as a model case for “nearly linear growth”,
however, we could also include the second iteration

h̃(t) := t ln (1 + ln(1 + t))

or any other finite iteration of the logarithm into our discussion without essential changes
in the arguments.

We wish to note that the logarithmic regularization of variational problems having
linear growth in the first weak partial derivatives is well established in the mechanics of
solids and fluids. As it is outlined in the paper [FrSe] of Frehse and Seregin, “plasticity
with logarithmic hardening” serves as a model for perfect plasticity, and later Seregin
and the second author (see [FuS1], [FuS2]) studied the Prandtl-Eyring fluid model
as an logarithmic approximation of perfectly plastic fluids. From this maybe more
philosophical point of view it seems reasonable to discuss the logarithmic version of the
TV-regularization used in the variational approach of the deconvolution of images.

Referring to standard textbooks (see, e.g., [Ad]) we introduce the Orlicz space

Lh(Ω) :=

{
u : Ω → R measurable :

∫
Ω

h (|u|) dx <∞
}

equipped with the Luxemburg norm

∥u∥Lh(Ω) := inf

{
l > 0 :

∫
Ω

h

(
|u|
l

)
dx ≤ 1

}
and the Orlicz-Sobolev space

W 1
h (Ω) :=

{
v ∈ W 1

1 (Ω) : |v|, |∇v| ∈ Lh(Ω)
}

with corresponding norm ∥v∥W 1
h (Ω) := ∥v∥Lh(Ω) + ∥∇v∥Lh(Ω). By definition a function

v ∈ W 1
h (Ω) belongs to the standard Sobolev space W 1

1 (Ω) and therefore it has a trace
u|∂Ω in L1(∂Ω). Let us finally define the subspace

◦
W

1
h(Ω) := closure of C∞

0 (Ω) in W 1
h (Ω)

w.r.t. ∥ ·∥W 1
h (Ω). In order to formulate our variational problem we may assume in addition

to (1.1) that we are given a boundary datum u0 with the property

u0 ∈ W 1
h (Ω) . (1.4)
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On the class u0+
◦
W1

h(Ω) we then consider the energy

J [w,Ω] :=

∫
Ω

(w − f)2 dx+

∫
Ω

h (|∇w|) dx (1.5)

and observe that J [w,Ω] is well-defined by the continuity of the embedding

W 1
1 (Ω) ↩→ L2(Ω) .

Let us note that actually the space W 1
h (Ω) is compactly embedded in the class L2(Ω) on

account of [Ad], 8.32 Theorem. Now we can state our existence result:

Theorem 1.1 Let (1.1) and (1.4) hold and consider the energy J from (1.5) with h
defined according to (1.3). Then the problem

J [·,Ω] → min in u0+
◦
W

1
h(Ω)

admits a unique solution u, and the same is true, if we minimize the functional J [·,Ω] on
the entire space W 1

h (Ω).

Proof of Theorem 1.1. We can refer to Theorem 3.1 from [FO] by remarking that the
quantity

∫
Ω
(w − f)2 dx causes no difficulty. �

Next we discuss the smoothness of our solution:

Theorem 1.2 Let the assumptions of Theorem 1.1 hold. Suppose further that f ∈ L∞
loc(Ω)

holds. Then the minimizer u belongs to the space W 1
2,loc ∩W 2

1,loc(Ω) satisfying

|∇2u|2

1 + |∇u|
∈ L1

loc(Ω) . (1.6)

In particular we have √
1 + |∇u| ∈ W 1

2,loc(Ω) . (1.7)

From (1.7) we immediately deduce

Corollary 1.1 The function |∇u| is in any class Lp
loc(Ω), p < ∞, in particular it holds

u ∈ C0,λ(Ω) for all λ ∈ (0, 1).

Remark 1.1 The statements of Theorem 1.2 and of Corollary 1.1 extend to local mini-
mizers v ∈ W 1

h,loc(Ω) of our functional J [·,Ω] from (1.5).

The results of Theorem 1.2 can be improved considerably:

Theorem 1.3 Under the assumptions and with the notation from Theorem 1.2, the min-
imizer u from Theorem 1.1 is of class C1,λ(Ω) for any exponent λ ∈ (0, 1).
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Remark 1.2 We wish to note that the proof of Theorem 1.3 heavily relies on the prelim-
inary results stated in (1.6) and (1.7).

Remark 1.3 Without changes Theorem 1.1 – 1.3 extend to the case of vectorvalued im-
ages, i.e. f , u: Ω → RM for some M ≥ 2.

Part II. Let us now discuss alternative approximations (compare Remark 1.6 for a list
of examples) of the TV-density Ψ1(|∇u|) = |∇u| being of linear growth in ∇u but with
a better degree of ellipticity compared to Ψ1. In what follows we directly concentrate on
vectorvalued images u, f : Ω → RM with M ≥ 1 and assume (compare (1.1) and (1.4))
that our data satisfy

u0 ∈ W 1
2 (Ω;RM) , f ∈ L2 ∩ L∞

loc(Ω;RM) . (1.8)

Here we assume w.l.o.g. that the boundary values u0 are of class W 1
2 , a suitable approxi-

mation procedure for W 1
1 data is outlined, for instance, in [Bi2]. Note that the presence

of the function u0 in (1.8) gives us the flexibility to include boundary conditions, but as
before we can also work in the appropriate unrestricted classes. We further introduce the
energy

I[w,Ω] :=

∫
Ω

|w − f |2 dx+

∫
Ω

F (∇w) dx (1.9)

for functions w from the spaceW 1
1 (Ω;RM), where the density F : R2M → [0,∞) is of class

C2 with DF (0) = 0 and satisfies the following set of assumptions: there exist positive
constants ν1, ν2, ν3 and a real number µ > 1 such that for any Y , Z ∈ R2M we have

|DF (Z)| ≤ ν1 (1.10)

and

ν2
1

(1 + |Z|)µ
|Y |2 ≤ D2F (Z)(Y, Y ) ≤ ν3

1

1 + |Z|
|Y |2 . (1.11)

Moreover, in the vector case M ≥ 2 we assume that

F (Z) = Φ(|Z|) (1.12)

for a convex and increasing C2-function Φ: [0,∞) → [0,∞). Of course these hypotheses
look rather technical and therefore need some comments:

Remark 1.4 It is easy to show that F is of linear growth in the sense that

a|Z| − b ≤ F (Z) ≤ A|Z|+B

holds for all Z ∈ R2M with suitable constants a, A > 0, b, B ∈ R.
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Remark 1.5 Using (1.11) we obtain the inequalities

DF (Z) : Z ≥ ν4|Z| − ν5 ,∣∣D2F (Z)
∣∣ |Z|2 ≤ ν6 (1 + F (Z)) ,

again for arbitrary matrices Z and with constants ν4, ν5 and ν6 being positive. Since we
suppose DF (0) = 0, we may even choose ν5 = 0 (see, e.g., [Bi1], p. 98). The second
estimate shows that F automatically satisfies a “balancing condition”.

Remark 1.6 The most prominent example for which we have (1.10) – (1.12) is the
minimal surface integrand given by F (Z) :=

√
1 + |Z|2. In this case (1.11) holds for the

optimal choice µ = 3.

Suppose next that we are given a number µ > 1 and let

Φµ(t) :=

∫ t

0

∫ s

0

(1 + r)−µ dr ds , t ≥ 0 , (1.13)

together with
Fµ(Z) := Φµ(|Z|) , Z ∈ R2M . (1.14)

Then it holds:

the density Fµ from (1.14) with Φµ defined in (1.13) satisfies (1.10) and (1.11) exactly
with the prescribed parameter µ.

For µ ̸= 2 we have the formula

Φµ(t) =
t

µ− 1
+

1

µ− 1

1

µ− 2
(t+ 1)−µ+2 − 1

µ− 1

1

µ− 2
, (1.15)

whereas
Φ2(t) = t− ln(1 + t) ,

and we see that
(µ− 1)Fµ(Z) → |Z| , µ→ ∞ , (1.16)

for matrices Z ∈ R2M . For this reason and also with respect to the explicit formula
(1.15) the density Fµ(∇u) serves as a very good candidate for an approximation of |∇u|
by more regular integrands of linear growth.

There is another interesting feature of the functions Φµ: if we formally let µ = 1 in
(1.13), then we obtain

Φ1(t) = t ln(1 + t) + ln(1 + t)− t ,

which means that up to lower order terms the function Φ1 coincides with the logarith-
mic density h defined in formula (1.3). Therefore and with respect to (1.16) we can
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interprete the family of densities Φµ as a smooth curve in the space of integrands deform-
ing the logarithmic density into the density |∇u| occurring in the TV-regularization model.

A slight modification of the functions Φµ from (1.13) is given by

Φ̃µ(t) :=

∫ t

0

∫ s

0

(1 + r2)−µ/2 dr ds , t ≥ 1 ,

where as before µ > 1. It is easy to check that (1.10) and (1.11) hold for the corresponding

integrands F̃µ(Z) := Φ̃µ(|Z|), Z ∈ R2M . For µ = 3 we obtain the minimal surface density,
whereas

F̃2(Z) = |Z| arctan |Z| − 1

2
ln
(
1 + |Z|2

)
.

After these preparations we look at the variational problem

I[·,Ω] → min in u0+
◦
W

1
1(Ω;RM) (1.17)

or its unconstrained version

I[·,Ω] → min in W 1
1 (Ω;RM) . (1.17∗)

We cannot expect solvability of these problems in the non-reflexive space W 1
1 (Ω;RM)

unless we impose more restrictive assumptions (see Corollary 1.2). In general we only
have existence results for the BV-variants of (1.17) and (1.17∗).

Theorem 1.4 Suppose that the density F satisfies (1.10) and (1.11) (together with
(1.12), if the case M > 1 is considered) for some number µ > 1. Let (1.8) hold for
the data u0 and f . Then the variational problems∫

Ω

F (∇aw) dx+

∫
Ω

F∞

( ∇sw

|∇sw|

)
d|∇sw|+

∫
Ω

|f − w|2 dx

+

∫
∂Ω

F∞ ((u0 − w)⊗ ν) dH1 → min (1.18)

and ∫
Ω

F (∇aw) dx+

∫
Ω

F∞

( ∇sw

|∇sw|

)
d|∇sw|+

∫
Ω

|f − w|2 dx→ min (1.18∗)

are uniquely solvable in BV(Ω;RM). Here F∞ denotes the recession function of F , i.e.

F∞(Z) := lim
t→∞

1

t
F (tZ) , Z ∈ R2M ,

⊗ is the tensor product of vectors and ν stands for the exterior normal of ∂Ω. More-
over, H1 denotes the one-dimensional Hausdorff-measure and ∇aw (∇sw) is the regular
(singular) part of ∇w w.r.t. Lebesgue’s measure L2.
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Remark 1.7 Clearly (1.18∗) is the appropriate extension of (1.17∗) to the space
BV(Ω;RM). The formal difference between the variational problems (1.17) and (1.18)
obviously is the fact that in (1.18) the boundary condition enters implicitly through the
penalty term ∫

∂Ω

F∞ ((u− u0)⊗ ν) dH1 .

To give a clearer interpretation of this quantity, let us look at the scalar case M = 1 and
let us also assume that F satisfies (1.12). Then it holds

F∞(Z) = Φ∞|Z| , Z ∈ R2 , Φ∞ := lim
t→∞

1

t
Φ(t) ,

and (u0 − w)⊗ ν just reduces to (u0 − w)ν, which implies the validity of∫
∂Ω

F∞ ((u0 − w)⊗ ν) dH1 = Φ∞

∫
∂Ω

|u0 − w| dH1

in this special case, for which the variational problems (1.18) and (1.18∗) read as∫
Ω

Φ(|∇aw|) dx+ Φ∞

∫
Ω

|∇sw|+
∫
Ω

|f − w|2 dx(
+ Φ∞

∫
∂Ω

|u0 − w| dH1

)
→ min in BV(Ω) .

Moreover, we may choose Φ = (µ− 1)Φµ with Φµ from (1.13) so that Φ∞ = 1.

The next result summarizes the local regularity properties of our solutions:

Theorem 1.5 Let the assumptions of Theorem 1.4 hold and let u ∈ BV(Ω;RM) denote
either the solution of problem (1.18) or of (1.18∗).

i) Let µ denote any number greater than 1.

(a) The function u is in the space Lt
loc(Ω;RM) for any finite exponent t.

(b) Suppose that f ∈ W 1
2,loc(Ω

∗;RM) for some open subset Ω∗ of Ω. Then the same
is true for the minimizer u.

ii) If the case µ < 2 is considered, then u belongs to the class W 1
2,loc(Ω;RM). For the

limit case µ = 2 the same is true under the smallness condition ∥f∥L∞(Ω) <
√
2ν2

with ν2 from (1.11).

Remark 1.8 The reader will find some global higher integrability results for problem
(1.18∗) in Remark 3.5.

Observing that BV ∩W 1
2,loc(Ω;RM) is a subspace of W 1

1 (Ω;RM), we get
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Corollary 1.2 If we are in the situation ii) of Theorem 1.5 or if we consider the case
i), (b), together with Ω∗ = Ω, then (1.17∗) in particular admits a unique solution in the
space W 1

1 (Ω;RM).

In general the vector measure ∇u behaves as follows:

Theorem 1.6 Under the assumptions and with the notation of Theorem 1.4 consider the
solution u of problem (1.18) or of (1.18∗).

i) For any subregion Ω∗ b Ω and all α ∈ (0, 1) there exists a finite constant c(α,Ω∗)
such that

|∇u|(Br(x)) ≤ c(α,Ω∗)rα (1.19)

is true for all disks Br(x) ⊂ Ω∗.

ii) Assume that u = f on some open subset Ω∗ of Ω. Fix a domain Ω̃ b Ω∗. Then
there is a constant c(Ω̃) such that

|∇f |(Br(x)) ≤ c(Ω̃)r (1.20)

is valid for all disks Br(x) in Ω̃. In particular we obtain

|∇f |(E) ≤ c(Ω̃)H1(E) (1.21)

for all Borel sets E ⊂ Ω̃.

iii) If u is locally bounded (compare Theorem 1.8 for sufficient conditions), then for any
subdomain Ω∗ b Ω there is a constant c(Ω∗) with the properties

|∇u|(Br(x)) ≤ c(Ω∗)r , Br(x) ⊂ Ω∗ , (1.22)

|∇u|(E) ≤ c(Ω∗)H1(E) , E Borel subset of Ω∗ . (1.23)

Remark 1.9 The reader should note that ii) of Theorem 1.6 does not follow from i). In
order to derive ii) we essentially use the local boundedness of f , and the local boundedness
of u is needed to justify iii). We like to remark that estimate (1.22) reflects in somes sense
a “W 1

2 -behaviour” of the solution u: if we know that ∇u belongs to the space L2
loc(Ω;R2M)

(compare Theorem 1.5 i), b), ii)), then (1.22) is a consequence of Hölder’s inequality.

Let us now state a surprising compactness property of minimizing sequences.

Theorem 1.7 Under the hypotheses of Theorem 1.4 consider any minimizing sequence
{um} for (1.17) or for (1.17∗). Then {um} converges strongly in L2(Ω;RM) to the unique
BV-solution u of (1.18) or of (1.18∗), respectively.

We finish the introduction with some “maximum-principles” applicable to nearly linear
and linear growth problems.

10



Theorem 1.8 i) Let M = 1 and consider f such that 0 ≤ f ≤ 1 almost everywhere
in Ω. Then the same inequality is true for the unconstrained J-minimizer, i.e. the
solution of

J [·,Ω] → min inW 1
h (Ω)

with J from (1.5), and also for the BV-solution u of (1.18∗), provided F satisfies
(1.10) – (1.12).

ii) Let M ≥ 1, consider F with (1.10) – (1.12) and assume that

L := ∥f∥L∞(Ω;RM ) <∞ .

Then the BV -solution u of (1.18∗) satisfies

|u| ≤ L

almost everywhere in Ω.

If in addition to (1.8) we know that u0 ∈ L∞(Ω;RM), then we get for the BV-solution
w of (1.18) the bound

∥w∥L∞(Ω;RM ) ≤ max
{
L, ∥u0∥L∞(Ω;RM )

}
.

In the subsequent sections we are going to present the proofs of these results following
the natural subdivision into nearly linear growth and linear growth energy densities.

2 Part I. Nearly linear growth

2.1 Proof of Theorem 1.2

Let the assumptions of Theorem 1.2 hold with a given boundary function u0, the uncon-
strained case follows by simplification of the arguments. Unfortunately our minimizer u
does not have a sufficient degree of initial regularity in order to carry out the subsequent
calculations. So we have to introduce a sequence of regularized variational problems,
whose solutions are smooth and in addition converge towards u. Such a regularization
can be done locally, i.e. on subdomains of Ω, providing also a proof of Remark 1.1. We
refer to [FuS2], Section 3, for an outline of the details of this procedure. For technical sim-
plicity we prefer the global technique applied in [FO], which requires the slightly stronger
hypothesis (recall (1.4)) that we know u0 ∈ W 1

2 (Ω). Then we define for δ > 0

Jδ[w,Ω] :=
δ

2

∫
Ω

|∇w|2 dx+ J [w,Ω]

on the class u0+
◦
W1

2(Ω) and denote by uδ the unique Jδ-minimizer in this space. (In the
absence of the boundary condition we just minimize Jδ[·,Ω] on the entire space W 1

2 (Ω)

11



again with unique solution uδ.) For later purposes we already remark that we have
uδ ∈ W 2

2,loc(Ω) which follows from standard results on elliptic equations (see, e.g., [GT]
or [LU]).
The next lemma summarizes the convergence properties of the approximation:

Lemma 2.1 With the notation introduced above we have

uδ ⇁ u in W 1
1 (Ω) and sup

0<δ<1
∥uδ∥W 1

h (Ω) <∞ , (2.1)

δ

∫
Ω

|∇uδ|2 dx → 0 , (2.2)

Jδ[uδ,Ω] → J [u, δ] (2.3)

as δ ↓ 0, where u denotes the J [·,Ω]-minimizer from Theorem 1.1.

Proof of Lemma 2.1. The proof is completely analogous to the one of Lemma 3.1 in
[FO]. �

In order to give a clearer exposition of the following calculations, we will drop the
index δ in all places, and we will also neglect the quantity δ

2

∫
Ω
|∇w|2 dx occurring in

the perturbed functionals Jδ. However, the reader should always keep in mind that we
actually work with the sequence of regularizations. In particular we must justify that all
constants c1, c2, . . . occurring during our estimates are independent of the parameter δ.
We also agree to take the sum w.r.t. indices being repeated twice.
For notational simplicity we assume that f is a globally bounded function, otherwise

we have to work on subdomains compactly contained in Ω.

Letting H(p) := h (|p|), p ∈ R2, the J-minimality of u implies

0 =

∫
Ω

DH(∇u) · ∇φ dx+ 2

∫
Ω

(u− f)φ dx

for any φ ∈ C∞
0 (Ω), and if we replace φ by ∂αφ, α = 1, 2, we obtain after an integration

by parts ∫
Ω

D2H(∇u)(∂α∇u,∇φ) dx = 2

∫
Ω

(u− f)∂αφ dx . (2.4)

Note that (2.4) actually is true for φ ∈ W 1
2 (Ω) with compact support, which follows

via approximation recalling the smoothness of the regularizations u (= uδ). Fix a disk
B := BR(x0) such that 2B := B2R(x0) is compactly contained in Ω. We let η ∈ C∞

0 (2B)
such that η = 1 on B, 0 ≤ η ≤ 1 on 2B and |∇η| ≤ c1/R, and define φ := η2∂αu. From
(2.4) we obtain∫

2B

D2H(∇u)(∂α∇u, ∂α∇u)η2 dx = −2

∫
2B

D2H(∇u)(∂α∇u,∇η)η∂αu dx

+2

∫
2B

(u− f)∂α
(
η2∂αu

)
dx

=: T1 + T2 . (2.5)
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In order to estimate T1 we apply the Cauchy-Schwarz inequality to the bilinear form
D2H(∇u) and use Young’s inequality with parameter ε > 0, hence

|T1| ≤ ε

∫
2B

D2H(∇u) (∂α∇u, ∂α∇u) η2 dx+ c2ε
−1

∫
2B

D2H(∇u) (∇η,∇η) |∇u|2 dx ,

and with the choice ε = 1/2 we deduce from (2.5)∫
2B

η2D2H(∇u) (∂α∇u, ∂α∇u) dx

≤ c3

[∫
2B

D2H(∇u) (∇η,∇η) |∇u|2 dx

]
+ 2T2 . (2.6)

For p, q ∈ R2 it holds

1

1 + |p|
|q|2 ≤ D2H(p)(q, q) ≤ 2

ln(1 + |p|)
|p|

|q|2 . (2.7)

Applying the ellipticity estimate (2.7) to the integrals from (2.6) involving D2H(∇u), we
get from inequality (2.6)∫

2B

η2
|∇2u|2

1 + |∇u|
dx ≤ c4

[
R−2

∫
2B

h (|∇u|) dx

]
+ 2T2 =: c5(R) + 2T2 . (2.8)

Now let us look at T2. It holds

T2 = −2

∫
2B

∂αuη
2∂αu dx− 2

∫
2B

f∂α
(
η2∂αu

)
dx

= −2

∫
2B

|∇u|2 η2 dx− 4

∫
2B

fη∂αη∂αu dx− 2

∫
2B

fη2∆u dx . (2.9)

Observing the sign of the first term of the r.h.s. of (2.9) and applying Young’s inequality
one more time, we deduce from (2.8) and (2.9)∫

2B

η2
|∇2u|2

1 + |∇u|
dx+ 2

∫
2B

η2|∇u|2 dx

≤ c5(R) + c6

[
ε

∫
2B

η2|∇u|2 dx+ ε−1R−2

∫
2B

f 2 dx+

∫
2B

η2|f ||∇2u| dx

]
. (2.10)

Choosing ε small enough we get from (2.10)∫
2B

η2
|∇2u|2

1 + |∇u|
dx+

∫
2B

η2|∇u|2 dx ≤ c5(R) + c7

[
1 +

∫
2B

η2|∇2u| dx

]
, (2.11)
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where the boundedness of f has been used. A final application of Young’s inequality
yields for any ε > 0∫

2B

η2|∇2u| dx ≤ ε

∫
2B

η2
|∇2u|2

1 + |∇u|
dx+ c8ε

−1

∫
2B

η2(1 + |∇u|) dx , (2.12)

and with (2.11) and (2.12) we arrive at∫
2B

η2
|∇2u|2

1 + |∇u|
dx+

∫
2B

η2|∇u|2 dx ≤ c9(R) ,

thus (introducing the index δ again)

sup
0<δ<1

[∫
B

|∇2uδ|2

1 + |∇uδ|
dx+

∫
B

|∇uδ|2 dx

]
<∞ . (2.13)

Note that inequality (2.13) is in correspondence to estimate (3.13) from the paper [FuS2],
and as demonstrated there we get our claims (1.6) and (1.7) from (2.13). �

2.2 Proof of Theorem 1.3

Let the assumptions of Theorem 1.3 hold with fixed Dirichlet-boundary data u0. We recall
Lemma 2.1 and continue to work with the approximations uδ for which we have shown
the validity of (2.13), which means (compare (1.7)) that√

1 + |∇uδ| ∈ W 1
2,loc(Ω)

holds uniformly with respect to the parameter δ. This implies by Sobolev’s embedding
theorem

uδ ∈ L∞
loc(Ω)

uniformly, and for technical simplicity we may just assume that

sup
0<δ<1

∥uδ∥L∞(Ω) <∞ , ∥f∥L∞(Ω) <∞ ,

since otherwise we may pass to a subdomain Ω∗ with compact closure in Ω. We finally
let

f̃δ := uδ − f .

As usual we drop the index δ keeping in mind that all our estimates are uniform w.r.t. δ.
Consider a disk B := BR(x0) such that 2B := B2R(x0) b Ω, let T := 2B −B and choose
η ∈ C∞

0 (2B) such 0 ≤ η ≤ 1, η ≡ 1 on B and |∇η| ≤ c/R. As testfunction in (2.4) we
select

φ := η2(∂αu− ξα) , ξ :=

∫
−
T

∇u dx , α = 1, 2 ,

14



and obtain (after returning to summation with respect to α)∫
2B

η2ω2 dx ≤ c

[
1

R

∫
T

∣∣D2H(∇u)
∣∣ ∣∣∇2u

∣∣ |∇u− ξ| dx+
∫
2B

∣∣∂α (η2 [∂αu− ξα]
)∣∣ dx]

=: c [S1 + S2] (2.14)

with c depending on ∥f̃∥L∞(Ω). Here we have abbreviated

ω :=
(
D2H(∇u) (∂α∇u, ∂α∇u)

) 1
2 , H(p) := h (|p|) , p ∈ R2 .

From (2.7) we deduce

S1 ≤ c
1

R

∫
T

ln (1 + |∇u|)
|∇u|

∣∣∇2u
∣∣ |∇u− ξ| dx

≤ c
1

R

∫
T

ω

√
1 + |∇u|
|∇u|

ln (1 + |∇u|) |∇u− ξ| dx

≤ c
1

R

∫
T

ω|∇u− ξ| dx ,

where we have used the boundedness of the quantity√
1 + |∇u|
|∇u|

ln (1 + |∇u|) .

With the help of Hölder’s inequality and a proper application of the Sobolev-Poincaré
estimate we get

S1 ≤ c
1

R

(∫
T

ω2 dx

) 1
2
∫
T

∣∣∇2u
∣∣ dx .

Let Θ :=
√

1 + |∇u| and observe the validity of∣∣∇2u
∣∣ ≤ Θω .

Then we arrive at

S1 ≤ c
1

R

(∫
T

ω2 dx

) 1
2
∫
T

ωΘdx . (2.15)

Next we have by Poincaré’s inequality

S2 ≤ c

[
1

R

∫
T

|∇u− ξ| dx+
∫
2B

η2
∣∣∇2u

∣∣ dx]
≤ c

[∫
T

∣∣∇2u
∣∣ dx+ ∫

2B

η2
∣∣∇2u

∣∣ dx]
≤ c

[∫
T

ωΘdx+

∫
2B

η2ωΘdx

]
.
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Inserting this bound and also (2.15) into (2.14) we find∫
2B

η2ω2 dx ≤ c

R

[∫
T

ω2 dx+R2

] 1
2
∫
T

ωΘdx+ c

∫
2B

η2ωΘdx . (2.16)

To the last integral on the r.h.s. of (2.16) we can apply Young’s inequality and get after
putting the η2ω2-term into the l.h.s. of (2.16):∫

B

ω2 dx ≤ c

R

[∫
T

ω2 dx+R2

]1/2 ∫
T

ωΘdx+ c

∫
2B

Θ2 dx . (2.17)

Since |∇u| is (locally) in Lp for any finite p (uniformly w.r.t. the approximation parameter)
it follows that ∫

2B

Θ2 dx ≤ cεR
2−ε ,

where ε > 0 can be chosen arbitrarily close to zero. With the exception of the additional
contribution R2−ε generated by

∫
2B

Θ2 dx, inequality (2.17) corresponds to estimate (4.22)
in Lemma 4.1 of [FrSe]. But as outlined in [ABF], p.295, or in [BF5], p.1615, the conclusion
of the Frehse-Seregin lemma is still valid, i.e. we obtain∫

BR(x0)

ω2 dx ≤ c
1

ln(1/R)
(2.18)

at least locally and uniformly w.r.t. to δ. Let σ := DH(∇u). From

|∇σ| ≤
√
2ω

combined with (2.18) it follows that∫
BR(x0)

|∇σ|2 dx ≤ c
1

ln(1/R)
,

and the continuity of σ follows from a result due to Frehse [Fr]. We emphasize again that
actually the local modulus of continuity of σδ can be bounded independent of the param-
eter δ. But then we can complete the proof of Theorem 1.3 along the lines of e.g. [BF4],
step 3 in the proof of Theorem 1, where the obvious modifications are left to the reader. �

3 Part II. The case of linear growth

3.1 Preliminaries, existence and convergences

We start with a collection of auxiliary results which we need for establishing Theorem 1.4
and Theorem 1.5. For simplicity we assume

F satisfies (1.10), (1.11) (and (1.12) in case M > 1) , (3.1)
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u0 ∈ W 1
2 (Ω;RM) (3.2)

and
f ∈ L2 ∩ L∞

loc(Ω;RM) , (3.3)

where in (1.11) µ denotes any number in (1,∞). We further let (recall (1.9))

I[u,Ω] :=

∫
Ω

|u− f |2 dx+
∫
Ω

F (∇u) dx , u ∈ W 1
1 (Ω;RM) , (3.4)

K[w,Ω] :=

∫
Ω

|w − f |2 dx+
∫
Ω

F (∇aw) dx+

∫
Ω

F∞

(
∇sw

|∇sw|

)
d|∇sw| (3.5)

+

∫
∂Ω

F∞ ((u0 − w)⊗ ν) dH1 , w ∈ BV (Ω;RM) .

For the notation used in (3.5) we refer to Theorem 1.4. Let us emphasize one more time
that our arguments will not rely on the presence of the boundary function u0:

in the absence of the boundary condition we just drop the boundary integral in (3.5)
and the regularized variational problems introduced below are studied on the entire space
W 1

2 (Ω;RM).

The next lemma essentially has been shown in [BF2], Theorem 1.2:

Lemma 3.1 Let (3.1) – (3.3) hold and define I and K according to (3.4) and (3.5).

i) The variational problem

K[·,Ω] → min in BV(Ω;RM)

admits a unique solution.

ii) It holds
inf

u0+
◦
W1

1(Ω;RM )

I[·,Ω] = inf
BV(Ω;RM )

K[·,Ω] .

iii) Consider the set

M := {u ∈ BV(Ω;RM) : u is the L1-limit of an I[·,Ω]- minimizing sequence

from the space u0+
◦
W1

1(Ω;RM)} .

Then it holds: u ∈ M if and only if u is K[·,Ω]-minimizing in BV(Ω;RM).

Proof. The existence result from i) as well the statements ii) and iii) of Lemma 3.1 have
been established in [BF2] in the absence of the f -term given by

∫
Ω
|f − u|2 dx. However,

this quantity causes no difficulties during the calculations, and since it is strictly convex
w.r.t. the function u, we also obtain the uniqueness of the K[·,Ω]-minimizer. �
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Remark 3.1 From i) and iii) it follows that M exactly consists of the K[·,Ω]-minimizing

function u and that actually each I[·,Ω]-minimizing sequence from u0+
◦
W 1

1(Ω;RM) con-
verges in the space L1(Ω;RM) towards the function u.

Remark 3.2 The reader should note that Lemma 3.1 actually holds under less restrictive
assumptions on the data as stated in (3.1) – (3.3), we again refer to [BF2].

Remark 3.3 Clearly Lemma 3.1 implies the statement of Theorem 1.4.

As done in Section 2.1 we next introduce the global quadratic regularizations of the
problem

I[·,Ω] → min in u0+
◦
W

1
1(Ω;RM) ,

i.e. for δ ∈ (0, 1] we let

Iδ[w,Ω] :=
δ

2

∫
Ω

|∇w|2 dx+ I[w,Ω]

and denote by uδ the unique minimizer of Iδ[·,Ω] in class u0+
◦
W1

2(Ω;RM).

Lemma 3.2 Suppose that we have (3.1) – (3.3). Then it holds (passing to appropriate
subsequences):

i) sup
0<δ<1

∥uδ∥W 1
1 (Ω;RM ) <∞;

ii) δ
∫
Ω
|∇uδ|2 dx→ 0 as δ → 0;

iii) {uδ} is an I-minimizing sequence in the class u0+
◦
W1

1(Ω;RM);

iv) uδ ∈ W 2
2,loc(Ω;RM).

Proof. Let us discuss the statements of Lemma 3.2 in the case that the boundary
condition does not occur, which means that uδ is the unique Iδ[·,Ω]-minimizer in the
space W 1

2 (Ω;RM).
Claim i) is immediate and iv) follows with the help of the difference quotient technique

applied to equation (3.9) below.
In order to show ii) and iii) we have to introduce some notation following [ET] or

[FuS2]. Let
τδ := DF (∇uδ) and σδ := δ∇uδ + τδ .

By the uniform estimate
Iδ[uδ,Ω] ≤ Iδ[0,Ω] = I[0,Ω]
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we have as δ → 0 (compare [Bi1])

∥δ∇uδ∥2L2(Ω;R2M ) = δ

[
δ

∫
Ω

|∇uδ|2 dx

]
→ 0 , (3.6)

τδ
∗
⇁: τ in L∞(Ω;R2M) , (3.7)

σδ ⇁: σ = τ in L2(Ω;R2M) (3.8)

as well as
∥uδ∥W 1

1 (Ω;RM ) ≤ c

for a suitable constant c independent of δ. Here and in what follows we always pass
to convergent subsequences whenever this is necessary without relabeling the quantities
under consideration.
Denote by u a BV-limit of the sequence {uδ} and note that by the definition of uδ and

σδ the equation ∫
Ω

σδ : ∇φ dx+ 2

∫
Ω

φ · (uδ − f) dx = 0 (3.9)

holds for all φ ∈ W 1
2 (Ω;RM). Passing to the limit δ → 0 and using the convergences (3.6)

– (3.8) we see the validity of∫
Ω

τ : ∇φ dx+ 2

∫
Ω

φ · (u− f) dx = 0 (3.10)

first for smooth φ and then by approximation for all φ ∈ W 1
1 (Ω;RM).

Following the arguments given, for instance, in [Bi1], p. 18, we now need a careful
analysis of the additional term

∫
Ω
|u− f |2 dx which causes some difficulties.

For (v,κ) ∈ W 1
1 (Ω;RM)× L∞(Ω;R2M) the Lagrangian is defined by

l(v,κ) =
∫
Ω

[
κ : ∇v − F ∗(κ)

]
dx+

∫
Ω

|v − f |2 dx ,

where F ∗ denotes the conjugate function of F . A discussion of the properties of F ∗ can
be found in [ET].
Letting

R[κ] = inf
{
l(v,κ) : v ∈ W 1

1 (Ω;RM)
}

it is shown in [FuS2], Theorem 1.2.1, that

sup
κ∈L∞(Ω;R2M )

R[κ] = inf
w∈W 1

1 (Ω;RM )
I[w,Ω] , (3.11)

and, using the duality relation

τδ : ∇uδ − F ∗(τδ) = F (∇uδ) ,
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we obtain as in [Bi1] the representation

Iδ[uδ,Ω] =
δ

2

∫
Ω

|∇uδ|2 dx︸ ︷︷ ︸
=:Θδ

+

∫
Ω

[
τδ : ∇uδ − F ∗(τδ)

]
dx+

∫
Ω

|uδ − f |2 dx .

The definition of σδ and τδ, respectively, and (3.9) applied to φ = uδ then give

Iδ[uδ,Ω] = −Θδ +

∫
Ω

[
σδ : ∇uδ − F ∗(τδ)

]
dx+

∫
Ω

|uδ − f |2 dx

= −Θδ −
∫
Ω

F ∗(τδ) dx−
∫
Ω

|uδ|2 dx+
∫
Ω

|f |2 dx . (3.12)

If we pass to the limit δ → 0 and use upper semicontinuity arguments (observe that we
have the appropriate signs in (3.12)), equation (3.12) implies

lim
δ→0

Iδ[uδ,Ω] ≤ − lim
δ→0

Θδ −
∫
Ω

F ∗(τ) dx−
∫
Ω

|u|2 dx+
∫
Ω

|f |2 dx . (3.13)

Now, given any v ∈ W 1
1 (Ω;RM), we apply (3.10) to v and (3.13) yields

lim
δ→0

Iδ[uδ,Ω] ≤ − lim
δ→0

Θδ +

∫
Ω

[
τ : ∇v − F ∗(τ)

]
dx+

∫
Ω

|v − f |2 dx

−
∫
Ω

|u− v|2 dx

= − lim
δ→0

Θδ + l(v, τ)−
∫
Ω

|u− v|2 dx

≤ − lim
δ→0

Θδ + l(v, τ) . (3.14)

Taking the infimum in (3.14) w.r.t. all admissible v ∈ W 1
1 (Ω;RM), the inf-sup relation

(3.11) finally shows

sup
κ∈L∞(Ω;R2M )

R[κ] ≤ lim
δ→0

Iδ[uδ,Ω] ≤ − lim
δ→0

θδ +R[τ ] (3.15)

which proves the R-maximality of τ and our claims ii) and iii) as well. �

The following Corollary is a first application of Lemma 3.2.

Corollary 3.1 Under the assumptions of Lemma 3.1 let u∗ denote the unique K[·,Ω]-
minimizer from the space BV(Ω;RM). Then it holds

lim
δ→0

∥uδ − u∗∥L1(Ω) = 0 . (3.16)
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Proof. From Lemma 3.2 i) we deduce the existence of ũ ∈ BV (Ω;RM) such that for a
suitable sequence δ = δm we have uδ → ũ in L1(Ω;RM). By iii) of Lemma 3.2 we have
ũ ∈ M, thus ũ = u∗, and therefore the whole family {uδ} must converge towards u∗ in
the space L1(Ω;RM), thus (3.16) follows. �

Proof of Theorem 1.7. We now prove the much stronger result

lim
δ→0

∥uδ − u∗∥L2(Ω) = 0 , (3.17)

and (3.17) extends to any minimizing sequence.
Let us first recall the well known representation formula (see [ET])∫
Ω

F (p) dx = sup
κ∈L∞(Ω;R2M )

[∫
Ω

κ : p dx−
∫
Ω

F ∗(κ) dx

]
for all p ∈ L1(Ω;R2M) . (3.18)

In (3.14) it is actually shown, that for any v ∈ W 1
1 (Ω;RM) we have

lim
δ→0

I[uδ,Ω] ≤
∫
Ω

[
τ : ∇v − F ∗(τ)

]
dx+

∫
Ω

|v − f |2 dx−
∫
Ω

|u∗ − v|2 dx . (3.19)

In particular uδ is admissible for v in (3.19),

lim
δ→0

I[uδ,Ω] ≤
∫
Ω

[
τ : ∇uδ − F ∗(τ)

]
dx+

∫
Ω

|uδ − f |2 dx−
∫
Ω

|u∗ − uδ|2 dx , (3.20)

and (3.18), (3.20) give

lim
δ→0

I[uδ,Ω] ≤ sup
κ∈L∞(Ω;R2M )

[∫
Ω

κ : ∇uδ dx−
∫
Ω

F ∗(κ) dx

]
+

∫
Ω

|uδ − f |2 dx−
∫
Ω

|u∗ − uδ|2 dx

=

∫
Ω

F (∇uδ) dx+
∫
Ω

|uδ − f |2 dx−
∫
Ω

|u∗ − uδ|2 dx

= I[uδ,Ω]−
∫
Ω

|u∗ − uδ|2 dx .

Passing also to the limit on the r.h.s. we have established (3.17), and the second claim
follows in the same way, if in (3.19) v is replaced by the elements of any minimizing
sequence. �

3.2 Uniform local higher integrability of uδ

Here we are going to prove uniform higher integrability of uδ implying claim i), (a), of
Theorem 1.5 (compare Section 3.4). We emphasize again that the next result is valid
without any restriction on the modulus of ellipticity µ > 1.
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Theorem 3.1 With the assumptions of Theorem 1.5, i), and for the minimizing sequence
{uδ} discussed in Lemma 3.1 we have for any t <∞ and for any domain Ω∗ b Ω

∥uδ∥Lt(Ω∗) ≤ c(Ω∗, t) ,

where the constant is not depending on δ.

The main tool is Lemma 3.3, which is very much in the spirit of [Bi2], Lemma 2.

Lemma 3.3 With the notation and under the assumptions of Theorem 3.1 suppose that
uδ ∈ Lγ

loc(Ω;RM) uniformly for some γ ≥ 2. Then for any ball B := Br(x0) such that
2B := B2r(x0) b Ω the estimate∫

Br(x0)

(1 + |∇uδ|2)
1
2 |uδ|γ dx+ δ

∫
Br(x0)

|∇uδ|2|uδ|γ dx+
∫
Br(x0)

|uδ|γ+2 dx ≤ c (3.21)

holds with a constant c which is not depending on δ.

Proof of Lemma 3.3. As usual we may assume w.l.o.g. that f is in the space L∞(Ω;RM).
Let us start with the scalar case M = 1 and choose η ∈ C∞

0 (2B) such that η ≡ 1 on B,
0 ≤ η ≤ 1 on 2B, |∇η| ≤ c/r. Moreover, fix k ∈ N. Then the function φ = |uδ|γuδη2k is
an admissible choice in the Euler equation

δ

∫
Ω

∇uδ · ∇φ dx+

∫
Ω

DF (∇uδ) · ∇φ dx+ 2

∫
Ω

(uδ − f)φ dx = 0 (3.22)

for any φ ∈ C∞
0 (Ω). In the scalar case we trivially have

∇(|uδ|γuδ) = (γ + 1)|uδ|γ∇uδ (3.23)

and with the above choice of φ we obtain on account of the boundedness of |DF |

(γ + 1)

∫
2B

DF (∇uδ)∇uδ|uδ|γη2k dx

+ δ(γ + 1)

∫
2B

|∇uδ|2|uδ|γη2k dx+ 2

∫
2B

|uδ|γ+2η2k dx

≤ c(I1 + I2 + I3) , (3.24)

where

I1 :=

∫
2B

|uδ|γ+1η2k−1|∇η| dx , (3.25)

I2 := δ

∫
2B

|∇uδ||uδ|γ+1η2k−1|∇η| dx , (3.26)

I3 :=

∫
2B

|f ||uδ|γ+1η2k dx . (3.27)

22



By (1.11) (compare Remark 1.5) we have a lower bound for the l.h.s. of (3.24), thus∫
2B

(1 + |∇uδ|2)
1
2 |uδ|γη2k dx+ δ

∫
2B

|∇uδ|2|uδ|γη2k dx

+

∫
2B

|uδ|γ+2η2k dx ≤ c(1 + I1 + I2 + I3) (3.28)

and we have to find suitable estimates for I1, I2 and I3.
We start we I1 from (3.25) using Hölder’s and Sobolev’s inequality:

I1 ≤

[∫
2B

|uδ|γ+2η4k−2 dx

] 1
2
[∫

2B

|uδ|γ|∇η|2 dx

] 1
2

︸ ︷︷ ︸
≤c(r)=c

≤ c

∫
2B

∣∣∣∇(|uδ| γ2+1η2k−1
)∣∣∣ dx

≤ c

[∫
2B

|uδ|
γ
2 |∇uδ|η2k−1 dx+

∫
2B

|uδ|
γ
2
+1η2k−2|∇η| dx

]
. (3.29)

Since we have γ ≥ 2, the uniform integrability of uδ gives a uniform bound for the second
term in (3.29) and Young’s inequality shows for any ε > 0

I1 ≤ c

[
1 + ε

∫
2B

|uδ|γ(1 + |∇uδ|2)
1
2η2k dx+ ε−1

∫
2B

|∇uδ|η2(k−1) dx

]
. (3.30)

If ε is small enough, then the first integral on the r.h.s. of (3.30) can be absorbed in the
l.h.s. of (3.28), whereas the second integral remains uniformly bounded.
Now let us have a look at I2 from (3.26): again by Hölder’s and Sobolev’s inequality we

obtain (c = c(r))

I2 ≤ cδ

[∫
2B

|∇uδ|2 dx

] 1
2
[∫

2B

|uδ|2γ+2η4k−2 dx

] 1
2

≤ cδ
1
2

∫
2B

∣∣∣∇(|uδ|γ+1η2k−1
)∣∣∣ dx

≤ cδ
1
2

[∫
2B

|uδ|γ|∇uδ|η2k−1 dx+

∫
2B

|uδ|γ+1η2k−2|∇η| dx

]

≤ cδ
1
2

[∫
2B

[
εδ

1
2 |uδ|γ|∇uδ|2η2k + ε−1δ−

1
2 |uδ|γη2k−2

]
dx

+

∫
2B

|uδ|γ+1η2k−2|∇η| dx

]
=: c

3∑
i=1

I i2 (3.31)
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where we also made use of Young’s inequality. Here ε > 0 is chosen sufficiently small such
that I12 can be absorbed on the l.h.s. of (3.28), I22 is uniformly bounded by assumption
and we discuss I32 similar as above supposing k > 1:

I32 ≤ cδ
1
2

[∫
2B

|uδ|γ+2η4k−4 dx

] 1
2
[∫

2B

|uδ|γ dx

] 1
2

≤ cδ
1
2

∫
2B

∣∣∣∇(|uδ| γ2+1η2k−2
)∣∣∣ dx

≤ cδ
1
2

∫
2B

[
|∇uδ||uδ|

γ
2 η2k−2 + |uδ|

γ
2
+1η2k−3|∇η|

]
dx

≤ cδ
1
2

[(∫
2B

|∇uδ|2 dx

) 1
2
(∫

2B

|uδ|γ dx

) 1
2

+

∫
2B

|uδ|γ dx

]
≤ c . (3.32)

Let us finally consider I3 from (3.27): it holds

I3 ≤ ε

∫
2B

|uδ|γ+2η2k dx+ c(ε)

∫
2B

|uδ|γ|f |2η2k dx ,

and using the boundedness of f as well as the uniform local higher integrability of |uδ|γ,
our claim (3.21) follows by choosing ε sufficiently small.
In the vector caseM > 1 we just need a counterpart for (3.23), the rest of our arguments

stays the same. Letting Fδ(Z) :=
δ
2
|Z|2 + F (Z) =: Φδ

(
|Z|
)
we have for ψ = |uδ|γuδ a.e.

DFδ(∇uδ) : ∇ψ =
Φ′

δ(|∇uδ|)
|∇uδ|

∇uδ : ∇ψ

=
Φ′

δ(|∇uδ|)
|∇uδ|

[
∂αu

i
δ∂αu

i
δ|uδ|γ + γ|uδ|γ−2[∂αu

i
δu

i
δ][∂αu

j
δu

j
δ]
]
. (3.33)

On account of
Φ′

δ(|Z|) ≥ 0 for all Z ∈ R2M

(compare the properties of Φ stated after (1.12)) we obtain

DFδ(∇uδ) : ∇ψ ≥ Φ′
δ(|∇uδ|)
|∇uδ|

∂αu
i
δ∂αu

i
δ|uδ|γ

= DFδ(∇uδ) : ∇uδ|uδ|γ (3.34)

from (3.33). Replacing (3.23) by (3.34) the proof is completed in the vector case as well. �

Proof of Theorem 3.1. Starting with γ = 2, Lemma 3.3 in particular implies that |uδ|
is in the space L4

loc(Ω) uniformly w.r.t. the parameter δ. Proceeding by induction, the
claim of Theorem 3.1 follows. �
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3.3 Conclusions from Caccioppoli’s inequality

The main ingredient for proving the higher weak differentiability results from Theorem 1.5
is Caccioppoli’s inequalitiy which as in Section 2 is based on the appropriate variant of the
differentiated form (2.4) of the Euler equation. Here we collect the main conclusions which
can be drawn from this inequality for the different linear growth cases under consideration.

In what follows we assume that the hypotheses of Therorem 1.4 are valid, the additional
assumptions concerning f and the values of µ will be specified from line to line. As usual
we work with the regularization introduced im Lemma 3.2, but for notational simplicity
we drop the index δ.

Instead of (2.7) we now have (1.11) and the counterpart of (2.8) reads as∫
2B

η2
|∇2u|2

(1 + |∇u|)µ
dx ≤ c(R) + 2

∫
2B

(u− f)∂α(η
2∂αu) dx , (3.35)

where – without a further explicit numeration of constants – we used the same notation
as in Section 2.1. Note that the constant c(R) on the r.h.s. can be calculated with the
help of the second inequality of Remark 1.5. We emphasize that all constants are uniform
in δ.

i) Assume that f locally is of class W 1
2 . In this case we may write for any ε > 0∫

2B

(u− f) · ∂α(η2∂αu) dx = −
∫
2B

|∇u|2η2 dx+
∫
2B

∂αf · ∂αuη2 dx

≤ −
∫
2B

|∇u|2η2 dx+ ε

∫
2B

η2|∇u|2 dx+ cε−1

∫
2B

η2|∇f |2 dx ,

i.e. choosing ε sufficiently small, (3.35) gives∫
2B

η2
|∇2u|2

(1 + |∇u|)µ
dx+

∫
2B

η2|∇u|2 dx ≤ c(R) (3.36)

for any µ > 1.

ii) For 1 < µ < 2 and just assuming the local boundedness of f we proceed as in
Section 2.1 and obtain instead of (2.11)∫

2B

η2
|∇2u|2

(1 + |∇u|)µ
dx+

∫
2B

η2|∇u|2 dx ≤ c(R) + c

[
1 +

∫
2B

η2|∇2u| dx

]
.

Now observe for any ε > 0∫
2B

η2|∇2u| dx ≤ ε

∫
2B

η2
|∇2u|2

(1 + |∇u|)µ
dx+ cε−1

∫
2B

η2(1 + |∇u|)µ dx ,
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thus for ε sufficiently small∫
2B

η2
|∇2u|2

(1 + |∇u|)µ
dx+

∫
2B

η2|∇u|2 dx ≤ c(R) + c

[
1 +

∫
2B

η2|∇u|µ dx

]
. (3.37)

Now, on account of µ < 2, we may apply Young’s inequality one more time and get
(3.36) for µ < 2 and locally bounded f as well.

iii) In the case µ ≥ 2 the best we can show is∫
2B

η2
|∇2u|2

(1 + |∇u|)µ
dx+

∫
2B

η2|∇u|2 dx

≤ c(R) + c

[
1 + ∥f∥∞

∫
2B

η2|∇u|µ dx

]
. (3.38)

Here the Dirichlet part on the l.h.s. does not provide any additional information at
all (see (31), p. 116, of [Bi1]).

If f ≡ 0, then (3.38) implies∫
2B

η2
|∇2u|2

(1 + |∇u|)µ
dx ≤ c(R) . (3.39)

Note that (3.39) exactly corresponds to Caccioppoli’s inequality valid for functionals
just depending on the gradient, i.e. for minimizers of the energy∫

Ω

F (∇w) dx

(compare [Bi1], Lemma 4.19, i) in the case s = 0). Once we have the version (3.39)
of Caccioppoli’s inequality, then we are led to (Ω∗ b Ω)∫

Ω∗
|∇u∗| ln2(1 + |∇u∗|2) ≤ c(Ω∗) <∞

up to the limit case µ = 3 (see [Bi2]), where u∗ is the solution of problem (1.18) or
of (1.18∗), respectively.

3.4 Proof of Theorems 1.5 and 1.6

Suppose that we have (3.1) – (3.3) for some parameter µ > 1, let u∗ ∈ BV(Ω;RM)
denote the solution of (1.18) or of (1.18∗) with associated regularizing sequence {uδ} as
in Lemma 3.2.
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Proof of Theorem 1.5. The claim of Theorem 1.5, i), (a) is an immediate consequence
of Theorem 3.1 combined with Corollary 3.1. If the function f is of class W 1

2,loc(Ω
∗;RM)

for some subdomain Ω∗ of Ω, then inequality (3.36) implies∫
2B

η2|∇uδ|2 dx ≤ c(R)

for disks 2B b Ω∗ and cut-off functions η, thus u∗ belongs toW 1
2,loc(Ω

∗;RM), and Theorem
1.5, i), (b) follows.
Since estimate (3.36) extends to the case of bounded functions f , provided we choose

µ ∈ (1, 2), we get the statement of part ii) in Theorem 1.5. The discussion of the limit
case µ = 2 is left to the reader. �

Remark 3.4 We conjecture that in the situation of Theorem 1.5, ii), minima even have
a higher degree of regularity, which may be verified along the lines of [BF1].

Remark 3.5 An inspection of the arguments used for the proof of Theorem 1.5, i), (a),
gives the following “global higher integrability” result, which is already in the spirit of
Theorem 1.8:
suppose that M = 1, let F satisfy (3.1) and assume that f ∈ L∞(Ω). Then the solution

of (1.18∗) is in the same space.
To see this, we choose η = 1 in the proof of Lemma 3.3 and get from (3.24) the inequality

(γ ≥ 2) ∫
Ω

|uδ|γ+2 dx ≤ ∥f∥L∞(Ω)

∫
Ω

|uδ|γ+1 dx ,

hence ∫
Ω

|uδ|γ+2 dx ≤ ∥f∥2L∞(Ω)

∫
Ω

|uδ|γ dx .

In order to justify this calculation we use the testfunction φ := (vk)
γuδ in (3.22) with

vk :=

{
|uδ| on [|uδ| ≤ k]
k on [|uδ| ≥ k] ,

k denoting a non-negative number.
Then φ is in the space W 1

2 (Ω) and thereby admissible in (3.22). Passing to the limit
k → ∞, the above estimates for uδ easily follow. Starting with γ = 2 iteration of the
inequalities leads to ∫

−
Ω

|uδ|2+2m dx ≤ ∥f∥2mL∞(Ω)

∫
−
Ω

|uδ|2 dx

for any m ∈ N, thus by passing to the limit m→ ∞

∥uδ∥L∞(Ω) ≤ ∥f∥L∞(Ω) ,
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and another application of Corollary 3.1 yields this bound also for the minimizer of (1.18∗).
It should be clear that, if we replace our assumption on f by the requirement that f ∈

Lt(Ω) for some “large” t, then a “finite iteration” leads to an improvement of the global
integrability of the solution of (1.18∗) up to the exponent t. This can be justified formally
by using the starting inequality (compare (3.24))∫

Ω

|uδ|γ+2 dx ≤
∫
Ω

|f ||uδ|γ+1 dx ,

from which we deduce∫
Ω

|uδ|γ+2 dx ≤ ε

∫
Ω

|uδ|(γ+1) t
t−1 dx+ c(ε)

∫
Ω

|f |t dx

valid for any ε > 0. If we choose γ = t − 2, then γ + 2 = (γ + 1)t/(t − 1), and we can
absorb the ε-term in the l.h.s. of the above inequality. This immediately implies uδ ∈ Lt(Ω)
uniformly in δ.

Proof of Theorem 1.6. Ad i). Consider a disk Br(x0) and a subregion Ω∗ such that
B2r(x0) b Ω∗ b Ω. We then easily obtain from the proof of Lemma 3.3 using the test
function φ = ηuδ and estimating terms involving uδ with the help of Theorem 3.1

|∇uδ|
(
Br(x0)

)
=

∫
Br(x0)

|∇uδ| dx ≤ c

[
1

r

∫
B2r(x0)−Br(x0)

|uδ| dx+
∫
B2r(x0)

|uδ| dx

]
≤ c(α,Ω∗)rα (3.40)

for any exponent α ∈ (0, 1). After passing to the limit δ → 0 we get from (3.40) the
inequality

|∇u∗|
(
Br(x0)

)
≤ c(α,Ω∗)rα , (3.41)

and (3.41) exactly is the desired estimate (1.19).
Ad ii). Suppose that u∗ = f on the open set Ω∗ ⊂ Ω. The arguments from i) now

applied on a subregion Ω̃ b Ω∗ lead to the estimate∫
Br(x0)

|∇uδ| dx ≤ c

[
1

r

∫
B2r(x0)−Br(x0)

|uδ| dx+
∫
B2r(x0)

|uδ| dx

]

for disks B2r(x0) b Ω̃. Using Corollary 3.1 as well as u∗ = f on Ω∗, we find

|∇u∗|
(
Br(x0)

)
≤ c

[
1

r

∫
B2r(x0)−Br(x0)

|f | dx+
∫
B2r(x0)

|f | dx

]
,

and the boundedness of f yields

|∇u∗|
(
Br(x0)

)
≤ c(Ω̃)r . (3.42)
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With (3.42) we have established (1.20), and (1.21) follows from (1.20) along the same
lines as (1.23) from (1.22) in part iii).
For iii) we just observe that the local boundedness of u implies the validity of (3.42) for

disks in an arbitrary subdomain Ω∗ with compact closure in Ω.
Consider a Borel set E ⊂ Ω∗. In case H1(E) = ∞ the desired estimate obviously

holds. Assume next that H1(E) < ∞. Then we select another domain Ω∗∗ such that
Ω∗ b Ω∗∗ b Ω and choose a finite collection of disks Bri(xi) ⊂ Ω∗∗ covering E and
satisfying

c
N∑
i=1

ri ≤ H1(E) + ε ,

where c denotes a positive constant and where ε > 0 is given. An application of (3.42)
(to disks contained in Ω∗∗) gives the claim of iii) after passing to the limit ε→ 0. �

4 Proof of Theorem 1.8

We start with claim a) and consider first the unconstrained logarithmic case with solution
u ∈ W 1

h (Ω). We have
J [u,Ω] ≤ J [v,Ω] (4.1)

with v := max{0, u}. Clearly it holds∫
Ω

h(|∇v|) dx ≤
∫
Ω

h(|∇u|) dx .

On the set [u ≥ 0] we have u− f = v − f , whereas on [u ≤ 0] we deduce from f ≥ 0

|v − f | = f ≤ |u− f | ,

hence ∫
Ω

(v − f)2 dx ≤
∫
Ω

(u− f)2 dx .

This shows
J [v,Ω] ≤ J [u,Ω]

and thereby v = u, which means u ≥ 0. Applying (4.1) to the choice v := min{1, u}, we
get that u ≤ 1.
In the case of linear growth we find along the same lines

0 ≤ uδ ≤ 1 , (4.2)

where uδ is the Iδ-minimizer on the whole space W 1
2 (Ω) (compare Lemma 3.2). Quoting

Theorem 1.7 we have proved (4.2) for the minimizer u as well.
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The proof of b) is in the spirit of the paper [BF3] (see also [BF6]). Let u denote the
solution of (1.18∗) with corresponding approximations uδ. Recalling our assumption that
L := ∥f∥L∞(Ω;RM ) <∞, we define the projection

π : RM → RM , π(y) :=

{
y if |y| ≤ L

L
y

|y|
if |y| ≥ L ,

and observe Lip(π) = 1, hence by the chain rule∣∣∇(π ◦ uδ)
∣∣ ≤ Lip(π)|∇uδ| = |∇uδ| ,

which means (Fδ(Z) :=
1
2
δ|Z|2 + Φ(|Z|), Z ∈ R2M)

Fδ

(
∇(π ◦ uδ)

)
≤ Fδ(∇uδ) .

An elementary calculations shows |π(uδ)− f | ≤ |uδ − f |, hence π ◦ uδ = uδ by the unique
solvability of the approximate problems. This gives |uδ| ≤ L, hence |u| ≤ L.
If we consider problem (1.18) with bounded trace u0, then the claim follows along the

same lines. �
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