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Abstract

We prove the existence of weak solutions with homogeneous boundary data
for the following equations of Navier-Stokes type equations

divσ + f = ∇π + (∇u)u,

where u : R2 ⊃ Ω → R2 is the velocity field satisfying div u = 0 and
f : Ω→ R2 and π : Ω→ R are the external volume forces resp. the pressure.
In order to model the behaviour of Prandtl-Eyring fluids we assume the
validity of the stress-strain relation

σ = DW (ε(u)), W (ε) = |ε| ln(1 + |ε|).

The crucial tool in our approach is a solenoidal Lipschitz truncation.

MSC (2000): 76 B 03, 35 D 05, 35 J 60.
Keywords: equations of Navier-Stokes type, generalized Newtonian fluids,
steady flows, existence of weak solutions, solenoidal Lipschitz truncation.

1 Introduction

The stationary flow of a fluid of Prandtl-Eyring type in a domain Ω ⊂ Rd,
d = 2, 3, is - according to Eyring [Eyr36] - described by the following set
of equations: let u : Ω → Rd denote the velocity field. Since the fluid is
incompressible, we have

div u = 0. (1.1)

For a given system of volume forces f : Ω → Rd the fluid has to obey the
equation of motion

div τ + f = (∇u)u, τ = σ − πI (1.2)

where (∇u)u := (∂iu
jui)1≤j≤n denotes the convective term, σ is the stress

deviator and π the pressure. In order to characterize the specific fluid under
consideration we need a constitutive law, which relates σ and the symmetric
gradient

ε(u) :=
1

2
(∂iu

j + ∂ju
i)1≤i,j≤n.

Here this relation reads as

σ = η0
arsinh(λ|ε(u)|)

λ|ε(u)|
ε(u) (1.3)
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with physical constants η0, λ > 0. Eyring [Eyr36] obtained this law by a
molecular theory, similar relations are due to Prandtl (compare [BB35] for
an overview). Equation (1.3) means that the viscosity ν : Ω→ R of the fluid
can be described by the function (depending on the shear rate |ε(u)|)

ν = η0
arsinh(λ|ε(u)|)

λ|ε(u)|
. (1.4)

(1.4) shows that the fluid is very shear thinning and such a behaviour can
be observed, for example, in the motion of lubricants. Furthermore one can
use the model as an approximation for perfectly plastic fluids introduced in
[vM13]. Similar approximations are used in the study of plastic material
behaviour, compare [FS98] and [FS99] for a mathematical approach.
Letting

W (ε) := η0

|ε|∫
0

1

λ
arsinh(λt) dt (1.5)

for ε ∈ Sd (:= space of symmetric d × d-matrices) we can replace (1.3) by
the equation

σ = DW (ε(u)). (1.6)

Finally we consider the case of non-slip boundary conditions, i.e., we require

u|∂Ω = 0. (1.7)

If in addition the flow is also slow, which means that we can neglect the
convective term (∇u)u, then inspired by ideas of Frehse and Seregin [FS98]
it is shown in [FS99] how to reduce (1.1)-(1.7) to a variational problem and
thereby obtaining a weak solution u in the natural function space (see Ap-
pendix for a precise definition)

V 1,h
0,div :=

{
w ∈ L1(Ω) :

∫
Ω

h(|ε(w)|) dx <∞, div w = 0, w|∂Ω = 0

}
,

h(t) := t ln(1 + t), t ≥ 0,

which is a smooth function, if d = 2, and partially of class C1, if the 3D-case
is considered. Note that we can replace the energy W from (1.5) by the more
convenient expression

W (ε) = h(|ε|) (1.8)

since all our arguments actually work for potentials of the form g(|ε|) with
g being C2-close to the function h.
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For the natural case (∇u)u 6= 0 it is not immediate how to find a solution
of (1.1)-(1.3) and (1.7) with W defined in (1.5) or (1.8). In order to get an
idea of how to proceed, let us assume that u is a sufficiently smooth solution.
Then we obtain∫

Ω

DW (ε(u)) : ε(ϕ) dx =

∫
Ω

π divϕ dx+

∫
Ω

f ·ϕ dx+

∫
Ω

u⊗ u : ε(ϕ) dx

(1.9)
for all ϕ ∈ C∞0 (Ω). If we restrict ourselves to test functions ϕ with divϕ = 0,
then the term involving the pressure vanishes and we get∫

Ω

DW (ε(u)) : ε(ϕ) dx =

∫
Ω

f ·ϕ dx+

∫
Ω

u⊗ u : ε(ϕ) dx (1.10)

valid for all ϕ ∈ C∞0 (Ω) such that divϕ = 0, and according to the results
of Section 4 we see that in case d = 2 all terms in (1.9) and (1.10) are well-
defined, provided we choose u from the space V 1,h

0,div(Ω), π from Lh0(Ω) (see
Section 2 for its definition) and require

f ∈ Lp0(Ω) (1.11)

for some p0 > 1. Our main result now states that actually such a weak
solution exists.

THEOREM 1.1. Suppose that Ω ⊂ R2 is a bounded Lipschitz domain and
consider volume forces f satisfying (1.11). Moreover, let W be defined ac-
cording to (1.5) or (1.8). Then there exists a velocity field u ∈ V 1,h

0,div(Ω) and

a pressure π ∈ Lh0(Ω) satisfying (1.9) for all fields ϕ ∈ C∞0 (Ω) and (1.10)
for all fields

ϕ ∈ C∞0,div(Ω) := {ψ ∈ C∞0 (Ω) : divψ = 0} .

Remark 1.2. The reason for condition (1.11) is the choice of our approx-
imation. We stabilize the equation by adding a quadratic term in the main
part. Hence we obtain a sequence (vn) ⊂ W 1,2

0,div(Ω) and the term
∫

Ω
f · vn dx

is well-defined by (1.11). We expect that it is possible to weaken this assump-
tion. Precisely, it suffices to suppose f = div F with F ∈ L1(Ω).

We will prove Theorem 1.1 by approximation, i.e., by replacing (1.10) through
a sequence of more regular problems with corresponding solutions un. It turns
out that the sequence (un) is bounded in the space V 1,h

0,div(Ω), and in Theorem

4.7 we will investigate spaces like V 1,h
0,div(Ω) with the result that V 1,h

0,div(Ω) is
compactly embedded in the space L2(Ω). Hence it holds (for a subsequence)∫

Ω

un ⊗ un : ε(ϕ) dx −→
∫

Ω

u⊗ u : ε(ϕ) dx, n→∞,
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with a suitable limit function u, which turns out to be in the class V 1,h
0,div(Ω).

The main task is the proof of∫
Ω

DW (ε(un)) : ε(ϕ) dx −→
∫

Ω

DW (ε(u)) : ε(ϕ) dx, n→∞.

We profit from the Lipschitz truncation method of Acerbi and Fusco [AF84]
which was used in the context of fluid mechanics in [FMS03] and advanced
in [DMS08]. The two latter papers are dealing with the situation

W (ε) ≈ |ε|p

for a power p > 1 (but in 2D arbitrary close to 1). This situation is much
better than our case, since the spaces Lp (for p > 1) feature a more nice
behaviour than the space L lnL, which is the natural space (for the sym-
metric gradient) in our setting. Due to the lack of a Korn-type inequality
in L lnL (see [BD11]), we are not able to bound M(∇un) in L1 (M is the
Hardy-Littlewood maximal function, which we will define in section 2). This
means that an ordinary Lipschitz-truncation is not possible. The main idea
to overcome this difficulty is instead of approximating un by a sequence of
Lipschitz continuous functions, to use functions only having a bounded sym-
metric gradient (instead of a bounded gradient).
In equation (1.10) (and also in our approximated version, see section 3) only
solenoidal test functions are admissible. Since the Lipschitz truncation is
based on a nonlinear extension operator it does not preserve the incompress-
ibility condition of the solution. In the p-fluid situation there are two ways
to overcome this difficulty:

• introducing the pressure function π which belongs to Ls for some s > 1;

• correcting by the Bogovskĭı operator [Bog80].

In case of p-fluids both methods are applicable but they fail for Prandtl-
Eyring fluids. Neither the pressure belongs to the correct space (see end of
section 3) nor the Bogovskĭı operator is continuous. This strongly motivates
us to construct a solenoidal Lipschitz-truncation which is also a very useful
advancement of the Lipschitz truncation method by itself. Here the main
idea is a local projection procedure by means of finite dimensional function
spaces (with globally bounded dimensions). In these spaces the Bogovskĭı
operator is continuous independent of the applied norm.
In connection with Theorem 1.1 we mention four open problems:

i) What are the smoothness properties of the specific weak solution u
constructed in the proof of Theorem 1.1? We conjecture that u is
locally of class C1.
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ii) Can we prove the existence of solutions for stationary 3D flows?

iii) The logarithmic potential |ε(u)| ln(1 + |ε(u)|) serves as an approxima-
tion for perfectly plastic fluids with potential |ε(u)|. Is it possible to
handle the linear case with similar arguments?

iv) Can we obtain similar results for nonstationary Prandtl-Eyring fluids?
In the paper [DRW10] a parabolic version of the Lipschitz-truncation
was developed in order to consider unsteady flows of power-law flu-
ids. The result is an improvement of [Wol07] which was based on a
L∞-truncation. Unfortunately our technique to produce a solenoidal
Lipschitz truncation cannot be extended to unsteady problems.

2 The solenoidal Lipschitz truncation

Note that the results of this section are not restricted to R2 but hold on
Rd. Lipschitz truncations of Sobolev functions are used in various areas of
analysis in different aspects and go back to Acerbi and Fusco [AF84]. In
the context of fluid mechanics the method was firstly used in [FMS03] in
order to conclude the almost everywhere convergence ε(un) → ε(u) of the
approximating sequence leading to the identification of the weak limit. This
technique was later simplified and improved in [DMS08].
The main idea in the method of Lipschitz truncation is to approximate a
Sobolev function w by Lipschitz-continuous functions which differ from w
only on a set of small Lebesgue measure. This is achieved by redefining the
function on the set {M(∇w) > λ} by a suitable Lipschitz extension. Here
M denotes the Hardy-Littlewood maximal operator defined by

(Mv)(x) := sup
r>0
−
∫
Br(x)

|v| dy, v ∈ L1
loc(Rd).

The result is an approximation wλ of w whose gradients are bounded by
a constant times λ. For the application of the Lipschitz truncation to the
equation it is important that the function λχ{M(∇v)>λ} is small for certain
large λ > 0 in the corresponding function space. In the setting of [FMS03]
and [DMS08] the corresponding space was the Lebesgue space Lp with 1 <
p <∞. On such spaces M is a bounded operator and Korn’s inequality holds.
However, in our situation the corresponding function space is the Orlicz class
Lh. Unfortunately, M is not unbounded on Lh and Korn’s inequality is not
valid on Lh (see [BD11]). Therefore, we need to refine the method of [DMS08]
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even further. We compensate the unboundedness of M on Lh using refined
weak-type Lh → L1 estimates for the maximal operator.
To overcome the lack of Korn’s inequality, we have to work directly with
function spaces defined in terms of ε(u) rather than ∇u. In particular,
we redefine w on {M(ε(w)) > λ}. As a consequence our truncation is not
Lipschitz continuous but has bounded symmetric gradient, i.e. ε(wλ) ∈ L∞.
Another difficulty of the Lipschitz truncation method in the context of fluid
mechanics is that the truncation of a solenoidal field w is no longer solenoidal.
This problem can usually be overcome by the use of the Bogovskĭı solution
operator “BogΩ” of the divergence equation div z = f on Ω with zero bound-
ary values. In particular, the Lipschitz truncation wλ will be corrected by
the solution z of div z = χw 6=wλ div wλ. However, the operator BogΩ is only
bounded in the Lp setting but not in the Lh setting. Therefore, it is not
possible to simply truncate w and afterwards correct the divergence of the
truncation to zero. To solve this problem, we develop a modified version
of the Lipschitz truncation method, which is able to approximate solenoidal
functions by solenoidal truncations. We refer to this modified Lipschitz trun-
cation also as solenoidal Lipschitz truncation.
Let Ω ⊂ Rd, d ≥ 2 be a bounded domain with Lipschitz boundary. We
denote by Lh(Ω) the Orlicz space generated by h(t) := t ln(1 + t), t ≥ 0
equipped with the Luxemburg norm (cf. [Ada75])

‖w‖Lh(Ω) := inf {k > 0 : ρh(w/k) ≤ 1} ,

where

ρh(w) :=

∫
Ω

h(|w|) dx.

The functional ρh is called the modular of Lh. Note that ‖·‖h is just the
Minkowski functional of the set {w : ρh(w) ≤ 1}. We write Lh0(Ω) and Lp0(Ω)
for the subspace of Lh(Ω) and Lp(Ω), respectively, consisting of those func-
tions whose integral over Ω vanishes.
Following ideas developed by Frehse and Seregin [FS98] we define the space

V 1,h(Ω) := {w ∈ L1(Ω) : |ε(w)| ∈ Lh(Ω)}.

By letting
‖u‖V (Ω) := ‖u‖L1(Ω) + ‖ε(u)‖Lh(Ω) (2.1)

V 1,h(Ω) turns into a Banach space. We define

V 1,h
0 (Ω) := {w ∈ C∞0 (Ω)}

V 1,h(Ω)
,
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V 1,h
0,div(Ω) := {w ∈ V 1,h

0 (Ω) : div w = 0}.

In the appendix we summarize further properties of these spaces. Among
other things we show that V 1,h

0 (Ω) is the subspace of V 1,h(Ω) consisting of all
fields with vanishing trace and V 1,h

0,div(Ω) is the closure of C∞0,div(Ω)-functions.

Let w ∈ V 1,h
0,div(B) for some ball B ⊂ Rd. We define our bad set by Oλ :=

{M(ε(w)) > λ}. We do not have to truncate our function w if Oλ is empty.
So we can assume in the following that Oλ 6= ∅. We decompose the open set
Oλ into a family of dyadic closed cubes {Qj}j with side length `(Qj) such
that

(W1)
⋃
j Qj = Oλ and the Qj’s have disjoint interiors.

(W2) 8
√
d`(Qj) ≤ dist(Qj, ∂Oλ) ≤ 32

√
d`(Qj). In particular, if cd := 2 +

32
√
d, then (cdQj) ∩ (Rd \ Oλ) 6= ∅.

(W3) If the boundaries of two cubes Qj and Qk touch, then

1

2
≤ `(Qj)

`(Qk)
≤ 2.

(W4) For a given Qj there exists at most (3d − 1)2d Qk’s that touch Qj.

We can get this family as follows: take the family of closed dyadic cubes as
in [Gra04] and subdivide each of these cubes into 8d dyadic sub-cubes. (The
constants in [Gra04] are 1

4
and 4 instead of 1

2
and 2, respectively, but this is

due to the use of ≤ in the first step of line 10 of page A-35 in [Gra04] instead
of a sharper <.)
Define Q∗k := 9

8
Qj, then we have the following properties:

(W5)
⋃
j Q
∗
j = Oλ

(W6) If Q∗j and Q∗k intersect, then the boundaries of Qj and Qk touch and
Q∗j ⊂ 5Q∗k, moreover `(Q∗j) ∼ `(Q∗k) and |Q∗j ∩Q∗k| ∼ |Q∗j | ∼ |Q∗k| (here
∼ means that two quantities can be bounded vice versa).

(W7) The family Q∗j is locally 6d finite.

(W8)
∑

j Ld(Q∗j) ≤ c(d)Ld(Oλ).

Let ϕ̃j ∈ C∞0 (Rd) such that

• supp ϕ̃j = Q∗j .

7



• χ 7
9
Q∗j

= χ 7
8
Qj
≤ ϕj ≤ χ 9

8
Qj

= χQ∗j .

• All ϕ̃j are up to translation and dyadic scaling the same function.

Define γ :=
∑

j ϕ̃j and ϕj :=
ϕ̃j
γ

. Then

• 1 ≤ γ ≤ 6d,

• |∇γ|χQ∗j ≤ c 1
`(Qj)

for all j ∈ N,

and ϕj defines a partition of unity with the following properties:

(U1) ϕj ∈ C∞0 (Rd).

(U2) suppϕj = Q∗j .

(U3) χ 7
9
Q∗j

= χ 7
8
Qj
≤ ϕj ≤ χ 9

8
Qj

= χQ∗j .

(U4) |∇ϕj| ≤
c χQ∗j
`(Q∗j)

.

(U5) |∇2ϕj| ≤
c χQ∗j
`(Q∗j)

2
.

We abbreviate rj := `(Q∗j).
We define RQ∗j

w as the L2(Q∗j)-orthonormal projection of w onto the space
of rigid motions R, i.e.,

(
RQ∗j

w
)
(x) :=

∑
l

(∫
Q∗j

Rj
l ·w dy

)
Rj
l (x),

where (Rj
l ) is an L2(Q∗j)-orthonormal base of R. This operator is also well

defined for w ∈ L1(Q∗j). Moreover, it is continuous from L1 to W 1,∞ and

‖RQ∗j
w‖

L∞(Q∗j )
+ rj‖∇RQ∗j

w‖
L∞(Q∗j )

≤ c−
∫
Q∗j

|w| dx for all w ∈ L1(Q∗j).

(2.2)

Since RQ∗j
is the identity on constants it follows easily from (2.2) that RQ∗j

is also W 1,1-stable in the sense that

−
∫
Q∗j

|∇RQ∗j
w| dx ≤ −

∫
Q∗j

|∇w| dx. (2.3)
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Moreover, it follows from (2.2) and the fact that RQ∗j
is the identity on R

that

−
∫
Q∗j

|w −RQ∗j
w| dx ≤ c inf

R∈R
−
∫
Q∗j

|w −R| dx. (2.4)

Now we can define for w ∈ W 1,1
0 (B) our preliminary Lipschitz truncation

operator T λ by

T λw =


w on Rd \ Oλ∑
j

ϕjwj on Oλ,

where wj := RQ∗j
w for j ∈ N.

We will see later that T λw ∈ W 1,1
0 (Rd). Let us remark that div T λ 6= 0 for

our preliminary Lipschitz truncation. The following Lemma provides some
important estimates for T λ.

Lemma 2.1. Let w ∈ W 1,1
0 (B).

(a) For all j it holds

−
∫
Q∗j

∣∣∣∣w −wj

rj

∣∣∣∣ dx ≤ c −
∫
Q∗j

|ε(w)| dx ≤ cM(ε(w))(y) for all y ∈ Q∗j .

(b) For all j it holds

−
∫
Q∗j

|ε(w)| dx ≤ −
∫
cdQj

|ε(w)| dx ≤ c λ.

(c) For all j and k with Q∗j ∩Q∗k 6= ∅ it holds

‖wj −wk‖L∞(Q∗j ) ∼ −
∫
Q∗j

|wj −wk| dx ≤ c −
∫
Q∗j

∣∣∣∣w −wj

rj

∣∣∣∣ dx+ c −
∫
Q∗k

∣∣∣∣w −wj

rj

∣∣∣∣ dx.
Proof. (a): The inequality follows by the Poincaré-Korn inequality, see [ST81].
(b): The first estimate is obvious. The second estimate follows from the fact
that cdQj intersects Rd \ Oλ ⊂ {M(ε(w)) ≤ λ}.
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(c): The equivalence follows from the fact that R is finite dimensional (so all
norms are equivalent) and a suitable scaling argument. It remains to show
the second estimate.
Since |Q∗j ∩Q∗k| ∼ |Q∗j | ∼ |Q∗k| by (W6), it follows by the fact that all norms
on the finite dimensional R are equivalent and a simple scaling argument
that for every R ∈ R it holds that∫

Q∗j

|R| dx ∼
∫
Q∗j∩Q∗k

|R| dx.

As a consequence

−
∫
Q∗j

|wj −wk|
rj

dx ≤ c |Q∗j |
∫
Q∗j∩Q∗k

|wj −wk|
rj

dx

≤ c |Q∗j |
∫
Q∗j∩Q∗k

|w −wj|
rj

dx+ c |Q∗j |
∫
Q∗j∩Q∗k

|w −wk|
rj

dx

≤ c −
∫
Q∗j

|w −wj|
rj

dx+ c −
∫
Q∗k

|w −wk|
rj

dx,

where we used (a) and (b) in the last step.

The next Lemma shows that although T λw is defined on two different sets
it is a global Sobolev function.

Lemma 2.2. Let w ∈ W 1,1
0 (B), then T λw − w ∈ W 1,1

0 (Oλ) and T λw ∈
W 1,1

0 (Rd).

Proof. It suffices to show that T λw−w ∈ W 1,1
0 (Oλ). Let J be a finite subset

of N. We have pointwise

∇(wλ −w) = ∇
(∑
j∈N

ϕj(wj −w)
)

=
∑
j∈N

(
(∇ϕj)(wj −w) + ϕj(∇wj −∇w)

)
.

Since every summand in the last sum belongs to W 1,1
0 (Oλ), it suffices to show

that the last sum converges absolutely in L1. Let J ⊂ N be finite. Then we
obtain

(I) :=

∫ ∑
j∈N\J

∣∣(∇ϕj)(wj −w) + ϕj(∇wj −∇w)
∣∣ dx

≤
∑
j∈N\J

∫
Q∗j

∣∣(∇ϕj)(wj −w)
∣∣ dx+

∫
Q∗j

∑
j∈N\J

|ϕj(∇wj −∇w)| dx

10



≤
∑
j∈N\J

∫
Q∗j

|wj −w|
rj

dx+
∑
j∈N\J

∫
Q∗j

|∇wj −∇w| dx

=: (II) + (III).

Now, by (a) it follows that

(II) ≤
∑
j∈N\J

∫
Q∗j

|ε(w)| dx =

∫
Oλ

∑
j∈N\J

χQ∗j |ε(w)| dx

≤ c

∫
Oλ
χ∪j∈N\JQ∗j |∇w| dx.

On the other hand with (2.3) we estimate

(III) ≤
∑
j∈N\J

∫
Q∗j

|∇w| dx ≤ c

∫
Oλ
χ∪j∈N\JQ∗j |∇w| dx.

Overall, we have shown that

(I) ≤ c

∫
Oλ
χ∪j∈N\JQ∗j |∇w| dx.

Since χ∪j∈N\J → 0 for J → N and ∇w ∈ L1, it follows by dominated
convergence that (I) → 0 for J → N. In particular, we have shown that∑

j∈N ϕj(wj −w) converges unconditionally in the gradient norm ‖∇·‖1 and

therefore in W 1,1
0 (Oλ).

If follows from the previous lemma that

∇T λw = χRd\Oλ∇w + χOλ
∑
j

∇(ϕjwj). (2.5)

We define the set of neighbors of Q∗j (including Q∗j itself) by

Aj := {k ∈ N : Q∗j ∩Q∗k 6= ∅}.

Lemma 2.3. If w ∈ V 1,h
0 (B), then it holds

(a) ‖T λw‖1 ≤ c ‖w‖1.

(b) |ε(T λ(w))| ≤
∑

k∈Aj
−
∫
Q∗k

|w−wk|
rk

dx on Q∗j for every j ∈ N.

(c) |ε(T λw)| ≤ c λχOλ + |ε(w)|χRd\Oλ and |ε(T λw)| ≤ c λ almost every-
where.
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(d) ‖ε(T λw)‖h ≤ c ‖ε(w)‖h and ρh(ε(T
λw)) ≤ c ρh(ε(w)).

Proof. (a): By definition of T λ we have∫
|T λw| dx ≤

∫
Rd\Oλ

|w| dx +
∑
j

∫
Q∗j

|ϕjRQ∗j
w| dx.

Now it follows with (2.2) and the local finiteness of the Q∗j that∫
|T λw| dx ≤

∫
Rd\Oλ

|w| dx +
∑
j

∫
Q∗j

|w| dx ≤ c

∫
Rd
|w| dx.

(b): Fix j ∈ N. Then on Q∗j it holds

ε(T λw) = ε
(∑

k

ϕkwk

)
= ε
(∑

k

ϕk(wk −wj)
)

=
∑
k

∇ϕk ⊗sym (wk −wj),

where we used ε(wj) = 0 and
∑

k ϕk = 1 on Oλ. Therefore, with the local
finiteness of the Q∗k and with Lemma 2.1 (a) and (c) it follows

|ε(T λw)| ≤ c
∑

j :Q∗j∩Q∗k 6=∅

‖wj −wk‖L∞(Q∗j )

rj
≤ c

∑
k∈Aj

−
∫
Q∗k

|w −wk|
rk

dx.

(c): It follows by (b) and Lemma 2.1 (b) that |ε(T λw)| ≤ c λ on Q∗j . Since⋃
kQ
∗
k = Oλ we get |ε(T λw)| ≤ c λ on Oλ. As a consequence |ε(T λw)| ≤

c λχOλ + |ε(w)|χRd\Oλ . On Rd\Oλ we have |ε(T λw)| = |ε(w)| ≤M(ε(w)) ≤
λ. So we get |ε(T λw)| ≤ c λ on all of Rd.
(d): We estimate with (c)

‖ε(T λw)‖h ≤ ‖χRd\Oλε(w)‖
h

+ ‖χOλε(T λw)‖h
≤ ‖ε(w)‖h + c ‖χOλλ‖h.
≤ ‖ε(w)‖h + c ‖χ{M(ε(w))>λ}λ‖h.

Now the weak type estimate for the norm of the maximal function proves

‖ε(T λw)‖h ≤ c ‖ε(w)‖h.

The estimate for ρh follows analogously using the weak type estimate for the
modular of the maximal function.
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It follows immediately from Lemma 2.3 that T λw ∈ W 1,1
0 (Rd) with ε(T λw) ∈

L∞(Rd). So from the point of regularity T λw qualifies as a test function of
system (1.10). However, the operator T λ destroys the divergence of w. In
particular, T λw is not necessarily solenoidal if w is solenoidal.
We want to construct a solenoidal Lipschitz truncation T λdiv such that T λdivw
of a solenoidal w is again solenoidal while preserving all nice properties of
the Lipschitz truncation. In particular, we want that T λdiv maps V 1,h

0,div into

V 1,∞
0,div, where1

V 1,∞
0,div(Ω) := {w ∈ W 1,1

0,div(Ω) : ε(w) ∈ L∞(Ω)}.

The idea is to correct locally the destroyed divergence of T λw. The sim-
plest way would be to correct the divergence of ϕjwj such that it becomes
solenoidal. However, the sum of such corrections will not converge in W 1,1

due an extra r−1
j at every summand.

A better approach is to use the fact that for any solenoidal w we have the
identity

div(T λw) = χOλ div(T λw) =
∑
j

ϕj div(T λw)

and to correct the contributions ϕj div(T λw) by suitable solutions z ∈ W 1,1
0 (Q∗j)

of the divergence equation div z = g. However, the solvability of the diver-
gence equation requires

∫
Q∗j
g dx = 0 and ϕj div(T λw) does not satisfy this

constraint. To overcome this problem we use ideas from the construction
of divergence preserving interpolation operators in the context of finite ele-
ments [BF91]. In the first step we define T λ0 w by

T λ0 w := T λw + Π(w − T λw),

where Π is a local projection, which ensures that ϕj div T λ0 w satisfies the
constraint

∫
Q∗j
g dx = 0. In the second step we correct the divergence of T λ0

by

T λdivw := T λ0 w −
∑
j

Bogj
(
ϕj div T λ0 w

)
,

where Bogj is the local solution operator of the divergence equation.

1Actually, functions from V 1,∞
0,div need not be Lipschitz. Nevertheless, we use the term

Lipschitz truncation for historical reasons.
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We begin with the construction of the local projection Π. For j ∈ N we
define

A′j := Aj \ {j},
Xj := span{(∇ϕk)|Q∗j : k ∈ A′j} ⊂ L1(Q∗j).

Note that k ∈ A′j is equivalent to j ∈ A′k and k ∈ Aj is equivalent to j ∈ Ak.
The set {∇ϕk}k∈A′j is a basis of Xj. For f ,g ∈ L2(Q∗j) let

〈f ,g〉ϕj :=

∫
(f · g)ϕj dx.

Then 〈·, ·〉ϕj is a scalar product on Xj, where we use that suppϕj = Q∗j .

By ‖·‖ϕj we denote the induced norm and by Πϕj we denote the 〈·, ·〉ϕj -
orthogonal projection of L2(Q∗j) onto Xj. In particular,

〈g,Πϕjw〉ϕj = 〈g,w〉ϕj for all w ∈ Xj.

Lemma 2.4. For all g ∈ Xj it holds

‖Πϕjg‖
2

∞|Q
∗
j | ∼ ‖Πϕjg‖

2

ϕj
=

∫
|g|2ϕj dx.

Proof. By a simple scaling and translation argument it suffices to consider
the case, where Q∗j is the unit cube. Since Xj is finite dimensional (and the di-

mension is bounded independent of j), the norms ‖Πϕjg‖∞ and ‖g‖ϕj |Q
∗
j |
−1/2

must be equivalent. Note that only finitely many situations w.r.t. the geo-
metric configuration of a cube Q∗j and its neighbours can appear due to our
assumptions concerning the Whitney covering.

Lemma 2.5. For all g ∈ L2(Q∗j) it holds

‖Πϕjg‖∞ ≤ c −
∫
Q∗j

|g| dx,

thus Πϕj is well defined from L1(Q∗j) to Xj with the same estimates.

Proof. From Lemma 2.4 and the definition of Πj we obtain

‖Πϕjg‖
2

∞|Q
∗
j | ≤ c ‖Πϕjg‖

2

ϕj
= 〈Πϕjg,g〉 ≤ ‖Πϕjg‖∞‖g‖L1(Q∗j )‖ϕj‖∞.

This proves the claim.
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Lemma 2.6. For all g ∈ Xj we have

rj‖∇g‖∞ ≤ c ‖g‖∞.

Proof. The estimate is a consequence of the definition of Xj and the proper-
ties (U4) and (U5).

Lemma 2.7. For all j, k ∈ N and any w ∈ W 1,1(Q∗j) it holds

〈ϕk, div(ϕjΠϕjw)〉 = 〈ϕk, div(ϕjw)〉.

Proof. Fix j ∈ N. For all k ∈ A′j it follows by partial integration and the
definition of Πϕj that

〈ϕk, div(ϕjΠϕjw)〉 = −〈∇ϕk,Πϕjw〉ϕj = −〈∇ϕk,w〉ϕj = 〈ϕk, div(ϕjw)〉.

This proves the claim for all k ∈ A′j. Since

〈1, div(ϕjΠϕjw)〉 = 0 = 〈1, div(ϕjw)〉

and ϕj = 1−
∑

k∈A′j
ϕk on Q∗j , we get

〈ϕj, div(ϕjΠϕjw)〉 = 〈1−
∑
k∈A′j

ϕk, div(ϕjΠϕjw)〉

= 〈1−
∑
k∈A′j

ϕk, div(ϕjw)〉

= 〈ϕj, div(ϕjw)〉.

This proves the case k = j. The case k ∈ N \ Aj is obvious.

For w ∈ W 1,1
loc (Rd) we define

Πw :=
∑
j

ϕjΠϕjw. (2.6)

Corollary 2.8. For all w ∈ W 1,1
loc (Rd) and any k ∈ N it holds∫

ϕk div(Πw) dx =

∫
ϕk div w dx.

Proof. Note that for every k ∈ N we have
∑

j ϕj = 1 on Q∗k = supp(ϕk). So
the claim follows by summing the equality of Lemma 2.7 over all j ∈ N.
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We define for all w ∈ W 1,1
0 (Rd)

T λ0 w := T λw + Π(w − T λw).

The next lemma shows that ϕk div(T λ0 w) satisfies for every k ∈ N the desired
constraint

∫
Q∗k
g dx = 0.

Lemma 2.9. For all w ∈ W 1,1
0,div(Rd) and any k ∈ N it holds∫
ϕk div(T λ0 w) dx = 0.

Proof. For all k ∈ N it follows from Corollary 2.8 that∫
ϕk div(T λ0 w) dx =

∫
ϕk div(T λw) dx+

∫
ϕk div

(
Π(w − T λw)

)
dx

=

∫
ϕk div(T λw) dx+

∫
ϕk div(w − T λw) dx

=

∫
ϕk div w dx

= 0.

We want to show that T λ0 has basically the same properties as T λ.

Lemma 2.10. If w ∈ V 1,h
0 (B), then

(a) ‖T λ0 w‖1 ≤ c ‖w‖1.

(b) |ε(T λ0 (w))| ≤
∑

k∈Aj
−
∫
Q∗k

|w−wk|
rk

dx on Q∗j for every j ∈ N.

(c) |ε(T λ0 w)| ≤ c λχOλ + |ε(w)|χRd\Oλ and |ε(T λ0 w)| ≤ c λ almost every-
where.

(d) ‖ε(T λ0 w)‖h ≤ c ‖ε(w)‖h and ρh(ε(T
λ
0 w)) ≤ c ρh(ε(w)).

Proof. (a): We estimate

|T λ0 w| ≤ |T λw|+
∑
j

|Πj(w − T λw)|.

Now, the L1-estimate of T λ0 w follows by the L1(Q∗j)-stability of Πj (which is a
consequence of Lemma 2.5), the local finiteness of the Q∗j and the L1-estimate
for T λw in Lemma 2.1.
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(b): For j ∈ N it follows by Lemma 2.6, Lemma 2.5 and Lemma 2.1 that

|ε(ϕjΠϕj(w − T λw))| ≤ c −
∫
Q∗j

|Πϕj(w − T λw)|
rj

dx+ −
∫
Q∗j

|∇Πj(w − T λw)| dx

≤ c −
∫
Q∗j

|Πϕj(w − T λw)|
rj

dx

≤ c −
∫
Q∗j

|w − T λw|
rj

dx

≤ c
∑
k∈Aj

−
∫
Q∗k

∣∣∣∣w −wk

rk

∣∣∣∣ dx.
(c): Summing the estimate of (b) over all j and using Lemma 2.1 we deduce
that |ε(Π(w − T λw))| ≤ λχOλ . This and the estimate for T λw stated in
Lemma 2.3 (c) prove (c).
(d): This follows from (c) exactly as in Lemma 2.3.

Let Bogj denote the Bogovskĭı operator [Bog80] on Q∗j generated from one
fixed Bogovskĭı operator on [0, 1]n by means of translation and dyadic scal-
ing. In particular, Bogj is the solution operator to the divergence equation
div Bogig = g in the Sobolev space with zero boundary values. Note that
Bogi is continuous from Lp0(Q∗i ) to W 1,p

0 (Q∗i ) for p > 1 but not from Lh0(Q∗i )
to W 1,h

0 (Q∗i ).
We define for w ∈ W 1,1

0,div(B)

T λdivw := T λ0 w −
∑
j

Bogj
(
ϕj div T λ0 w

)
.

This expression is well defined, since ϕj div(T λ0 w) ∈ L∞0 (Q∗j) by Lemma 2.9
and Lemma 2.10. Then we obtain

div T λdivw = div T λ0 w −
∑
k

div Bogk
(
ϕk div T λ0 w

)
= div T λ0 w −

∑
k

ϕk div T λ0 w

= div T λ0 w − div T λ0 w

= 0,

(2.7)

in particular T λdiv is solenoidal.
We show now that additionally T λdiv has basically the same properties as T λ.
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Lemma 2.11. If w ∈ V 1,h
0,div(B), then T λdivv ∈ V

1,∞
0,div(Rd) and

(a) ‖T λdivw‖1 ≤ c ‖w‖1.

(b) |ε(T λdiv(w))| ≤
∑

k∈Aj
−
∫
Q∗k

|w−wk|
rk

dx on Q∗j for every j ∈ N.

(c) |ε(T λdivw)| ≤ c λχOλ + |ε(w)|χRd\Oλ and |ε(T λdivw)| ≤ c λ almost every-
where.

(d) ‖ε(T λdivw)‖h ≤ c ‖ε(w)‖h and ρh(ε(T
λ
divw)) ≤ c ρh(ε(w)).

Proof. (b) and (c): Note that Bogj is continuous from Lq0(Q∗i ) to W 1,q
0 (Q∗i )

for any q ∈ (1,∞). If q = ∞, then we only have BMO for the gradients
of Bogj. However, in the definition of T λdiv, we only apply Bogj to the spe-
cial functions ϕj div(T λ0 w), which are from a finite dimensional subspace of
smooth functions. As in the derivation of the estimates for ϕj the special ge-
ometric properties of the cubes Q∗j together with the properties of ϕj imply,
that (up to translation and dyadic scaling) only finitely many different finite
dimensional subspaces of smooth functions occur here. Now, we can use the
property that Bogj also maps Lq0(Q∗j)∩W 1,q(Q∗j) to W 1,q

0 (Q∗j)∩W 2,q(Q∗j) for

some q > n to see that Bogj acts as a mapping from L∞0 (Q∗j) to W 1,∞
0 (Q∗j)

on these finite dimensional subspaces. In particular, we have

‖∇Bogj(ϕj div(T λ0 w))‖∞,Q∗j ≤ c ‖ϕj div(T λ0 w)‖∞,Q∗j . (2.8)

Hence, with Lemma 2.10 (c)

‖∇Bogj(ϕj div(T λ0 w))‖∞,Q∗j ≤ c ‖ε(T λ0 w)‖L∞(Q∗j ).

Now, this estimate and Lemma 2.10 (b) and (c) prove (b) and (c), respec-
tively.
(a): Using Poincaré’s inequality on Q∗j and the estimate (2.8) for Bogj, we
get

‖Bogj(ϕj div(T λ0 w))‖∞,Q∗j ≤ c rj‖∇Bogj(ϕj div(T λ0 w))‖∞,Q∗j ≤ c rj‖ε(T λw)‖∞,Q∗j .

Now, from Lemma 2.10 (b) and the L1-stability of RQ∗j
, see (2.2), we get

‖Bogj(ϕj div(T λ0 w))‖∞,Q∗j ≤ c
∑
k∈Aj

−
∫
Q∗k

|w −wk| dx ≤ c −
∫
5Q∗k

|w| dx.

This, the locally finiteness of the Q∗j and the L1-stability of T λ0 prove the
L1-stability of T λdiv.
(d): This follows from (c) exactly as in Lemma 2.3.
It follows from (2.7) that div T λdivw = 0, hence T λdiv ∈ V

1,∞
0,div(Rd).
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Remark 2.12. Let w ∈ V 1,h
0,div(B). If we want to use T λdivw as a test function

to a PDE, then it is useful that the support of T λdivw does not become too big.
This can be ensured by choosing λ large enough. Indeed, if λ > −

∫
B
|ε(w)| dx,

then Oλ = {M(ε(w)) > λ} ⊂ 2B. Therefore, supp(T λdivw) ⊂ B ∪ Oλ ⊂ 2B,
which implies T λdivw ∈ V

1,∞
0,div(2B).

We will now apply the solenoidal Lipschitz truncation T λdiv to a weak null
sequence in V 1,h

0,div(Ω).

THEOREM 2.13. Let (wn) ⊂ V 1,h
0,div(B) be a bounded sequence which con-

verges strongly to zero in L1(B) . Then there is a double sequence (λn,j) ⊂ R
and j0 ∈ N and null sequences κj, κ̃j → 0 such that the sequence wn,j :=

T
λn,j
div w ∈ V 1,∞

0,div(2B) satisfies the following properties. We have for j ≥ j0

(a) wn,j ∈ V 1,∞
0,div(2B) and wn,j = wn on Rd \ {M(εwn) > λn,j},

(b) ‖ε(wn,j)‖∞ ≤ cλn,j where 22j ≤ λn,j ≤ 22j+1
,

(c) ε(wn,j)
∗
⇀ 0 for n→∞ in L∞(2B),

(d) There exists a (non-relabeled) subsequence of wn which satisfies
lim sup
n→∞

∫
h
(
|λn,jχ{wn,j 6=wn}|

)
dx ≤ κj and lim sup

n→∞
‖λn,jχ{wn,j 6=wn}‖h ≤

κ̃j.

Proof. We will construct below a double sequence λn,j with 22j ≤ λn,j ≤ 22j+1

and define wn,j := T
λn,j
div wn. Choose j0 such that supn −

∫
B
|ε(wn)| dx ≤ 22j0 .

Properties (a) and (b) follow immediately from Lemma 2.11 and Remark 2.12
for j ≥ j0.
Since wn is bounded in V 1,h

0,div(B), it follows that there exists a subsequence
of wn such that the corresponding subsequence of ε(wn) converges weakly in
L1(B). Due to the L1-convergence of wn, this limit must be zero. Since, we
can apply this argument to any subsequence of wn, it follows that the whole
sequence ε(wn) converges weakly in L1 to zero.
It follows from ‖wn,j‖1 ≤ c ‖w‖1 (by Lemma 2.11), that wn,j n→ 0 in L1.
Moreover, (wn,j)n is (by Lemma 2.11) for every j ≥ j0 bounded in V 1,∞

0 (2B).
Therefore, there exists a subsequence such that ε(vn) converges ∗-weakly.
As in the argument used above, this implies that the whole sequence ε(vn)
converges ∗-weakly to zero, which proves (c).
Since M is bounded from Lh(2B) to L1(2B) (see [Ste93] I 8.14(a)), we have

K := sup
n
‖M(ε(wn))‖1 <∞.
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Next, we observe that for any g ∈ L1(2B) we have

‖g‖1 =

∫
2B

∫ ∞
0

χ{|g|>t} dt dx

≥
∫

2B

∑
m∈Z

2m χ{|g|>2m+1} dx

≥
∑
j∈N

2j+1−1∑
k=2j

∫
2B

2k χ{|g|>2·2k} dx.

(2.9)

The choice g = χ2BM(ε(wn)) implies

∑
j∈N

2j+1−1∑
k=2j

∫
2B

2k χ{|M(ε(wn))|>2·2k} dx ≤ K.

We can rewrite the last inequality as∑
j∈N

bnj ≤ K

with an obvious definition for bnj .
Since the sum in the definition of bj contains 2j summands, there is at least
one index kn,j such that∫

2B

2kn,j χ{|M(ε(wn))|>2·2kn,j } dx ≤ 2−j bnj . (2.10)

which is equivalent to∫
2B

h
(
2kn,j

)
χ{|M(ε(wn))|>2·2kn,j } dx ≤ ln(1 + 2kn,j) 2−j bnj . (2.11)

Note that ln(1 + 2kn,j) 2−j ≤ 3 on account of kn,j ≤ 2j+1; thus we get∫
2B

h
(
2kn,j

)
χ{|M(ε(wn))|>2·2kn,j } dx ≤ 3 bnj . (2.12)

Define δ1 := lim infn b
n
1 . Then there exists a subsequence (not relabeled) with

lim sup
n

bn1 = lim inf
n

bn1 = δ1.

This proves

lim sup
n

∫
2B

h
(
2kn,1

)
χ{|M(ε(wn))|>2·2kn,1} dx ≤ 3 lim sup

n
bn1 = 3 δ1.
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Next, define δ2 := lim infn b
n
2 and by passing to a further subsequence we get

lim sup
n

∫
2B

h
(
2kn,2

)
χ{|M(ε(wn))|>2·2kn,2} dx ≤ 3 lim sup

n
bn2 = 3 δ2.

Using this iterative argument we can construct a diagonal sequence (not
relabeled) such that for every j

lim sup
n

∫
2B

h
(
2kn,j

)
χ{|M(ε(wn))|>2·2kn,j } dx ≤ 3 lim sup

n
bnj = 3 δj. (2.13)

From now on we will use the diagonal sequence. The Lemma of Fatou gives

K ≥ lim inf
n

∑
j

bnj ≥
∑
j

lim inf
n

bnj =
∑
j

δj,

hence, δj is a null sequence. Define κj := 3 δj and λn,j := 2kn,j . Then
(2.13) proves the integral estimate of (d). The norm estimate is a direct
consequence.

Remark 2.14. Note that it is not possible to show (d) of Theorem 2.13 by the
technique of [DMS08], since there the boundedness of the maximal function
it used, which does not hold in Lh. Therefore, we must apply a more subtle
weak type argument.

Remark 2.15. Replacing wj in the definition of T λ by mean values (instead
of rigid motions) we get from Theorem 2.13 the following result for 1 < p <
∞.
Let (wn) ⊂ W 1,p

0,div(B) be a bounded sequence which converges strongly to zero
in L1(B) . Then there is a double sequence (λn,j) ⊂ R and j0 ∈ N, a null
sequence κj → 0 and a sequence wn,j ∈ W 1,∞

0,div(2B) satisfying the following
properties. We have for j ≥ j0

(a) wn,j ∈ W 1,∞
0,div(2B) and wn,j = wn on Rd \ {M(∇wn) > λn,j},

(b) ‖∇wn,j‖∞ ≤ cλn,j where 22j ≤ λn,j ≤ 22j+1
,

(c) ∇wn,j ∗⇀ 0 for n→∞ in L∞(2B),

(d) lim sup
n→∞

‖λn,jχ{wn,j 6=wn}‖p ≤ κj2
−j.

The name Lipschitz truncation originates from this situation, where the wn,j

are Lipschitz.
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3 Existence of weak solutions

In this section we prove Theorem 1.1. In particular, we show the existence
of a weak solution v ∈ V 1,h

0,div(Ω) to the equation∫
Ω

DW (ε(u)) : ε(ϕ) dx =

∫
Ω

f · ϕdx+

∫
Ω

u⊗ u : ε(ϕ) dx (3.1)

for all ϕ ∈ C∞0,div(Ω), where Ω ⊂ R2 is a bounded Lipschitz domain. We start

by approximating this equation. We consider solutions vn ∈ W 1,2
0,div(Ω) of the

system∫
Ω

(
DW (ε(u))+n−1ε(u)

)
: ε(ϕ) dx =

∫
Ω

f ·ϕ dx+

∫
Ω

u⊗u : ε(ϕ) dx. (3.2)

The existence of solutions to this system can easily be verified due to the
quadratic growth of the main part by means of monotone operators. An
important advantage of this approximation consists in the fact that the space
of test functions coincides with the space where the solution is constructed.
Moreover, all vn satisfy the uniform estimate∫

Ω

h(|ε(vn)|) dx+ n−1

∫
Ω

|ε(vn)|2 dx ≤ c,

which follows from testing (3.2) by vn. Consequently, we get

‖ε(vn)‖h ≤ c,

‖n−1/2ε(vn)‖2 ≤ c.

This estimate and Theorem 4.7 imply the existence of v ∈ V 1,h
0,div(Ω), and a

(not relabeled) subsequence {vn} such that

vn → v in L2(Ω),

ε(vn) ⇀ ε(v) in L1(Ω),

n−1ε(vn)→ 0 in L2(Ω).

It follows from these convergences that

1

n
(ε(vn), ε(ϕ))→ 0 and

(vn ⊗ vn, ε(ϕ))→ (v ⊗ v, ε(ϕ)) for all ϕ ∈ C∞0,div(Ω).

Clearly these statements extend to ϕ ∈ V 1,∞
0,div(Ω).
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Next, to prove that also

(DW (ε(vn)), ε(ϕ))→ (DW (ε(v)), ε(ϕ)) for all ϕ ∈ C∞0,div(Ω) (3.3)

it suffices, by virtue of ‖ε(vn)‖h ≤ c and Vitali’s theorem, to show at least
for a subsequence that ε(vn)→ ε(v) almost everywhere. This follows, see for
example [DMM98] for details, from the strict monotonicity of the operator
DW provided that for a certain θ ∈ (0, 1] and every ball B ⊂ Ω with 4B ⊂ Ω

lim sup
n

∫
B

(
(DW (ε(vn))−DW (ε(v))) : (ε(vn)− ε(v))

)θ
dx = 0 . (3.4)

To verify equation (3.4), let η ∈ C∞0 (2B) with χB ≤ η ≤ χ2B and |∇η| ≤
cR−1, where R is the radius of B. We define

wn := η(vn − v)− Bog2B(∇η · (vn − v)),

where Bog2B is the Bogovskĭı operator on 2B from L2
0(2B) toW 1,2

0 (2B). Since
∇η ·(vn−v) is bounded in L2

0(2B), we have that wn is bounded in V 1,h
0,div(2B).

Moreover, vn → v in L2 and the continuity of Bog implies wn → 0 in L1. In
particular, we can apply our solenoidal Lipschitz truncation of Theorem 2.13
to get a suitable double sequence wn,j ∈ V 1,∞

0,div(4B).

The weak formulation of the approximative problem (3.2) with wn,j as a test
function can be rewritten as

(DW (ε(vn))−DW (ε(v)), ε(wn,j)) = −(DW (ε(v)), ε(wn,j))

− 1

n
(ε(vn), ε(wn,j)) + (f ,wn,j)

+ (vn ⊗ vn, ε(wn,j)).

It follows from the properties of wn,j and vn that the right-hand side con-
verges for fixed j to zero as n→∞. So we get

lim
n→∞

(DW (ε(vn))−DW (ε(v)), ε(wn,j)) = 0. (3.5)

We decompose the set 4B into {w 6= wn,j} and 4B ∩ {w = wn,j} to get

(I) := lim sup
n

∣∣∣∣ ∫
4B∩{w=wn,j}

η
(
DW (ε(vn))

)
−DW (ε(v)

)
: (ε(vn)− ε(v)) dx

∣∣∣∣
= lim sup

n

∣∣∣∣ ∫
{w 6=wn,j}

(
DW (ε(vn))

)
−DW (ε(v)

)
: ε(wn,j) dx

∣∣∣∣
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+ lim sup
n

∣∣∣∣ ∫
4B∩{w=wn,j}

(
DW (ε(vn))

)
−DW (ε(v)

)
:
(
∇η ⊗sym (vn − v)

)
dx

∣∣∣∣
+ lim sup

n

∣∣∣∣ ∫
4B∩{w=wn,j}

(
DW (ε(vn))

)
−DW (ε(v)

)
: ε
(
Bog2B(∇η · (vn − v))

)
dx

∣∣∣∣
=: (II) + (III) + (IV ).

Since ∇η ⊗ (vn − v)
n→ 0 in L2, we have (III) + (IV )

n→ 0, where we also
used the continuity of Bog2B from L2

0(2B) to W 1,2
0 (2B).

By Young’s inequality

(II) ≤ lim sup
n

(
‖DW (ε(vn))‖h∗ + ‖DW (ε(v))‖h∗

)
‖χ{wn 6=wn,j}ε(w

n,j)‖
h
,

where h∗ is the conjugate N-function of h. Since

h∗(|DW (ε)|) ≤ h∗(h′(|ε|)) ≤ h(2|ε|) ≤ c h(|ε|),

we deduce from the uniform boundedness of wn and w in V 1,h
0 (Ω) that

DW (ε(wn)) and DW (ε(w)) are uniformly bounded in Lh
∗
. On the other

hand by Theorem 2.13

‖χ{wn 6=wn,j}ε(w
n,j)‖

h
≤ c ‖χ{wn 6=wn,j}λ‖h ≤ c κ̃j

for a null sequence κ̃j. This proves (II) ≤ c κ̃j. Overall we get

lim sup
n

∣∣∣∣ ∫
4B∩{w=wn,j}

η
(
DW (ε(vn))

)
−DW (ε(v)

)
: (ε(vn)− ε(v)) dx

∣∣∣∣ ≤ c κ̃j.

(3.6)

Let θ ∈ (0, 1). We claim that the previous estimate implies

lim sup
n

∫
4B

(
η
(
DW (ε(vn))

)
−DW (ε(v)

)
: (ε(vn)− ε(v))

)θ
dx = 0. (3.7)

Let zn denote the integrand of the integral in (3.6). Then

lim sup
n

∣∣∣∣ ∫
4B∩{w=wn,j}

zn dx

∣∣∣∣ ≤ c κ̃j. (3.8)

Hölder’s inequality implies∫
4B

(zn)θ dx ≤
( ∫

4B∩{w=wn,j}

zn dx

)θ
|4B|1−θ +

( ∫
{w 6=wn,j}

zn dx

)θ
|{w 6= wn,j}|1−θ.
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From lim sup
n→∞

ρh(λn,jχ{wn,j 6=wn}) ≤ κj we deduce |{w 6= wn,j}| ≤ κj2
−2j ≤ κj.

Overall, we get together with (3.8) after passing ot the limit j →∞

lim sup
n

∫
4B

(zn)θ dx = 0.

This proves (3.7). Now, (3.4) is a consequence of η ≥ χB, which in turn
implies the almost every convergence of ε(vn) → ε(v). So we can pass to
the limit in (3.3) as desired, which shows that v is a weak solution of (3.1).
The proof for the existence of v is complete.
It remains to reconstruct the pressure. Standard arguments applied to (3.2)
show the existence of a sequence (πn) ⊂ L2

0(Ω) with∫
Ω

Hn : ε(ϕ) dx =

∫
Ω

πn divϕ dx,

Hn := DW (ε(vn)) + n−1ε(vn)− F− vn ⊗ vn,

(3.9)

for all ϕ ∈ W 1,2
0 (Ω) (where F = ∇(∆−1f) ∈ Lp0(Ω)). In order to show

bounds for the pressure we need the continuity of

BogΩ : LExp
0 (Ω)→ W 1,Exp1/2

0 (Ω), (3.10)

where

LExpα(Ω) :=

{
u ∈ L1(Ω);

∫
Ω

exp

([
|u|
λ

]α)
<∞ for some λ <∞

}
.

The corresponding Sobolev space has an obvious meaning, where the zero
stands for zero boundary values in the sense of W 1,1-traces. If Ω is star-
shaped2 with respect to a ball B0, we have(

∇BogΩ(ψ)
)
ij

(x) =

∫
kij(x, x− y)ψ(y) dy + ψ(x)

(zizj
|z|2
∗ ω
)

(x)

for a suitable ω ∈ C∞0 (B0), where the integral with kij is a singular integral
operator, see [Sch07, equation (3.5)], [Gal94, Lemma III 3.1]. These singular
integral operators are continuous from Lp(Rd) to Lp(Rd) where the operator
norm is O(p) (see [Ste93] I 8.13 or [Duo01], section 6.5). From [CUK02]
(introduction) we quote that u ∈ LExpα iff

sup
p
p−

1
α‖u‖p <∞. (3.11)

2Note that domains with Lipschitz boundary are the finite union of such domains.
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Now let u ∈ LExp(Ω) with ‖u‖LExp ≤ 1, then (3.11) implies

sup
p
p−2‖∇BogΩu‖p ≤ c sup

p
p−1‖u‖p <∞.

As a consequence we get (3.10) using (3.11) again. In the general case, where
Ω has Lipschitz boundary, we use the fact that Ω is the finite union of domains
of the above type.
This enables us to bound the Lh(Ω)-norm of the pressure using the dualities

(Lh)∗ = LExp and (Lt ln2(t))∗ = LExp1/2
as follows:

‖πn‖Lh = sup
ϕ∈LExp

0 ,‖ϕ‖≤1

∫
Ω

πnϕ dx = sup
ϕ∈LExp

0 ,‖ϕ‖≤1

∫
Ω

πn div BogΩϕ dx

= sup
ϕ∈LExp

0 ,‖ϕ‖≤1

∫
Ω

Hn : ε(BogΩϕ) dx ≤ sup
ϕ∈LExp

0 ,‖ϕ‖≤1

‖Hn‖Lt ln2(t)‖∇BogΩϕ‖LExp1/2

≤ c sup
ϕ∈LExp

0 ,‖ϕ‖≤1

‖Hn‖Lt ln2(t)‖ϕ‖LExp ≤ c‖Hn‖Lt ln2(t) .

Using the definition of Hn, we see that the critical part is vn ⊗ vn which
is bounded in Lt ln2(t)(Ω) by Lemma 4.6 and Lemma 4.5. This finally gives
boundedness of πn in Lh(Ω). On account of the De La Vallée Poussin Lemma
we can choose a subsequence and a function π ∈ Lh(Ω) with

πn ⇀: π in L1(Ω). (3.12)

Combining (3.12) with (3.3) we get

〈DW (ε(u))− (u⊗ u), ε(ϕ)〉 − 〈f ,ϕ〉 = 〈π, divϕ〉 for all ϕ ∈ C∞0 (Ω),
(3.13)

which proves (1.9).

4 Appendix

4.1 Korn’s inequality

Lemma 4.1. Let Q ⊂ Rd be a an cube (or a ball). Then there is c > 0 such
that for all w ∈ V 1,h(Q) it holds

−
∫
Q

|∇(w −RQw)| dx ≤ c −
∫
Q

|M(ε(w))| dx,

where c does not depend on Q.
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Proof. By scaling it suffers to consider the unit cube (or ball). In [FB11]
(Lemma 3.1) it is shown that∫

Q

|∇w| dx ≤ c

(∫
Q

h(|ε(w)|) dx+

∫
Q

|w| dx+ 1

)
(4.1)

holds for all w ∈ C∞(Q). This is a consequence of a representation formula
from [Res70] and the continuity of singular integral operators from Lh to L1.
From (4.1) and closeness of smooth functions we deduce the boundedness of
the mapping

V 1,h(Q) 3 w 7→ ∇w ∈ L1(Q).

This implies
‖∇w‖1 ≤ c‖w‖V 1,h , w ∈ V 1,h(Q).

As a consequence we get for all w ∈ V 1,h(Q)

‖∇(w −RQw)‖1 ≤ c‖ε(w)‖h + c‖w −RQw‖1

≤ c‖ε(w)‖h + c‖ε(w)‖1

≤ c‖ε(w)‖h.
Here we used a variant of Korn’s inequality for BD (see, i.e., [FS99], Theorem
A.3.1). The claim follows since ‖ · ‖h and ‖M(·)‖1 are equivalent on bounded
domains (see [Ste93] I 8.14(a)).

Remark 4.2. Since the results from [FB11] quoted in the proof given above
actually hold for all star-shaped domains we are able to consider a much
more general case as stated in Lemma 4.1. In particular the inequality holds
for all bounded Lipschitz domains Ω, which are finite unions of star-shaped
domains.

Corollary 4.3. In case of zero boundary data we get immediately

−
∫
Q

|∇w| dx = −
∫
Q

|∇w − 〈∇w〉Q| dx ≤ 2 inf
A∈Rd×d

−
∫
Q

|∇w − A| dx

≤ 2−
∫
Q

|∇(w −RQw)| dx ≤ c −
∫
Q

|M(ε(w))| dx,

where 〈∇w〉Q is the mean of ∇w over Q.

Corollary 4.4. Since ‖M(·)‖1 is equivalent to ‖ · ‖h on bounded domains
(see [Ste93] I 8.14(a)) we further obtain∫

Ω

|∇(w −RΩw)| dx ≤ c ‖ε(w)‖Lh(Ω), w ∈ V 1,h(Ω),∫
Ω

|w| dx ≤ c ‖ε(w)‖Lh(Ω), w ∈ V 1,h
0 (Ω).
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4.2 Function spaces involving symmetric gradients

In this subsection we summarize further properties of V 1,h
0 (Ω) and V 1,h

0,div(Ω).

Let Ω ⊂ Rd, d ≥ 2 be a bounded domain with Lipschitz boundary.
Clearly V 1,h(Ω) is a Banach space being a proper subspace of the space
BD(Ω) containing all functions of bounded deformation introduced by Suquet
[Suq78] and by Matthies, Strang, Christiansen [MSC78]. The class BD(Ω)
has been widely considered in the literature in connection with problems from
plasticity, we refer to the works of Anzellotti and Giaquinta [AG80], Teman
and Strang [ST81] and Teman [Tem85]. The space BD(Ω) is equipped with
the norm

‖u‖BD(Ω) := ‖u‖L1(Ω) +

∫
Ω

|ε(u)| , (4.2)

where
∫

Ω
|ε(u)| is the total variation of the matrix valued measure ε(u).

From the above references we deduce

Lemma 4.5. The space BD(Ω is continuously embedded into the Lebesgue
space Ld/(d−1)(Ω). For 1 ≤ p < d/(d− 1) the embedding BD(Ω) ↪→ Lp(Ω) is
compact.

To functions u from BD(Ω) we can associate a trace u|∂Ω in L1(∂Ω), and in
case u|∂Ω = 0 it holds (see, e.g. [AG80])

‖u‖Ld/(d−1)(Ω) ≤ c(d,Ω)

∫
Ω

|ε(u)| . (4.3)

From (4.3) it follows that on the subspace BD(Ω) ∩ {u : u|∂Ω = 0} the BD–
norm defined in (4.2) can be replaced by the equivalent norm

∫
Ω
|ε(·)|. We

observe that (cf. [FS00], Lemma 4.1.6)

V 1,h
0 (Ω) = {u ∈ V 1,h(Ω) : u|∂Ω = 0} , (4.4)

where u|∂Ω has to be understood in the BD–trace sense. We therefore have
inequality (4.3) for functions u ∈ V 1,h

0 (Ω), which means (recall (2.1)) that

‖u‖V 1,h
0 (Ω) := ‖ε(u)‖Lh(Ω) (4.5)

is a norm equivalent to ‖ · ‖V 1,h
0 (Ω) on the class V 1,h

0 (Ω).

From Korn’s inequality (see Corollary 4.3) it follows that V 1,h
0 (Ω) ↪→ W 1,1

0 (Ω).
Another consequence of Korn’s inequality is:
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Lemma 4.6. Let u ∈ V 1,h
0 (Ω). Then the field w := ln(1 + |u|)u belongs to

the space BD(Ω), and the total variation
∫

Ω
|ε(w)| of w is bounded in terms

of ‖ε(u)‖Lh(Ω), i.e. we have∫
Ω

|ε(w)| ≤ C
(
‖u‖V 1,h

0 (Ω)

)
. (4.6)

Proof. Consider first the case u ∈ C∞0 (Ω). Then it holds

ε(w) = ln(1 + |u|)ε(u) +
1

2

(
ui∂j ln(1 + |u|) + uj∂i ln(1 + |u|)

)
1≤i,j≤n ,

hence

|ε(w)| ≤ ln(1 + |u|)|ε(u)|+ c(n)
|u|

1 + |u|
|∇u| .

From Young’s inequality for N–functions we get for s, t ≥ 0

h′(t)s ≤ h∗(h′(t)) + h(s) ,

h∗ denoting the conjugate function of h. Moreover we have

h∗(h′(t)) = th′(t)− h(t) ≤ h(t) .

These inequalities imply

ln(1 + |u|)|ε(u)| ≤ h′(|u|)|ε(u)| ≤ h(|u|) + h(|ε(u)| ,

hence ∫
Ω

|ε(w)| dx ≤
∫

Ω

h(|u|) dx+

∫
Ω

h(|ε(u)|) dx+ c(n)

∫
Ω

|∇u| dx .

The quantity
∫

Ω
h(|ε(u)|) dx can be estimated in terms of ‖ε(u)‖Lh(Ω) (and

vice versa), to
∫

Ω
|∇u| dx we apply Lemma 4.1, and finally observe that∫

Ω
h(|u|) dx ist bounded e.g. by

∫
Ω
|u|d/d−1 dx and this integral can be han-

dled via (4.3). Altogether we have (4.6) for the smooth case.
If u ∈ V 1,h

0 (Ω) is arbitrary, then we choose uν ∈ C∞0 (Ω) such that ‖u −
uν‖V 1,h

0 (Ω) → 0 as ν → ∞. This in particular gives ‖uν‖V 1,h
0
→ ‖u‖V 1,h

0 (Ω),

and (4.6) shows that

sup
ν

∫
Ω

|ε(wν)| dx <∞ . (4.7)

If we apply (4.3) to uν − u, we get uν → u in Ld/(d−1)(Ω), and for a suitable
subsequence it holds uν → u a.e., and therefore wν → w a.e. By (4.7) and
(4.3) we see that {wν} is bounded sequence in BD(Ω), thus there is a strongly
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convergent subsequence in L1(Ω), (see Lemma 4.5), which means that there
exists w̃ ∈ BD(Ω) such that wν → w̃ in L1(Ω). The finiteness of

∫
Ω
|ε(w̃)|

follows by lower semi-continuity, i.e.∫
Ω

|ε(w̃)| ≤ lim inf
ν→∞

∫
Ω

|ε(wν)| dx . (4.8)

Clearly we have w̃ = w, and (4.6) for w follows from (4.8) and the version
of (4.6) for wν .

Now we can prove the main result of this section:

THEOREM 4.7. The embedding V 1,h
0 (Ω) ↪→ Ld/(d−1)(Ω) is compact. More

precisely, if uν denotes a bounded sequence in V 1,h
0 (Ω), then there exists a

subsequence uν (not relabeled) and a function u ∈ V 1,h
0 (Ω) such that uν → u

in Ld/(d−1)(Ω) and ε(uν) ⇀ ε(u) in L1(Ω) for ν →∞.

Proof. Suppose that supν∈N ‖uν‖V 1,h
0 (Ω) < ∞. From Lemma 4.6 we deduce

the existence of a field u ∈ L1(Ω) such that

uν → u in L1(Ω) and a.e. , (4.9)

where here and in what follows we will pass to subsequences whenever this
is necessary. According to the De La Vallée Poussin criterion for weak com-
pactness in L1 or by a theorem of Dunford and Pettis (cf. [AFP00], Theorem
1.38) we get from

sup
ν∈N

∫
Ω

|ε(uν)| ln(1 + |ε(uν)|) dx <∞

that ε(uν) ⇀: σ in L1(Ω), and clearly σ = ε(u). Moreover, by lower semi-
continuity it holds ∫

Ω

h(|ε(u)|) dx ≤ lim inf
ν→∞

∫
Ω

h(|ε(uν)|) ,

so that u is an element of the space V 1,h(Ω). In order to show u ∈ V 1,h
0 (Ω),

we follow the arguments of Frehse and Seregin [FS98]: since ε(uν) ⇀ ε(u)
in L1(Ω) we can find a sequence {σµ}, σµ being an element of the convex
hull of {ε(uν) : ν ≥ µ}, such that σµ → ε(u) in L1(Ω). This follows from
the well–known Banach–Saks lemma. We have

σµ =

N(µ)∑
ν=µ

λµνε(uν),

N(µ)∑
ν=µ

λµν = 1, 0 ≤ λµν ≤ 1
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with suitable coefficients λµν and integers N(µ) ≥ µ. Let

uµ :=

N(µ)∑
ν=µ

λµν uν .

These functions belong to V 1,h
0 (Ω) and satisfy

‖uµ − u‖L1(Ω) ≤
N(µ)∑
ν=µ

λµν‖uν − u‖L1(Ω) → 0, µ→∞,

which is a consequence of (4.9). Moreover it holds∫
Ω

|ε(uµ)| dx =

∫
Ω

|σµ| dx→
∫

Ω

|ε(u)| dx, µ→∞ ,

and according to [AG80] these two convergences imply the L1–convergence
of the traces of uµ towards the trace of u. In conclusion u|∂Ω = 0, hence

u ∈ V 1,h
0 (Ω), and it remains to show that

uν → u in Ld/(d−1)(Ω) (4.10)

holds. From our assumption combined with (4.6) we get

sup
ν∈N

∫
Ω

|ε(wν)| <∞ , (4.11)

wν := ln(1 + |uν |)uν , and (4.11) together with the first part of Lemma 4.6
gives

sup
ν∈N
‖wν‖Ld/(d−1)(Ω) <∞ . (4.12)

Let Γ(t) := h
(
t
d−1
d

)d/(d−1)

, t ≥ 0 . Then

Γ(t)

t
=

h
(
t
d−1
d

)
t
d−1
d


d
d−1

−→∞, t→∞ , (4.13)

and (compare (4.12))∫
Ω

Γ
(
|uν |

d
d−1

)
dx =

∫
Ω

h(|uν |)
d
d−1 dx =

∫
Ω

|wν |
d
d−1 dx ≤ const <∞ ,

(4.14)
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therefore |uν |d/(d−1) ⇀: g weakly in L1(Ω) by quoting the De La Vallée
Poussin criterion one more time. By (4.9) we must have g = |u|d/(d−1),
since |uν |d/(d−1) → |u|d/(d−1) a.e. on Ω. This in particular implies

‖uν‖Ld/(d−1)(Ω) → ‖u‖Ld/(d−1)(Ω), ν →∞ ,

where we combined (4.13) and (4.14) with Vitali’s Theorem. At the same
time it follows from

sup
ν∈N
‖uν‖Ld/(d−1)(Ω) <∞

and (4.9), that uν ⇀ u in Ld/(d−1)(Ω). Putting both convergences together,
the Radon–Riesz lemma (cf. [GMS98], p.47, Proposition 3) gives our claim
(4.10), and Theorem 4.7 is proved.

In the setting of Prandtl–Eyring fluids we have to work in the space V 1,h
0,div(Ω)

which according to Lemma 4.1.6 in [FS00] is the closure of C∞0,div(Ω) in the

class V 1,h(Ω) w.r.t. the norm ‖ · ‖V 1,h(Ω) defined in (2.1). From Theorem 4.7
it follows

Corollary 4.8. The statement of Theorem 4.7 remains valid, if the space
V 1,h

0 (Ω) is replaced by the subclass V 1,h
0,div(Ω).
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