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Abstract

Let u : R
2 → R

2 denote an entire solution of the homogeneous Euler-Lagrange
equation associated to the energy used in the deformation theory of plasticity with
logarithmic hardening. If |u(x)| is of slower growth than |x| as |x| → ∞, then u

must be constant. Moreover we show that u is affine if either supR2 |∇u| < ∞ or
lim sup
|x|→∞

|x|−1|u(x)| < ∞.

In their paper [FrSe] Frehse and Seregin propose to approximate the Hencky model used
in perfect plasticity (cf. [DL], [He] or [Kl]) by a variational problem formulated in terms
of the displacement fields, in which the energy density G(ε(u)) is of quadratic growth
with respect to the trace of ε(u) and of L log L-growth with respect to the deviator
εD(u) = ε(u)− 1

n
(div u)1 of ε(u). Here u is a displacement field defined on some region in

R
n, ε(u) denotes the symmetric part of the Jacobian matrix of u and 1 is the unit matrix.

Modulo physical constants we have in the case of logarithmic hardening

(1) G(ε) = h(|εD|) +
1

2
(trace ε)2

for symmetric (n × n)–matrices ε, where

(2) h(t) = t ln(1 + t), t ≥ 0 .

Frehse and Seregin discuss solvability of the associated boundary value problems in
suitable weak spaces and prove smoothness of local solutions at least in the case that
n = 2. Later Seregin and the first author (see [FuSe1]) established partial regularity in
the 3D case.

A related problem arises in the study of certain models describing the flow of generalized
Newtonian fluids, for which the stress-strain relation takes the form

(3) TD = DH(ε) .

If we let

(4) H(ε) = h(|ε|)

with h defined in equation (2), then (3) is the constitutive law for the so-called Prandtl–
Eyring fluid, which has been the subject of the paper [FuSe1] and also of the monograph
[FuSe2]. Very recently the authors discussed the behaviour of entire solutions of this fluid
model at least in the stationary case for two spatial variables and proved Liouville-type
results (see [FuZ]). The purpose of the present paper now is the investigation of planar
entire solutions in the setting of plasticity with logarithmic hardening.

Acknowledgement: The second author is supported by the Academy of Finland, project 127639.
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DEFINITION 1. A field u : R
2 → R

2 of class C1 is an entire local minimizer of the
energy

(5) I[v, Ω] =

∫

Ω

G(ε(v)) dx

with density G defined according to equations (1) and (2), if for any bounded domain
Ω ⊂ R

2 and all fields v : Ω → R
2 such that spt(u−v) is compactly contained in Ω it holds

I[u, Ω] ≤ I[v, Ω] .

REMARK 1. The smoothness assumption concerning u in Definition 1 is justified by
the results in [FrSe].

REMARK 2. If u is an entire local I-minimizer, then it holds

(6)

∫

Ω

DH(εD(u)) : εD(ϕ) dx +

∫

Ω

div u div ϕ dx = 0

for any domain Ω ⊂ R
2 and all fields ϕ ∈ C1

0(Ω; R2). In equation (6) the symbol “ : ” is
the scalar product of matrices and H is introduced in equation (4).

Now we can state our main results:

THEOREM 1. Let u : R
2 → R

2 denote an entire local I-minimizer (cf. equation (5))
in the sense of Definition 1. If u satisfies the asymptotic condition

(7) lim
|x|→∞

|u(x)|
|x| = 0 ,

then the displacement field u is a constant vector. In particular, the boundedness of the
field implies its constancy.

The next theorem concerns entire solutions satisfying a global Lipschitz condition:

THEOREM 2. Consider an entire local I-minimizer u : R
2 → R

2 in the sense of
Definition1. If we know that |∇u| ∈ L∞(R2), then u must be affine.

Finally we relax the global boundedness of the gradient by imposing a growth condition
on u:

THEOREM 3. If the entire local I-minimizer u : R
2 → R

2 satisfies lim sup
|x|→∞

|x|−1|u(x)| <

∞, then u must be affine.

REMARK 3. It would be interesting to know what can be said about entire solutions in
the 3D-case. Due to the lack of regularity (cf. [FuSe1,2]) one either has to deal with weak
local minimizers or the smoothness of u has to be imposed as a severe extra condition. In
the latter case we think that for n = 3 condition (7) has to be replaced by lim

|x|→∞

|u(x)|√
|x|

= 0

in order to obtain the constancy of u, and this conclusion probably also holds in the case
that lim sup

|x|→∞

|u(x)|√
|x|

< ∞ (compare the proof of Theorem 3).
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For the proof of Theorem 1 we need two auxiliary results:

Lemma 1. (Korn-type inequality)
For fields v : R

2 → R
2 with compact support it holds

(8)

∫

R2

|∇v|2 dx ≤ 2

∫

R2

|εD(v)|2 dx .

Korn-type inequalities involving εD have been established by Reshetnyak [Re] in a much
more general setting. Recently Dain rediscovered these estimates in the L2-setting (see
[Da]), and the first author together with Bildhauer proved variants in the context of
Orlicz-Sobolev spaces (cf. [FuB]).

The next lemma is essentially due to Giaquinta and Modica (compare Lemma 0.5 in
[GM]), in the formulation given below it corresponds to Lemma 3.1 in [FuZ].

Lemma 2. Let f , f1, . . ., fℓ denote non-negative functions from the space L1
loc(R

2) and
suppose that we are given exponents α1, . . . , αℓ > 0. Then we can find a number δ0 > 0
depending on α1, . . . , αℓ as follows: if for δ ∈ (0, δ0) it is possible to calculate a constant
c(δ) > 0 such that the inequality

∫

QR(z)

f dx ≤ δ

∫

Q2R(z)

f dx + c(δ)

ℓ
∑

j=1

R−αj

∫

Q2R(z)

fj dx

holds for any choice of QR(z) := {x ∈ R
2 : |xi−zi| < R, i = 1, 2}, then there is a constant

c > 0 with the property

∫

QR(z)

f dx ≤ c
ℓ

∑

j=1

R−αj

∫

Q2R(z)

fj dx

again for all squares QR(z).

REMARK 4. Of course Lemma 2 extends to R
n, n ≥ 3, replacing squares by cubes, and

it is easy to see that estimate (8) remains valid in higher dimensions.

Now we pass to the proof of Theorem 1 proceeding in several steps.

Step 1. a growth estimate for the energy

We fix a square Q2R(x0) and choose η ∈ C1
0(Q2R(x0)) such that η = 1 on QR(x0), 0 ≤ η ≤

1, |∇η| ≤ c/R. Then we apply equation (6) by selecting ϕ = η2u. We get with H defined
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in (4)
∫

Q2R(x0)

η2DH
(

εD(u)
)

: εD(u) dx +

∫

Q2R(x0)

η2(div u)2 dx(9)

= −2

∫

Q2R(x0)

ηDH
(

εD(u)
)

: (∇η ⊗ u)D dx − 2

∫

Q2R(x0)

η div u∇η · u dx

≤ c

[∫

Q2R(x0)

ηh′
(

|εD(u)|
)

|∇η||u| dx +

∫

Q2R(x0)

η| div u||∇η||u| dx

]

.

Using Young’s inequality we obtain for any δ > 0

ηh′
(

|εD(u)|
)

|∇η||u| ≤ δη2h′
(

|εD(u)|
)

|εD(u)| + δ−1|∇η|2 h′(|εD(u)|)
|εD(u)|

|u|2 ,

η| div u||∇η||u| ≤ δη2(div u)2 + δ−1|∇η|2|u|2 .

Inserting these estimates in inequality (9) observing that h′(t)
t

≤ 2, we deduce after ap-
propriate choice of δ and recalling the properties of η

(10)

∫

QR(x0)

G (ε(u)) dx =

∫

QR(x0)

[

H
(

εD(u)
)

+
1

2
(div u)2

]

dx

≤ cR−2

∫

Q2R(x0)−QR(x0)

|u|2 dx .

In particular, if we choose x0 = 0 and abbreviate

Θ(R) := sup
{

|x|−1|u(x)| : x ∈ R
2 − QR

}

,

then (10) implies

(11)

∫

QR

G (ε(u)) dx ≤ cR2Θ(R)2

with lim
R→∞

Θ(R) = 0 according to our hypothesis (7).

Step 2. discussion of the second derivatives

Returning to equation (6) and performing an integration by parts we get for α = 1, 2 and
ϕ ∈ C1

0(Q 3

2
R(x0))

(12) 0 =

∫

Q 3
2

R
(x0)

D2H
(

εD(u)
) (

εD(∂αu), εD(ϕ)
)

dx +

∫

Q 3
2

R
(x0)

div(∂αu) div ϕ dx .

In equation (12) we choose ϕ = η2∂αu (from now on summation with respect to α = 1, 2),
where η is as in Step 1 with 2R replaced by 3

2
R. From (12) we easily obtain by applying

the Cauchy-Schwarz inequality to the quantity

D2H
(

εD(u)
) (

ηεD(∂αu), (∇η ⊗ ∂αu)D
)
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and appropriate use of Young’s inequality (observing the boundedness of |D2H(εD(u))|)
∫

Q 3
2

R
(x0)

D2H
(

∂αεD(u), ∂αεD(u)
)

η2 dx

+

∫

Q 3
2

R
(x0)

η2|∇(div u)|2 dx ≤ c

∫

Q 3
2

R
(x0)

|∇η|2|∇u|2 dx ,

hence by the properties of η
∫

QR(x0)

D2H
(

εD(u)
) (

εD(∂αu), εD(∂αu)
)

dx(13)

+

∫

QR(x0)

|∇(div u)|2 dx ≤ cR−2

∫

Q 3
2

R
(x0)

|∇u|2 dx ,

and inequality (13) holds for all squares QR(x0). Note that (13) implies that entire local
minimizers having finite Dirichlet integral must be affine. This follows by letting R → ∞
and observing that on the right-hand side of (13) the domain of integration can be replaced
by Q 3

2
R(x0) − QR(x0). In order to control

∫

Q 3
2

R
(x0)

|∇u|2 dx we choose Ψ ∈ C1
0 (Q2R(x0))

such that 0 ≤ Ψ ≤ 1, Ψ = 1 on Q 3

2
R(x0) and |∇Ψ| ≤ c/R. From estimate (8) in Lemma

1 we obtain
∫

Q 3
2

R
(x0)

|∇u|2 dx ≤ c

[
∫

Q2R(x0)

|∇(Ψu)|2 dx +

∫

Q2R(x0)

|∇Ψ|2|u|2 dx

]

≤ c

[
∫

Q2R(x0)

|εD(Ψu)|2 dx +

∫

Q2R(x0)

|∇Ψ|2|u|2 dx

]

≤ c

[
∫

Q2R(x0)

Ψ2|εD(u)|2 dx + R−2

∫

Q2R(x0)

|u|2 dx

]

or by the support properties of Ψ

(14)

∫

Q 3
2

R
(x0)

|∇u|2 dx ≤ c





∫

Q2R(x0)

Ψ2|εD(u)|2 dx + R−2

∫

Q2R(x0)−Q 3
2

R
(x0)

|u|2 dx



 .

In order to proceed we observe

εD
ij(u) =

1

2

(

∂uj

∂xi
+

∂ui

∂xj

)

− 1

2
(div u)δij ,

hence by the symmetry of εD(u) and the fact that εD
ij (u)δij = 0

∫

Q2R(x0)

Ψ2|εD(u)|2 dx

=
1

2

∫

Q2R(x0)

Ψ2

{(

∂ui

∂xj
+

∂uj

∂xi

)

− (div u)δij

}

εD
ij (u) dx

= −
∫

Q2R(x0)

∂i

(

Ψ2εD
ij (u)

)

uj dx .

5



This yields
∫

Q2R(x0)

Ψ2|εD(u)|2 dx ≤ c

[
∫

Q2R(x0)

|∇Ψ2||u||εD(u)| dx

+

∫

Q2R(x0)

Ψ2|∇εD(u)||u| dx

]

≤ c

[

R−1

∫

Q2R(x0)

|u||εD(u)| dx + δ

∫

Q2R(x0)

|∇εD(u)|2
1 + |εD(u)| dx

+δ−1

∫

Q2R(x0)

|u|2
(

1 + |εD(u)|
)

dx

]

.

Let ω := D2H
(

εD(u)
) (

∂αεD(u), ∂αεD(u)
)

. If we combine (13), (14) and the inequalities
from above, we obtain for any δ > 0 and all squares QR(x0)

∫

QR(x0)

ω dx +

∫

QR(x0)

|∇(div u)|2 dx(15)

≤ c

[

R−4

∫

Q2R(x0)

|u|2 dx + R−2δ

∫

Q2R(x0)

ω dx

+R−3

∫

Q2R(x0)

|u||εD(u)| dx + R−2δ−1

∫

Q2R(x0)

|u|2
(

1 + |εD(u)|
)

dx

]

.

Replacing δ by δ′R2 an application of Lemma 2 yields
∫

QR(x0)

ω dx +

∫

QR(x0)

|∇(div u)|2 dx(15’)

≤ c

[

R−4

∫

Q2R(x0)

|u|2 dx + R−3

∫

Q2R(x0)

|u||εD(u)| dx

+R−4

∫

Q2R(x0)

|u|2
(

1 + |εD(u)|
)

dx

]

.

Let x0 = 0 and R ≥ 1. From our hypothesis (7) we obtain |u(x)| ≤ cR on Q2R. Therefore
(15’) implies

(16)

∫

QR

ω dx +

∫

QR

|∇(div u)|2 dx ≤ c

[

R−4R4 + R−2

∫

Q2R

|εD(u)| dx

]

.

Clearly we have
(

Q+ := Q2R ∩
[

|εD(u)| ≥ 1
]

, Q− := . . .
)

∫

Q2R

|εD(u)| dx =

∫

Q+

|εD(u)| dx +

∫

Q−

|εD(u)| dx

≤
(

∫

Q−

1 dx

)1/2 (
∫

Q−

|εD(u)|2 dx

)1/2

+
1

ln 2

∫

Q+

H
(

εD(u)
)

dx

≤ cR

(
∫

Q2R

H
(

εD(u)
)

dx

)1/2

+
1

ln 2

∫

Q2R

H
(

εD(u)
)

dx ,
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and if we use (10), we find

(17)

∫

Q2R

|εD(u)| dx ≤ cR2 .

This shows that the right-hand side of (16) stays bounded as R → ∞, which means

(18)

∫

R2

ω dx +

∫

R2

|∇(div u)|2 dx < ∞ .

Step 3. conclusion

We claim that the integral in (18) vanishes. In order to prove this we choose x0 = 0 and
return to inequality (13) recalling that in place of (13) we actually have

∫

QR

|∇ (div u) |2 dx +

∫

QR

ω dx ≤ cR−2

∫

Q 3
2

R
−QR

|∇u|2 dx .

Let Ψ ∈ C1
0 (Q2R − QR/2) such that 0 ≤ Ψ ≤ 1 and Ψ = 1 on Q 3

2
R − QR together with

|∇Ψ| ≤ c/R. Observing

∫

Q 3
2

R
−QR

|∇u|2 dx ≤ c

[

∫

Q2R−QR/2

|∇(Ψu)|2 dx + R−2

∫

Q2R−QR/2

|u|2 dx

]

we obtain a variant of (14), in which now the term
∫

Q2R−QR/2

Ψ2|εD(u)|2 dx occurs on the

right-hand side. Proceeding as before we get in place of (15)
∫

QR

ω dx +

∫

QR

|∇(div u)|2 dx(19)

≤ c

[

R−4

∫

Q2R−QR/2

|u|2 dx + R−2δ

∫

Q2R−QR/2

ω dx

+R−3

∫

Q2R−QR/2

|u||εD(u)| dx + R−2δ−1

∫

Q2R−QR/2

|u|2
(

1 + |εD(u)|
)

dx

]

.

Let δ := 1
2c

R2. Inequality (19) then yields
∫

QR

ω dx +

∫

QR

|∇(div u)|2 dx ≤ 1

2

∫

Q2R−QR/2

ω dx(20)

+c

[

Θ2(R/2) + Θ(R/2)R−2

∫

Q2R

|εD(u)| dx

+Θ2(R/2)R−2

∫

Q2R

(

1 + |εD(u)|
)

dx

]

,
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and if we use (17) and (18) together with the hypothesis that lim
R→∞

Θ(R) = 0, estimate

(20) implies after passing to the limit R → ∞ that ω as well as ∇(div u) must vanish,
thus ∇ε(u) ≡ 0. But then it holds ∇2u ≡ 0, which means that u is affine and thereby
constant on account of our assumption (7). This completes the proof of Theorem 1.

For proving Theorem 2 we observe that boundedness of |∇u| implies the estimate

|u(x)| ≤ cR, x ∈ Q2R ,

provided R ≥ 1. Using this information we again arrive at inequality (18), and this
estimate can be restated in the form (recall (1) and (2))

∫

R2

D2G(ε(u))(∂αε(u), ∂αε(u)) dx < ∞ .

Note that this is also a direct consequence of estimate (13). Using |∇2u| ≤ c|∇ε(u)|
together with the boundedness of ε(u) we get

(21)

∫

R2

∣

∣∇2u
∣

∣

2
dx < ∞ .

Similar to equation (12) it holds (α = 1, 2)

0 =

∫

Q2R

D2G(ε(u)) (∂αε(u), ε(ϕ)) dx ,

and we may choose ϕ = η2∂αu with η ∈ C1
0 (Q2R) such that η = 1 on QR, 0 ≤ η ≤ 1 and

|∇η| ≤ c/R . We get

∫

Q2R

D2G(ε(u)) (∂αε(u), ∂αε(u)) η2 dx

= −2

∫

Q2R−QR

D2G (ε(u)) (∂αε(u),∇η ⊗ ∂αu) η dx ,

and the boundedness of ε(u) yields (recall |∇2u| ≤ c|∇ε(u)|)
∫

QR

|∇2u|2 dx ≤ cR−1

∫

Q2R−QR

|∇2u||∇u| dx

≤ cR−1

(
∫

Q2R−QR

∣

∣∇2u
∣

∣

2
dx

)1/2 (
∫

Q2R−QR

|∇u|2 dx

)1/2

,

hence by the boundedness of the gradient

(22)

∫

QR

∣

∣∇2u
∣

∣

2
dx ≤ c

(∫

Q2R−QR

∣

∣∇2u
∣

∣

2
dx

)1/2

.
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On account of (21) the right-hand side of (22) vanishes as R → ∞, thus ∇2u ≡ 0, which
proves Theorem 2.

�

Let us finally discuss the proof of Theorem 3. As remarked in the beginning of the
proof of Theorem 2 the growth condition imposed now on u is still sufficient to get

(23)

∫

R2

D2G (ε(u)) (∂αε(u), ∂αε(u)) dx < ∞ .

We return to equation (12) choosing x0 = 0, R ≥ 1, and select η as done after (12). The
Cauchy-Schwarz inequality together with Hölder’s estimate implies (ξα := ∂αu ⊗∇η2)

∫

QR

D2G (ε(u)) (∂αε(u), ∂αε(u)) dx

=

∫

QR

ω dx +

∫

QR

|∇(div u)|2 dx

≤ c











∫

Q 3
2

R
−QR

ω dx





1/2 



∫

Q 3
2

R
−QR

D2H
(

εD(u)
) (

ξD
α , ξD

α

)

dx





1/2

+





∫

Q 3
2

R
−QR

|∇(div u)|2 dx





1/2 



∫

Q 3
2

R
−QR

|∇u|2|∇η|2 dx





1/2





,

hence we find
∫

QR

ω dx +

∫

QR

|∇(div u)|2 dx(24)

≤ cR−1





∫

Q 3
2

R
−QR

|∇u|2 dx





1/2 





∫

Q 3
2

R
−QR

ω dx +

∫

Q 3
2

R
−QR

|∇(div u)|2 dx







1/2

,

and with (23) and (24) our claim will follow by letting R → ∞ as soon as we can show

(25)

∫

QR

|∇u|2 dx ≤ cR2

for all R ≥ 1. For proving (25) we recall that by (14) it holds

(26)

∫

Q 3
2

R

|∇u|2 dx ≤ c







∫

Q2R

Ψ2
∣

∣εD(u)
∣

∣

2
dx + R−2

∫

Q2R−Q 3
2

R

|u|2 dx







with Ψ defined after (13), and from (26) in combination with our growth assumption

imposed on u we infer that it remains to bound the quantity
∫

Q2R
Ψ2

∣

∣εD(u)
∣

∣

2
dx in terms

9



of R2. Proceeding as done after inequality (14) we find
∫

Q2R

Ψ2
∣

∣εD(u)
∣

∣

2
dx ≤ c

{
∫

Q2R

|∇Ψ2||u||εD(u)| dx

+

∫

Q2R

Ψ2|u||∇εD(u)| dx

}

≤ c

{

1

R

∫

Q2R

|u||εD(u)| dx +

(
∫

Q2R

|∇εD(u)|2
1 + |εD(u)| dx

)1/2

·
(

∫

Q2R

|u|2
(

1 + |εD(u)|
)

dx

)1/2
}

.

On Q2R it holds |u(x)| ≤ cR, hence

(27)

∫

Q2R

Ψ2
∣

∣εD(u)
∣

∣

2
dx ≤ c

{

∫

Q2R

∣

∣εD(u)
∣

∣ dx + R

(
∫

Q2R

(

1 + |εD(u)|
)

dx

)1/2
}

,

where we also made use of (23) to bound the term involving ∇εD(u). The discussion
following inequality (16) shows

(28)

∫

Q2R

∣

∣εD(u)
∣

∣ dx ≤ cR

(
∫

Q2R

H
(

εD(u)
)

dx

)1/2

+
1

ln 2

∫

Q2R

H
(

εD(u)
)

dx ,

and if we go back to estimate (10) (being valid without any growth hypothesis imposed
on u) we find that now this inequality yields

(29)

∫

Q2R

H
(

εD(u)
)

dx ≤ cR2 .

Finally, we combine the inequalities (28) and (29) with the result that

(30)

∫

Q2R

∣

∣εD(u)
∣

∣ dx ≤ cR2 ,

and we see that (27) and (30) imply the correct bound for
∫

Q2R
Ψ2

∣

∣εD(u)
∣

∣

2
dx. Thus we

have established (25) and the proof of Theorem 3 is complete.
�

REMARK 5. We leave it to the reader to discuss Theorem 1, 2 and 3 for nonlinear
Hencky materials, which means that the energy density from equation (1) is replaced by

W (ε) := Φ
(

|εD|
)

+
1

2
(tr ε)2

for a “general” N-function Φ (compare, e.g. [Ad] for a definition). We refer to the
article [BF], where one will find natural hypotheses to be imposed on Φ under which one
can expect a Liouville-type result.
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