Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 294

On Entire Solutions Of The Equations For The Displacement Fields In The Deformation Theory Of Plasticity With Logarithmic Hardening

Martin Fuchs and Guo Zhang

Saarbrücken 2011

On Entire Solutions Of The Equations For The Displacement Fields In The Deformation Theory Of Plasticity With Logarithmic Hardening

Martin Fuchs

Saarland University Dep. of Mathematics P.O. Box 15 11 50 D-66041 Saarbrücken Germany fuchs@math.uni-sb.de

Guo Zhang

University of Jyväskylä Dept. of Mathematics and Statistics P.O. Box 35 (MaD) FI.-40014 University of Jyväskylä Finland guo.g.zhang@jyu.fi

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/ AMS Classification: 35 J 50, 35 Q 72, 74 C.

Keywords: plasticity, logarithmic hardening, deformation theory, entire solutions.

Abstract

Let $u : \mathbb{R}^2 \to \mathbb{R}^2$ denote an entire solution of the homogeneous Euler-Lagrange equation associated to the energy used in the deformation theory of plasticity with logarithmic hardening. If |u(x)| is of slower growth than |x| as $|x| \to \infty$, then umust be constant. Moreover we show that u is affine if either $\sup_{\mathbb{R}^2} |\nabla u| < \infty$ or $\limsup_{|x|\to\infty} |x|^{-1} |u(x)| < \infty$.

In their paper [FrSe] Frehse and Seregin propose to approximate the Hencky model used in perfect plasticity (cf. [DL], [He] or [Kl]) by a variational problem formulated in terms of the displacement fields, in which the energy density $G(\varepsilon(u))$ is of quadratic growth with respect to the trace of $\varepsilon(u)$ and of $L \log L$ -growth with respect to the deviator $\varepsilon^{D}(u) = \varepsilon(u) - \frac{1}{n}(\operatorname{div} u)\mathbf{1}$ of $\varepsilon(u)$. Here u is a displacement field defined on some region in $\mathbb{R}^{n}, \varepsilon(u)$ denotes the symmetric part of the Jacobian matrix of u and $\mathbf{1}$ is the unit matrix. Modulo physical constants we have in the case of logarithmic hardening

(1)
$$G(\varepsilon) = h(|\varepsilon^D|) + \frac{1}{2} (\text{trace } \varepsilon)^2$$

for symmetric $(n \times n)$ -matrices ε , where

(2)
$$h(t) = t \ln(1+t), \ t \ge 0.$$

Frehse and Seregin discuss solvability of the associated boundary value problems in suitable weak spaces and prove smoothness of local solutions at least in the case that n = 2. Later Seregin and the first author (see [FuSe1]) established partial regularity in the 3D case.

A related problem arises in the study of certain models describing the flow of generalized Newtonian fluids, for which the stress-strain relation takes the form

(3)
$$T^D = DH(\varepsilon).$$

If we let

(4)
$$H(\varepsilon) = h(|\varepsilon|)$$

with h defined in equation (2), then (3) is the constitutive law for the so-called Prandtl– Eyring fluid, which has been the subject of the paper [FuSe1] and also of the monograph [FuSe2]. Very recently the authors discussed the behaviour of entire solutions of this fluid model at least in the stationary case for two spatial variables and proved Liouville-type results (see [FuZ]). The purpose of the present paper now is the investigation of planar entire solutions in the setting of plasticity with logarithmic hardening.

Acknowledgement: The second author is supported by the Academy of Finland, project 127639.

DEFINITION 1. A field $u : \mathbb{R}^2 \to \mathbb{R}^2$ of class C^1 is an entire local minimizer of the energy

(5)
$$I[v,\Omega] = \int_{\Omega} G(\varepsilon(v)) \, dx$$

with density G defined according to equations (1) and (2), if for any bounded domain $\Omega \subset \mathbb{R}^2$ and all fields $v : \Omega \to \mathbb{R}^2$ such that $\operatorname{spt}(u-v)$ is compactly contained in Ω it holds

 $I[u,\Omega] \le I[v,\Omega] \,.$

REMARK 1. The smoothness assumption concerning u in Definition 1 is justified by the results in [FrSe].

REMARK 2. If u is an entire local I-minimizer, then it holds

(6)
$$\int_{\Omega} DH(\varepsilon^{D}(u)) : \varepsilon^{D}(\varphi) \, dx + \int_{\Omega} \operatorname{div} u \operatorname{div} \varphi \, dx = 0$$

for any domain $\Omega \subset \mathbb{R}^2$ and all fields $\varphi \in C_0^1(\Omega; \mathbb{R}^2)$. In equation (6) the symbol ":" is the scalar product of matrices and H is introduced in equation (4).

Now we can state our main results:

THEOREM 1. Let $u : \mathbb{R}^2 \to \mathbb{R}^2$ denote an entire local *I*-minimizer (cf. equation (5)) in the sense of Definition 1. If u satisfies the asymptotic condition

(7)
$$\lim_{|x|\to\infty}\frac{|u(x)|}{|x|} = 0,$$

then the displacement field u is a constant vector. In particular, the boundedness of the field implies its constancy.

The next theorem concerns entire solutions satisfying a global Lipschitz condition:

THEOREM 2. Consider an entire local *I*-minimizer $u : \mathbb{R}^2 \to \mathbb{R}^2$ in the sense of Definition1. If we know that $|\nabla u| \in L^{\infty}(\mathbb{R}^2)$, then u must be affine.

Finally we relax the global boundedness of the gradient by imposing a growth condition on u:

THEOREM 3. If the entire local *I*-minimizer $u : \mathbb{R}^2 \to \mathbb{R}^2$ satisfies $\limsup_{|x|\to\infty} |x|^{-1}|u(x)| < \infty$, then u must be affine.

 ∞ , then u must be affine.

REMARK 3. It would be interesting to know what can be said about entire solutions in the 3D-case. Due to the lack of regularity (cf. [FuSe1,2]) one either has to deal with weak local minimizers or the smoothness of u has to be imposed as a severe extra condition. In the latter case we think that for n = 3 condition (7) has to be replaced by $\lim_{|x|\to\infty} \frac{|u(x)|}{\sqrt{|x|}} = 0$ in order to obtain the constancy of u, and this conclusion probably also holds in the case that $\limsup_{|x|\to\infty} \frac{|u(x)|}{\sqrt{|x|}} < \infty$ (compare the proof of Theorem 3).

For the proof of Theorem 1 we need two auxiliary results:

Lemma 1. (Korn-type inequality) For fields $v : \mathbb{R}^2 \to \mathbb{R}^2$ with compact support it holds

(8)
$$\int_{\mathbb{R}^2} |\nabla v|^2 \, dx \le 2 \int_{\mathbb{R}^2} |\varepsilon^D(v)|^2 \, dx \, .$$

Korn-type inequalities involving ε^D have been established by Reshetnyak [Re] in a much more general setting. Recently Dain rediscovered these estimates in the L^2 -setting (see [Da]), and the first author together with Bildhauer proved variants in the context of Orlicz-Sobolev spaces (cf. [FuB]).

The next lemma is essentially due to Giaquinta and Modica (compare Lemma 0.5 in [GM]), in the formulation given below it corresponds to Lemma 3.1 in [FuZ].

Lemma 2. Let f, f_1, \ldots, f_{ℓ} denote non-negative functions from the space $L^1_{loc}(\mathbb{R}^2)$ and suppose that we are given exponents $\alpha_1, \ldots, \alpha_{\ell} > 0$. Then we can find a number $\delta_0 > 0$ depending on $\alpha_1, \ldots, \alpha_{\ell}$ as follows: if for $\delta \in (0, \delta_0)$ it is possible to calculate a constant $c(\delta) > 0$ such that the inequality

$$\int_{Q_R(z)} f \, dx \le \delta \int_{Q_{2R}(z)} f \, dx + c(\delta) \sum_{j=1}^{\ell} R^{-\alpha_j} \int_{Q_{2R}(z)} f_j \, dx$$

holds for any choice of $Q_R(z) := \{x \in \mathbb{R}^2 : |x_i - z_i| < R, i = 1, 2\}$, then there is a constant c > 0 with the property

$$\int_{Q_R(z)} f \, dx \le c \sum_{j=1}^{\ell} R^{-\alpha_j} \int_{Q_{2R}(z)} f_j \, dx$$

again for all squares $Q_R(z)$.

REMARK 4. Of course Lemma 2 extends to \mathbb{R}^n , $n \ge 3$, replacing squares by cubes, and it is easy to see that estimate (8) remains valid in higher dimensions.

Now we pass to the **proof of Theorem 1** proceeding in several steps.

Step 1. a growth estimate for the energy

We fix a square $Q_{2R}(x_0)$ and choose $\eta \in C_0^1(Q_{2R}(x_0))$ such that $\eta = 1$ on $Q_R(x_0), 0 \le \eta \le 1, |\nabla \eta| \le c/R$. Then we apply equation (6) by selecting $\varphi = \eta^2 u$. We get with H defined

in (4)

$$(9) \qquad \int_{Q_{2R}(x_0)} \eta^2 DH\left(\varepsilon^D(u)\right) : \varepsilon^D(u) \, dx + \int_{Q_{2R}(x_0)} \eta^2 (\operatorname{div} u)^2 \, dx$$
$$= -2 \int_{Q_{2R}(x_0)} \eta DH\left(\varepsilon^D(u)\right) : (\nabla \eta \otimes u)^D \, dx - 2 \int_{Q_{2R}(x_0)} \eta \operatorname{div} u \nabla \eta \cdot u \, dx$$
$$\leq c \left[\int_{Q_{2R}(x_0)} \eta h'\left(|\varepsilon^D(u)|\right) |\nabla \eta| |u| \, dx + \int_{Q_{2R}(x_0)} \eta |\operatorname{div} u| |\nabla \eta| |u| \, dx \right].$$

Using Young's inequality we obtain for any $\delta > 0$

$$\begin{split} \eta h'\left(|\varepsilon^{D}(u)|\right)|\nabla \eta||u| &\leq \delta \eta^{2} h'\left(|\varepsilon^{D}(u)|\right)|\varepsilon^{D}(u)| + \delta^{-1}|\nabla \eta|^{2} \frac{h'(|\varepsilon^{D}(u)|)}{|\varepsilon^{D}(u)|}|u|^{2},\\ \eta|\operatorname{div} u||\nabla \eta||u| &\leq \delta \eta^{2}(\operatorname{div} u)^{2} + \delta^{-1}|\nabla \eta|^{2}|u|^{2}. \end{split}$$

Inserting these estimates in inequality (9) observing that $\frac{h'(t)}{t} \leq 2$, we deduce after appropriate choice of δ and recalling the properties of η

(10)
$$\int_{Q_R(x_0)} G(\varepsilon(u)) \, dx = \int_{Q_R(x_0)} \left[H\left(\varepsilon^D(u)\right) + \frac{1}{2} \left(\operatorname{div} u\right)^2 \right] \, dx \\ \leq c R^{-2} \int_{Q_{2R}(x_0) - \overline{Q}_R(x_0)} |u|^2 \, dx \, .$$

In particular, if we choose $x_0 = 0$ and abbreviate

$$\Theta(R) := \sup\left\{ |x|^{-1} |u(x)| : x \in \mathbb{R}^2 - \overline{Q}_R \right\} ,$$

then (10) implies

(11)
$$\int_{Q_R} G(\varepsilon(u)) \, dx \le cR^2 \Theta(R)^2$$

with $\lim_{R\to\infty} \Theta(R) = 0$ according to our hypothesis (7).

Step 2. discussion of the second derivatives

Returning to equation (6) and performing an integration by parts we get for $\alpha = 1, 2$ and $\varphi \in C_0^1(Q_{\frac{3}{2}R}(x_0))$

(12)
$$0 = \int_{Q_{\frac{3}{2}R}(x_0)} D^2 H\left(\varepsilon^D(u)\right) \left(\varepsilon^D(\partial_\alpha u), \varepsilon^D(\varphi)\right) \, dx + \int_{Q_{\frac{3}{2}R}(x_0)} \operatorname{div}(\partial_\alpha u) \operatorname{div}\varphi \, dx \, .$$

In equation (12) we choose $\varphi = \eta^2 \partial_{\alpha} u$ (from now on summation with respect to $\alpha = 1, 2$), where η is as in Step 1 with 2*R* replaced by $\frac{3}{2}R$. From (12) we easily obtain by applying the Cauchy-Schwarz inequality to the quantity

$$D^{2}H\left(\varepsilon^{D}(u)\right)\left(\eta\varepsilon^{D}(\partial_{\alpha}u),\,(\nabla\eta\otimes\partial_{\alpha}u)^{D}\right)$$

and appropriate use of Young's inequality (observing the boundedness of $|D^2H(\varepsilon^D(u))|)$

$$\int_{Q_{\frac{3}{2}R}(x_0)} D^2 H\left(\partial_\alpha \varepsilon^D(u), \partial_\alpha \varepsilon^D(u)\right) \eta^2 dx + \int_{Q_{\frac{3}{2}R}(x_0)} \eta^2 |\nabla(\operatorname{div} u)|^2 dx \le c \int_{Q_{\frac{3}{2}R}(x_0)} |\nabla \eta|^2 |\nabla u|^2 dx,$$

hence by the properties of η

(13)
$$\int_{Q_R(x_0)} D^2 H\left(\varepsilon^D(u)\right) \left(\varepsilon^D(\partial_\alpha u), \varepsilon^D(\partial_\alpha u)\right) dx + \int_{Q_R(x_0)} |\nabla(\operatorname{div} u)|^2 dx \le cR^{-2} \int_{Q_{\frac{3}{2}R}(x_0)} |\nabla u|^2 dx ,$$

and inequality (13) holds for all squares $Q_R(x_0)$. Note that (13) implies that entire local minimizers having finite Dirichlet integral must be affine. This follows by letting $R \to \infty$ and observing that on the right-hand side of (13) the domain of integration can be replaced by $Q_{\frac{3}{2}R}(x_0) - \overline{Q_R(x_0)}$. In order to control $\int_{Q_{\frac{3}{2}R}(x_0)} |\nabla u|^2 dx$ we choose $\Psi \in C_0^1(Q_{2R}(x_0))$ such that $0 \le \Psi \le 1$, $\Psi = 1$ on $Q_{\frac{3}{2}R}(x_0)$ and $|\nabla \Psi| \le c/R$. From estimate (8) in Lemma 1 we obtain

$$\begin{split} &\int_{Q_{\frac{3}{2}R}(x_0)} |\nabla u|^2 \, dx \le c \left[\int_{Q_{2R}(x_0)} |\nabla (\Psi u)|^2 \, dx + \int_{Q_{2R}(x_0)} |\nabla \Psi|^2 |u|^2 \, dx \right] \\ &\le c \left[\int_{Q_{2R}(x_0)} |\varepsilon^D (\Psi u)|^2 \, dx + \int_{Q_{2R}(x_0)} |\nabla \Psi|^2 |u|^2 \, dx \right] \\ &\le c \left[\int_{Q_{2R}(x_0)} \Psi^2 |\varepsilon^D (u)|^2 \, dx + R^{-2} \int_{Q_{2R}(x_0)} |u|^2 \, dx \right] \end{split}$$

or by the support properties of Ψ

(14)
$$\int_{Q_{\frac{3}{2}R}(x_0)} |\nabla u|^2 \, dx \le c \left[\int_{Q_{2R}(x_0)} \Psi^2 |\varepsilon^D(u)|^2 \, dx + R^{-2} \int_{Q_{2R}(x_0) - \overline{Q_{\frac{3}{2}R}(x_0)}} |u|^2 \, dx \right]$$

In order to proceed we observe

$$\varepsilon_{ij}^D(u) = \frac{1}{2} \left(\frac{\partial u^j}{\partial x_i} + \frac{\partial u^i}{\partial x_j} \right) - \frac{1}{2} (\operatorname{div} u) \delta_{ij} \,,$$

hence by the symmetry of $\varepsilon^{D}(u)$ and the fact that $\varepsilon^{D}_{ij}(u)\delta_{ij} = 0$

$$\int_{Q_{2R}(x_0)} \Psi^2 |\varepsilon^D(u)|^2 dx$$

= $\frac{1}{2} \int_{Q_{2R}(x_0)} \Psi^2 \left\{ \left(\frac{\partial u^i}{\partial x_j} + \frac{\partial u^j}{\partial x_i} \right) - (\operatorname{div} u) \delta_{ij} \right\} \varepsilon_{ij}^D(u) dx$
= $- \int_{Q_{2R}(x_0)} \partial_i \left(\Psi^2 \varepsilon_{ij}^D(u) \right) u^j dx.$

This yields

$$\begin{split} &\int_{Q_{2R}(x_0)} \Psi^2 |\varepsilon^D(u)|^2 \, dx \le c \left[\int_{Q_{2R}(x_0)} |\nabla \Psi^2| |u| |\varepsilon^D(u)| \, dx \\ &\quad + \int_{Q_{2R}(x_0)} \Psi^2 |\nabla \varepsilon^D(u)| |u| \, dx \right] \\ &\le c \left[R^{-1} \int_{Q_{2R}(x_0)} |u| |\varepsilon^D(u)| \, dx + \delta \int_{Q_{2R}(x_0)} \frac{|\nabla \varepsilon^D(u)|^2}{1 + |\varepsilon^D(u)|} \, dx \\ &\quad + \delta^{-1} \int_{Q_{2R}(x_0)} |u|^2 \left(1 + |\varepsilon^D(u)| \right) \, dx \right] \,. \end{split}$$

Let $\omega := D^2 H(\varepsilon^D(u)) (\partial_\alpha \varepsilon^D(u), \partial_\alpha \varepsilon^D(u))$. If we combine (13), (14) and the inequalities from above, we obtain for any $\delta > 0$ and all squares $Q_R(x_0)$

(15)
$$\int_{Q_{R}(x_{0})} \omega \, dx + \int_{Q_{R}(x_{0})} |\nabla(\operatorname{div} u)|^{2} \, dx$$
$$\leq c \left[R^{-4} \int_{Q_{2R}(x_{0})} |u|^{2} \, dx + R^{-2} \delta \int_{Q_{2R}(x_{0})} \omega \, dx + R^{-3} \int_{Q_{2R}(x_{0})} |u|| \varepsilon^{D}(u) |dx + R^{-2} \delta^{-1} \int_{Q_{2R}(x_{0})} |u|^{2} \left(1 + |\varepsilon^{D}(u)| \right) \, dx \right].$$

Replacing δ by $\delta' R^2$ an application of Lemma 2 yields

(15')
$$\int_{Q_{R}(x_{0})} \omega \, dx + \int_{Q_{R}(x_{0})} |\nabla(\operatorname{div} u)|^{2} \, dx$$
$$\leq c \left[R^{-4} \int_{Q_{2R}(x_{0})} |u|^{2} \, dx + R^{-3} \int_{Q_{2R}(x_{0})} |u||\varepsilon^{D}(u)| \, dx \right]$$
$$+ R^{-4} \int_{Q_{2R}(x_{0})} |u|^{2} \left(1 + |\varepsilon^{D}(u)| \right) \, dx \right].$$

Let $x_0 = 0$ and $R \ge 1$. From our hypothesis (7) we obtain $|u(x)| \le cR$ on Q_{2R} . Therefore (15') implies

(16)
$$\int_{Q_R} \omega \, dx + \int_{Q_R} |\nabla(\operatorname{div} u)|^2 \, dx \le c \left[R^{-4} R^4 + R^{-2} \int_{Q_{2R}} |\varepsilon^D(u)| \, dx \right].$$

Clearly we have $(Q^+ := Q_{2R} \cap [|\varepsilon^D(u)| \ge 1], Q^- := \ldots)$

$$\begin{split} \int_{Q_{2R}} |\varepsilon^{D}(u)| \, dx &= \int_{Q^{+}} |\varepsilon^{D}(u)| \, dx + \int_{Q^{-}} |\varepsilon^{D}(u)| \, dx \\ &\leq \left(\int_{Q^{-}} 1 \, dx \right)^{1/2} \left(\int_{Q^{-}} |\varepsilon^{D}(u)|^{2} \, dx \right)^{1/2} + \frac{1}{\ln 2} \int_{Q^{+}} H\left(\varepsilon^{D}(u) \right) \, dx \\ &\leq cR \left(\int_{Q_{2R}} H\left(\varepsilon^{D}(u) \right) \, dx \right)^{1/2} + \frac{1}{\ln 2} \int_{Q_{2R}} H\left(\varepsilon^{D}(u) \right) \, dx \,, \end{split}$$

and if we use (10), we find

(17)
$$\int_{Q_{2R}} |\varepsilon^D(u)| \, dx \le cR^2 \, .$$

This shows that the right-hand side of (16) stays bounded as $R \to \infty$, which means

(18)
$$\int_{\mathbb{R}^2} \omega \, dx + \int_{\mathbb{R}^2} |\nabla(\operatorname{div} u)|^2 \, dx < \infty \, .$$

Step 3. conclusion

We claim that the integral in (18) vanishes. In order to prove this we choose $x_0 = 0$ and return to inequality (13) recalling that in place of (13) we actually have

$$\int_{Q_R} |\nabla (\operatorname{div} u)|^2 \, dx + \int_{Q_R} \omega \, dx \le cR^{-2} \int_{Q_{\frac{3}{2}R}^{-} \overline{Q}_R} |\nabla u|^2 \, dx \, .$$

Let $\Psi \in C_0^1(Q_{2R} - \overline{Q}_{R/2})$ such that $0 \leq \Psi \leq 1$ and $\Psi = 1$ on $Q_{\frac{3}{2}R} - \overline{Q}_R$ together with $|\nabla \Psi| \leq c/R$. Observing

$$\int_{Q_{\frac{3}{2}R} - \overline{Q}_R} |\nabla u|^2 \, dx \le c \left[\int_{Q_{2R} - \overline{Q}_{R/2}} |\nabla (\Psi u)|^2 \, dx + R^{-2} \int_{Q_{2R} - \overline{Q}_{R/2}} |u|^2 \, dx \right]$$

we obtain a variant of (14), in which now the term $\int_{Q_{2R}-\overline{Q}_{R/2}} \Psi^2 |\varepsilon^D(u)|^2 dx$ occurs on the right-hand side. Proceeding as before we get in place of (15)

$$(19) \int_{Q_R} \omega \, dx + \int_{Q_R} |\nabla(\operatorname{div} u)|^2 \, dx$$

$$\leq c \left[R^{-4} \int_{Q_{2R} - \overline{Q}_{R/2}} |u|^2 \, dx + R^{-2} \delta \int_{Q_{2R} - \overline{Q}_{R/2}} \omega \, dx + R^{-3} \int_{Q_{2R} - \overline{Q}_{R/2}} |u|| \varepsilon^D(u) \, dx + R^{-2} \delta^{-1} \int_{Q_{2R} - \overline{Q}_{R/2}} |u|^2 \left(1 + |\varepsilon^D(u)| \right) \, dx \right].$$

Let $\delta := \frac{1}{2c}R^2$. Inequality (19) then yields

(20)
$$\int_{Q_R} \omega \, dx + \int_{Q_R} |\nabla(\operatorname{div} u)|^2 \, dx \le \frac{1}{2} \int_{Q_{2R} - \overline{Q}_{R/2}} \omega \, dx + c \left[\Theta^2(R/2) + \Theta(R/2)R^{-2} \int_{Q_{2R}} |\varepsilon^D(u)| \, dx + \Theta^2(R/2)R^{-2} \int_{Q_{2R}} \left(1 + |\varepsilon^D(u)| \right) \, dx \right],$$

and if we use (17) and (18) together with the hypothesis that $\lim_{R\to\infty} \Theta(R) = 0$, estimate (20) implies after passing to the limit $R \to \infty$ that ω as well as $\nabla(\operatorname{div} u)$ must vanish, thus $\nabla \varepsilon(u) \equiv 0$. But then it holds $\nabla^2 u \equiv 0$, which means that u is affine and thereby constant on account of our assumption (7). This completes the proof of Theorem 1.

For proving Theorem 2 we observe that boundedness of $|\nabla u|$ implies the estimate

$$|u(x)| \le cR, \ x \in Q_{2R},$$

provided $R \ge 1$. Using this information we again arrive at inequality (18), and this estimate can be restated in the form (recall (1) and (2))

$$\int_{\mathbb{R}^2} D^2 G(\varepsilon(u))(\partial_\alpha \varepsilon(u), \partial_\alpha \varepsilon(u)) \, dx < \infty \, .$$

Note that this is also a direct consequence of estimate (13). Using $|\nabla^2 u| \leq c |\nabla \varepsilon(u)|$ together with the boundedness of $\varepsilon(u)$ we get

(21)
$$\int_{\mathbb{R}^2} \left| \nabla^2 u \right|^2 \, dx < \infty \, .$$

Similar to equation (12) it holds $(\alpha = 1, 2)$

$$0 = \int_{Q_{2R}} D^2 G(\varepsilon(u)) \left(\partial_\alpha \varepsilon(u), \varepsilon(\varphi)\right) \, dx \,,$$

and we may choose $\varphi = \eta^2 \partial_{\alpha} u$ with $\eta \in C_0^1(Q_{2R})$ such that $\eta = 1$ on Q_R , $0 \le \eta \le 1$ and $|\nabla \eta| \le c/R$. We get

$$\int_{Q_{2R}} D^2 G(\varepsilon(u)) \left(\partial_\alpha \varepsilon(u), \partial_\alpha \varepsilon(u)\right) \eta^2 dx$$

= $-2 \int_{Q_{2R}-\overline{Q}_R} D^2 G(\varepsilon(u)) \left(\partial_\alpha \varepsilon(u), \nabla \eta \otimes \partial_\alpha u\right) \eta dx$,

and the boundedness of $\varepsilon(u)$ yields (recall $|\nabla^2 u| \leq c |\nabla \varepsilon(u)|$)

$$\int_{Q_R} |\nabla^2 u|^2 dx \le cR^{-1} \int_{Q_{2R}-\overline{Q}_R} |\nabla^2 u| |\nabla u| dx$$
$$\le cR^{-1} \left(\int_{Q_{2R}-\overline{Q}_R} |\nabla^2 u|^2 dx \right)^{1/2} \left(\int_{Q_{2R}-\overline{Q}_R} |\nabla u|^2 dx \right)^{1/2} dx$$

hence by the boundedness of the gradient

(22)
$$\int_{Q_R} \left| \nabla^2 u \right|^2 dx \le c \left(\int_{Q_{2R} - \overline{Q}_R} \left| \nabla^2 u \right|^2 dx \right)^{1/2}.$$

On account of (21) the right-hand side of (22) vanishes as $R \to \infty$, thus $\nabla^2 u \equiv 0$, which proves Theorem 2.

Let us finally discuss the **proof of Theorem 3**. As remarked in the beginning of the proof of Theorem 2 the growth condition imposed now on u is still sufficient to get

(23)
$$\int_{\mathbb{R}^2} D^2 G(\varepsilon(u)) \left(\partial_\alpha \varepsilon(u), \partial_\alpha \varepsilon(u)\right) \, dx < \infty \, .$$

We return to equation (12) choosing $x_0 = 0$, $R \ge 1$, and select η as done after (12). The Cauchy-Schwarz inequality together with Hölder's estimate implies $(\xi_{\alpha} := \partial_{\alpha} u \otimes \nabla \eta^2)$

$$\begin{split} &\int_{Q_R} D^2 G\left(\varepsilon(u)\right) \left(\partial_{\alpha}\varepsilon(u), \partial_{\alpha}\varepsilon(u)\right) \, dx \\ &= \int_{Q_R} \omega \, dx + \int_{Q_R} |\nabla(\operatorname{div} u)|^2 \, dx \\ &\leq c \left[\left(\int_{Q_{\frac{3}{2}R} - \overline{Q}_R} \omega \, dx \right)^{1/2} \left(\int_{Q_{\frac{3}{2}R} - \overline{Q}_R} D^2 H\left(\varepsilon^D(u)\right) \left(\xi^D_{\alpha}, \xi^D_{\alpha}\right) \, dx \right)^{1/2} \right. \\ &+ \left(\int_{Q_{\frac{3}{2}R} - \overline{Q}_R} |\nabla(\operatorname{div} u)|^2 \, dx \right)^{1/2} \left(\int_{Q_{\frac{3}{2}R} - \overline{Q}_R} |\nabla u|^2 |\nabla \eta|^2 \, dx \right)^{1/2} \right], \end{split}$$

hence we find

$$(24) \quad \int_{Q_R} \omega \, dx + \int_{Q_R} |\nabla(\operatorname{div} u)|^2 \, dx \\ \leq c R^{-1} \left(\int_{Q_{\frac{3}{2}R}^{-} \overline{Q}_R} |\nabla u|^2 \, dx \right)^{1/2} \left\{ \int_{Q_{\frac{3}{2}R}^{-} \overline{Q}_R} \omega \, dx + \int_{Q_{\frac{3}{2}R}^{-} \overline{Q}_R} |\nabla(\operatorname{div} u)|^2 \, dx \right\}^{1/2},$$

and with (23) and (24) our claim will follow by letting $R \to \infty$ as soon as we can show

(25)
$$\int_{Q_R} |\nabla u|^2 \, dx \le cR^2$$

for all $R \ge 1$. For proving (25) we recall that by (14) it holds

(26)
$$\int_{Q_{\frac{3}{2}R}} |\nabla u|^2 \, dx \le c \left\{ \int_{Q_{2R}} \Psi^2 \left| \varepsilon^D(u) \right|^2 \, dx + R^{-2} \int_{Q_{2R} - \overline{Q}_{\frac{3}{2}R}} |u|^2 \, dx \right\}$$

with Ψ defined after (13), and from (26) in combination with our growth assumption imposed on u we infer that it remains to bound the quantity $\int_{Q_{2R}} \Psi^2 |\varepsilon^D(u)|^2 dx$ in terms of \mathbb{R}^2 . Proceeding as done after inequality (14) we find

$$\begin{split} \int_{Q_{2R}} \Psi^2 \left| \varepsilon^D(u) \right|^2 \, dx &\leq c \left\{ \int_{Q_{2R}} |\nabla \Psi^2| |u| |\varepsilon^D(u)| \, dx \right. \\ &\quad + \int_{Q_{2R}} \Psi^2 |u| |\nabla \varepsilon^D(u)| \, dx \right\} \\ &\leq c \left\{ \frac{1}{R} \int_{Q_{2R}} |u| |\varepsilon^D(u)| \, dx + \left(\int_{Q_{2R}} \frac{|\nabla \varepsilon^D(u)|^2}{1 + |\varepsilon^D(u)|} \, dx \right)^{1/2} \right. \\ &\quad \cdot \left(\int_{Q_{2R}} |u|^2 \left(1 + |\varepsilon^D(u)| \right) \, dx \right)^{1/2} \right\} \,. \end{split}$$

On Q_{2R} it holds $|u(x)| \leq cR$, hence

(27)
$$\int_{Q_{2R}} \Psi^2 \left| \varepsilon^D(u) \right|^2 dx \le c \left\{ \int_{Q_{2R}} \left| \varepsilon^D(u) \right| \, dx + R \left(\int_{Q_{2R}} \left(1 + |\varepsilon^D(u)| \right) \, dx \right)^{1/2} \right\} \,,$$

where we also made use of (23) to bound the term involving $\nabla \varepsilon^{D}(u)$. The discussion following inequality (16) shows

(28)
$$\int_{Q_{2R}} \left| \varepsilon^D(u) \right| \, dx \le cR \left(\int_{Q_{2R}} H\left(\varepsilon^D(u) \right) \, dx \right)^{1/2} + \frac{1}{\ln 2} \int_{Q_{2R}} H\left(\varepsilon^D(u) \right) \, dx \, dx$$

and if we go back to estimate (10) (being valid without any growth hypothesis imposed on u) we find that now this inequality yields

(29)
$$\int_{Q_{2R}} H\left(\varepsilon^D(u)\right) \, dx \le cR^2$$

Finally, we combine the inequalities (28) and (29) with the result that

(30)
$$\int_{Q_{2R}} \left| \varepsilon^D(u) \right| \, dx \le cR^2 \, dx$$

and we see that (27) and (30) imply the correct bound for $\int_{Q_{2R}} \Psi^2 |\varepsilon^D(u)|^2 dx$. Thus we have established (25) and the proof of Theorem 3 is complete.

REMARK 5. We leave it to the reader to discuss Theorem 1, 2 and 3 for nonlinear Hencky materials, which means that the energy density from equation (1) is replaced by

$$W(\varepsilon) := \Phi\left(|\varepsilon^D|\right) + \frac{1}{2}(tr \ \varepsilon)^2$$

for a "general" N-function Φ (compare, e.g. [Ad] for a definition). We refer to the article [BF], where one will find natural hypotheses to be imposed on Φ under which one can expect a Liouville-type result.

References

- [Ad] Adams, R. A., Sobolev spaces. Academic Press, New York-San Francisco-London 1975.
- [BF] Bildhauer, M., Fuchs, M., Differentiability and higher integrability results for local minimizers of splitting type variational integrals in 2D with applications to nonlinear Hencky materials. Calc. Var. 37, 167–186 (2010).
- [Da] Dain, S., Generalized Korn's inequality and conformal Killing vectors. Calc. Var. 25 (4), 535–540 (2006).
- [DL] Duvaut, G., Lions, J. L., Les Inequations en Mecanique et en Physique. Dunod, Paris, 1972.
- [FrSe] Frehse, J., Seregin, G., Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening. Transl. Amer. Math. Soc.II, 193, 127–152 (1999).
- [FuB] Fuchs, M., Bildhauer, M., Compact embeddings of the space of functions with bounded logarithmic deformation. J. Math. Sciences 172(1), 165–183 (2011).
- [FuSe1] Fuchs, M., Seregin, G., Variational methods for fluids of Prandtl-Eyring type and plastic materials with logarithmic hardening. Math. Meth. Appl. Sciences 22, 317–351 (1999).
- [FuSe2] Fuchs, M., Seregin, G., Variational methods for problems from plasticity theory and for generalized Newtonian fluids. Lecture Notes in Mathematics 1749, Springer Verlag, Berlin-Heidelberg-New York 2000.
- [FuZ] Fuchs, M., Zhang, G., Liouville theorems for entire local minimizers of energies defined on the class $L \log L$ and for entire solutions of the stationary Prandtl-Eyring fluid model. to appear in Calc. Var.
- [GM] Giaquinta, M., Modica, G., Nonlinear systems of the type of the stationary Navier-Stokes system. J. Reine Angew. Math. 330, 173–214 (1982).
- [He] Hencky, H., Zur Theorie plastischer Deformationen. Z. Angew. Math. Mech. 4, 323–334 (1924).
- [KI] Klyusnikov, V. D., The mathematical theory of plasticity. Izd. Moscov. Gos. Univ. Moscow 1979.
- [Re] Reshetnyak, Y. G., Estimates for certain differential operators with finite dimensional kernel. Sibirsk. Mat. Zh. 11, 414–428 (1970).