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Christian Schmaltz Pascal Gwosdek Joachim Weickert

October 28, 2011

Abstract

Electrostatic halftoning, a sampling algorithm based on electrostatic prin-
ciples, is among the leading methods for stippling, dithering, and sampling.
However, this approach is only applicable for a single class of dots with a
uniform size and colour. In our work, we complement these ideas by ad-
vanced features for real-world applications. We propose a versatile frame-
work for colour halftoning, hatching, and multi-class importance sampling
with individual weights. An additional model-based ink coverage analysis
improves the visual result in very dark image regions. Our novel approach is
the first method that globally optimises the distribution of different objects
in varying sizes relative to multiple given density functions. The quality,
versatility, and adaptability of our approach is demonstrated in various ex-
periments.

1 Introduction
Many applications in computer graphics and image processing require image-
adaptive importance sampling strategies, which arrange a finite number of points
according to a given continuous density function. In the context of printing or
non-photorealistic rendering, this process is called halftoning and describes the
placement of inkblots onto paper [Kip01, Sec02]. It is also possible to use more
complex primitives, in which case the same idea is known as object placement
[DHL∗98, Wei10]. Furthermore, importance sampling is widely employed as a
component in a large number of more advanced applications. Examples include
numerical integration such as Quasi-Monte Carlo methods [Hal60, Coo86], ge-
ometry processing [SAG03], ray-tracing [PH04], and image-based lighting using
high dynamic range images [KK03].
In the literature, a lot of different algorithms can be found to solve the funda-
mental problem described above. Early works include the introduction of non-
uniform sampling for ray-tracing [DW85], and dart throwing techniques [Coo86].
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Figure 1: Example halftoning result with multiple classes.

The latter algorithm gave rise to a large number of new algorithms and accelera-
tion schemes such as relaxation dart throwing [MF92] and even to a parallel dart
throwing algorithm for sampling complex 3-D manifolds [BWWM10].
Due to their speed, algorithms based on tilings are also very popular. In [ODJ04],
a recursive Penrose tiling is used, while a polyomino tiling is employed in [VO08].
Several other fast approaches employ Wang tiles [Wan61, HDK01], or even pro-
gressive recursive Wang tiles [KCDL06]. Another possibility is to utilise cor-
ner tiles [LD06] with a fixed set of tiles. We refer to the survey by Lagae and
Dutré [LD08] for more details.
A widely used but much slower approach is Lloyd’s method, which was ad-
vocated in computer graphics by [MF92]. Lloyd’s method must be manually
stopped before convergence if regularity artefacts are undesired, though. Re-
cently, this drawback was eliminated by capacity constraints Voronoi tessela-
tions [BSD09]. This also allows to approximate the image – or more generally
any underlying probability density function (PDF) – much more accurately. A
faster version of capacity constrained Voronoi tesselations was introduced by Lie
et al. [LNW∗09a, LNW∗09b].

2



In [SGBW10], sampling points are modelled as charged particles moving in an
electric force field induced by the underlying PDF. The resulting steady-state was
shown to yield an even higher approximation quality than the approach from
[BSD09]. Due to the fact that this so-called electrostatic halftoning is easy to
implement on parallel hardware such as graphics cards, results are also available
faster. This is especially true when using the fast summation algorithm on GPUs
from [GSWT11]. [Fat11] applies ideas closely related to those in [SGBW10], but
employs truncated Gaussian kernels instead of Coulomb potentials. By using lo-
calised kernels and a multi-scale minimisation approach, even a linear runtime is
achieved. This seems to come at the expense of a slightly lower approximation
quality and a missing adjustability of the exact number of points.
Moreover, there are numerous areas which are not concerned with selecting ap-
propriate point positions, but apply similar ideas in the context of more complex
applications. One example is hatching, in which the task is to represent an image
by lines (instead of inkblots). The results of such approaches closely resemble en-
gravings and manual drawings commonly found in old medical textbooks. Nowa-
days, this is often achieved by rendering 3-D models [WS94, PHWF01, ZISS04].
However, there are also works that can use a single 2-D image as input: In [PB94],
an approach for creating digital engravings via an Eikonal equation is presented.
In [JEGPO02], a sample training patch of strokes is employed to guide the algo-
rithm. Secord et al. [SHS02] choose the x and y coordinates of primitives after
each other by employing cumulative density functions of the image. However,
these approaches only use a single kind of primitives.
Another example is the challenging case of multi-class sampling. Here, points
are annotated by class and size attributes, according to which they must be dis-
tributed. This has numerous applications, such as the placement of heterogeneous
objects, printing in different colours, or second-order screening. In such cases,
the behaviour is steered by different, potentially conflicting PDFs between which
a compromise must be found. One prominent approach to handle different types
was proposed by Wei [Wei10]. Since it adapts dart throwing to the new setting,
it is very fast but suffers from a mediocre approximation quality. However, to the
best of our knowledge, the general problem of placing differently coloured, poten-
tially non-circular primitives in different sizes was not discussed in the literature
so far.
In this work, we extend the electrostatic halftoning approach, which was intro-
duced by [SGBW10], to cope with the problems described above. Our contribu-
tions are the following: Firstly, we illustrate how to improve visual results in dark
image areas. This is done by adjusting the underlying image before halftoning to
account for overlapping inkblots. Secondly, we introduce the changes necessary
to deal with inkblots of different sizes. This also allows to create second order
screening results similar to those used in the printing industry. Thirdly, we give
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details on how to create halftones for output devices with arbitrary colour models,
including asymmetric models such as the CMY-RB-K colour model. As a fourth
contribution, we present our approach to multi-class sampling using different ob-
jects with varying sizes. An example for such a setup is shown in Figure 1. Our
fifth and last contribution is a novel approach for hatching, which can even be
combined with any of the other contributions.
Our paper is organised as follows: We start with a short repetition of the elec-
trostatic halftoning algorithm in Section 2. Section 3 introduces our improved
approach for handling very saturated image regions. We further extent the ba-
sic approach to second order screening techniques using inkblots with different
sizes in Section 4. In Section 5, we give details about how to halftone images
in arbitrary colour models, and illustrate how to perform multi-class sampling.
Section 6 explicates how to (additionally) use lines instead of inkblots to approx-
imate images. After performing a detailed experimental evaluation in Section 7,
we conclude the paper in Section 8.

2 Electrostatic Halftoning
The idea behind electrostatic halftoning is to model black dots (or sampling points)
by infinitesimally small negatively charged particles moving in a pure 2-D world
[SGBW10]. Let N be the total number of particles. One identifies each particle
m∈P := {1, . . . ,N} only by its position pppm and its charge qm. Due to electrostatic
forces, the particles repel each other. The force acting on the particle m due to the
other particles is given by

FFF(R)
m =− ∑

n∈P
n6=m

kqmqn

‖pppn− pppm‖
2 (pppn− pppm) , (1)

where k is a constant whose value is irrelevant.
Additionally, the particles are attracted by the underlying image (or density func-
tion) u, whereby image regions attract particles proportional to the value of u. For
halftoning a grey-valued image, for example, u(x,y) might equal 1.0− f (x,y),
where f (x,y) is the grey value of the image taken from the interval [0,1].
Each image point xxx := (x,y) is assumed to be positively charged with a charge
that equals u(x,y). This results in an attractive force acting on the m-th particle
proportional to

FFF(A)
m =

∫
Ω

kqmu(xxx)

‖xxx− pppm‖
2 (xxx− pppm) dxxx . (2)
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If u is only given at discrete positions, as it is the case if u is an image, the integral
is replaced by a discrete sum.
In this equation, we assume that the integral (or sum) over all values in u equals
N such that the total amount of positive and negative charges is identical. This
automatically binds particles to the image domain. If this assumption is violated,
one only has to multiply u with an appropriate constant.
Note that no velocity or even acceleration of the particles is modelled. Instead, the
total displacement of each particle is directly obtained by adding the forces FFF(R)

m

and FFF(A)
m . The resulting displacement is scaled by an “artificial time step size” τ,

resulting in:

ppp(new)
m = pppm + τ

(
FFF(R)

m +FFF(A)
m

)
(3)

This update equation can be regarded as performing a gradient descent of the po-
tential energy in the underlying particle system. As in [SGBW10], we set τk =
0.1 and use a direct summation algorithm implemented using NVidia’s CUDA
[NVi11]. However, a faster algorithm employing an NFFT (non-equispaced fast
Fourier transform) was also recently proposed [TSG∗11] and ported to GPUs
[GSWT11].
To prevent the algorithm from getting stuck in local minima, a simulated anneal-
ing strategy called “shaking” was proposed in [SGBW10]. This strategy is also
included in our implementation. However, since random number generators are
available on a per-thread basis nowadays, we can perform this step directly on the
GPU.
Note that the attractive image force only depends on the position xxx and can there-
fore be precomputed for the regular grid underlying the image. The attractive
image force at positions between grid locations are approximated by bilinear in-
terpolation. This automatically smoothes the attraction field, and thus prevents
possible problems introduced by the discrete nature of the underlying image.

3 Grey-Value Correction
As a first enhancement of the aforementioned model, we propose a novel approach
to accurately represent dark image areas. In the classical model, those regions are
often rendered too bright, which is a result of the infeasibility to tessellate regions
with circular discs of constant size. In such cases, discs are overlapping and leave
the corresponding area as bright spots.
The classic halftoning literature approaches this problem by using circumcircles
of regular hexagons [Uli87] instead of circles that cover the same area as the
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Figure 2: Dot sizes (red circles) with respect to the underlying hexagon structure.
Left: Classical approach using circumcircles. Right: Our approach using circles
with the same size as the underlying hexagons.
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Figure 3: Plot of the tonemapping operator T (x). The dotted lines indicate the
identity function and the value 1− π

2
√

3
after which T (x) = x holds.

hexagon, see Figure 2. Thus, each partition of space is covered by at least one
circle in a regular honeycomb pattern. Since this measure darkens the whole im-
age in brighter regions, a tonemapping operator is applied to the input prior to
halftoning. It artificially brightens up areas such that the ‘wrong’ halftone using
larger circles again well approximates the original.
In this paper, we propose a similar idea to prevent the problem described above.
However, instead of brightening all image regions, we darken only very dark im-
age areas. Consequently, more particles are attracted to regions that previously
appeared too bright. This results in a stronger overlap, and thus a better approxi-
mation.
Let us assume that particles are arranged in a regular, i.e. energetically optimal,
honeycomb pattern. In order to make this arrangement resemble the desired grey
value, we propose the tonemapping operator shown in Figure 3:
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T (x) =

{
1− π

2
√

3 c2 , x 6 1− π

2
√

3
x, else

(4)

with c chosen such that

π

2
√

3 c2

(
1− 6

π

(
arctan

(√
1
c2 −1

)
− c

√
1− c2

))
= x , (5)

√
3

2
6 c 6 1 . (6)

If this operator is used, it can be shown by computing the overlap between adjacent
inkblots that the halftoning of T (u(x)) has the same average grey-value as the
original image u(x).
As can be easily seen, tone mapping is necessary if and only if the grey value is
smaller than 1− π

2
√

3
≈ 0.0931, whereby the image is assumed to have a range of

[0,1]. For an image with 256 possible grey levels, tone mapping must therefore
be applied for only 24 grey levels, since 0.0931 ·255 < 24 holds, while all but one
grey values must be adapted when using circumcircles.
The only challenging part left is the evaluation of (5), which has to be solved for
c depending on x. This can easily be done once by the use of a computer algebra
system, as images only contain few values due to quantisation. A table for a grey
range of 8 bit depth, as well as the complete derivation of (5), is available at our
supplementary material website: http://www.mia.uni-saarland.de/
Research/Electrostatic_Halftoning/multi/index.shtml

4 Second Order Screening
Based on this improved model for electrostatic halftoning, we now propose a ver-
satile framework for multi-class sampling. Our approach allows to handle points
of different colour, size, and shape. As the first step towards this goal, we illustrate
the generalisation to points in different sizes.
Our approach bases on a simple idea: When assigning a charge proportional to the
size of the inkblot to the corresponding particle, inkblots are automatically dis-
tributed according to their size. Although the underlying image is approximated
well with this simple approach, larger inkblots may accumulate, see the left image
in Figure 4. This gives a perturbing impression of the image, and is also bad for
printing applications, in which some (or even all) of the smaller inkblots may not
be printed due to technical reasons.
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Figure 4: Comparison of different repulsion models for second order screening of
a constant image. Shown are results without (left, C = 1) and with (right, C = 2)
the additional force responsible for an equal distribution of large particles. The
two colours are for illustration purposes only.

To ease the explanation how to prevent this problem, we first consider a simple
case with two different particle sizes. In this situation, we require the larger par-
ticles to additionally approximate the complete image well, as shown in the right
image in Figure 4. Then, the halftoning result is a good approximation of the
image both with and without the smaller inkblots.
This can be achieved by introducing a supplementary force that ensures a good
distribution of the large particles: In addition to the repulsive forces from all par-
ticles, we introduce an additional repulsive force acting only between large par-
ticles. This additional force is exactly the same force that occurs in our particle
system when only large particles are present, except for a multiplicative constant

S L

S ASAS ASAL
L ASAL CALAL

u AS (wS +CwL)AL

Figure 5: Interaction matrix for the total repulsion strengths between small parti-
cles (S) with area AS and large particles (L) with area AL. The last line indicates
the interaction strengths of the particles with the attractive image field. The con-
stant C is a user-defined variable.
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S M L

S ASAS ASAM ASAL
M ASAM C1AMAM C1AMAL
L ASAL C1AMAL C2 ALAL

u AS (wS +C1(wM +wL))AM (wS +C1wM +C2wL)AL

Figure 6: Interaction matrix i for the total repulsion strengths between small parti-
cles (S) with area AS, medium sized particles (M) with area AM, and large particles
(L) with area AL. The last line indicates the interaction strengths of the particles
with the attractive image field. The variables wS, wM, and wL correspond to the
fraction of charges located in small, medium, and large particles, respectively.

C−1. As a consequence, large particles repel each other stronger than explained
in (1). The constant C ≥ 1 is used as a tradeoff between the two requirements
imposed on the system: A small C leads to a good approximation of the original
image with respect to all particles, but to a worse approximation when only large
particles are considered. For large C, the converse holds.
To maintain the electric neutrality of the overall image, the electric field induced
by the image must also attract large particles stronger. Let us denote the fraction
of the negative charges located in large particles by wL, and the fraction of the
negative charges located in small particles by wS. Then, large particles are at-
tracted C times as strong from the image part corresponding to the large particles,
and “normally” from the remainder. Thus, the force attracting large particles is
multiplied by the factor wS +CwL.
Combining all these concepts results in the interaction matrix i depicted in Fig-
ure 5 in which each entry i(A j,Ak) indicates how strong the interaction between
particles from the classes A j and Ak are.
It should be noted that using this additional force slightly worsens the approxima-
tion quality of all particles. This is a principal problem which arises from the fact
that a tradeoff between two conflicting requirements is searched for. However, as
is shown in the experiments section, the impact of this unavoidable effect is often
negligible.
It is straightforward to extend these ideas to three (or more) classes. Again, one
demands that all the particles approximate the image well. Additionally, this prop-
erty should also hold when removing the particles with the smallest size, or the
smallest sizes, respectively. For three classes, this results in the interaction matrix
depicted in Figure 6. In our experiments, we typically choose the resulting param-
eters Ci in a multiplicative manner, i.e. Ci =Ci

1. However, other choices are also
admissible depending on the desired result. In general, the attractive image force
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strength f (s) on the sth particle is given by

f (s) =
∑t∈P i(As,At)At

∑t∈P At
. (7)

As illustrated in Figure 12, our approach can even handle situations in which there
are as many classes as particles, i.e. situations in which each particle has a unique
size, when choosing the interaction matrix appropriately.

5 Colour Halftoning and Multi-Class Sampling
In [SGBW10], it was suggested to halftone colour images by treating all channels
separately. However, this is only possible with linear colour spaces such as CMY
and RGB.
Printers typically use more complex colour models, though. A common exam-
ple is the (comparably simple) CMYK colour model which is found in all sorts
of printers ranging from inexpensive inkjet printers such as the Canon Pixma
i560 via business-scale colour laser printers like the Kyocera FS-C5200DN up
to mass-production printing machines. Some recent printers even use more com-
plex, ’asymmetric’ colour models: The Canon Pixma iP8500, for example, uses
the CMY-RG-K colour space, while the CMY-RB-K colour space is used in the
Stylus Photo R1800 by Epson. In large scale production printing machines, the
’full’ CMY-RGB-K colour model is typically used.
In this section, we give details how to extent electrostatic halftoning such that it
can handle any of these colour models. To simplify the explanations, we assume
that all particles have the same size.
The only challenge when using such colour models is that the corresponding chan-
nels are no longer independent. This again allows to use the concept of interaction
matrices introduced in the last section. This time, however, each entry in the ma-
trix denotes the interaction between particles with two specific colours instead of
with two specific sizes.
The interaction matrix in case of independent channels is simply the identity ma-
trix. As a first example in which non-zero off diagonals are used to handle in-
teracting channels, let us consider the CMYK colour model. As a canonical re-
quirement, each class of particles should approximate the corresponding channel,
which is again modelled by an identity matrix. Additionally, we demand that par-
ticles from certain classes do not overlap. For the CMYK colour model, neither
two particle of the same colour nor a black and a chromatic particle should over-
lap. The latter requirement arises because a black particle represents a union of
all chromatic colours. This is coded in a non-overlap matrix. The final interaction
matrix is then given by a linear combination of these two matrices:
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C M Y R G B K

C 1 α α α α α α

M α 1 α α α α α

Y α α 1 α α α α

R α α α 1 α α α

G α α α α 1 α α

B α α α α α 1 α

K α α α α α α 1

C M Y R G K

C 1 0 α α α α

M 0 1 α α α α

Y α α 1 α α α

R α α α 1 α α

G α α α α 1 α

K α α α α α 1

Figure 7: Interaction matrices for the CMY-RGB-K (left) and the CMY-RG-K
(right) colour space.

(1−α)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


︸ ︷︷ ︸

identity

+α


1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 1


︸ ︷︷ ︸

non-overlap map

=


1 0 0 α

0 1 0 α

0 0 1 α

α α α 1


︸ ︷︷ ︸
interaction matrix

In our experiments, we use α = 1
2 , which gives the same weight to both con-

straints.
It is very easy to extend this approach to other colour models. For example, there
are several possibilities for the non-overlap matrix used for the CMY-RGB-K
colour model. Since all combinations of chromatic colours are already present,
the simplest approach is to forbid any overlap. This is coded in the 7× 7 non-
overlap matrix containing only 1s. For the CMY-RG-K colour model, it is natural
to demand that only cyan and magenta particles can overlap, as this is the only
combination yielding a colour that is not contained in other particles, yet. The
resulting interaction matrices for these examples are shown in Figure 7.
Next, let us explain how many particles of each colour should be used. In fact,
there are many possible choices, including a chromatic decomposition resulting
in nonempty C, M, and Y channels only, or an (a)chromatic decomposition with
under colour removal (UCR), see [Kip01]. In all our experiments, we use a simple
achromatic composition of the CMY colour space, which sets the K channel to the
minimum of the three given CMY channels, and subtracts this values from these
three channels afterwards. Afterwards, we separate the R channel from the M
and Y channels. Similarly, G is separated from C and Y , and B is separated from
C and M. Note that this step is unique and commutative for the CMY-RGB-K
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Sa La Sb Lb

Sa ASAS ASAL αASAS α ASAL
La ASAL CALAL αASAL αCALAL
Sb αASAS α ASAL ASAS ASAL
Lb αASAL αCALAL ASAL CALAL

ua AS (wS,a +CwL,a)AL αAS α(wS,b +CwL,b)AL
ub αAS α(wS,a +CwL,a)AL AS (wS,b +CwL,b)AL

Figure 8: Interaction matrix for multi-class sampling with two classes a and b,
each containing two sizes AL and AS.

= + + +

(a) (b)

Figure 9: (a): Example on how to split the forces acting on the two ends of a
line into different components. The first and third part correspond to translations,
the second part to a rotation around the middle of the line, and the last part to a
scaling. The strength of each part can easily be found by projecting the forces onto
directions perpendicular and parallel to the line and very elementary arithmetic
operations. (b): Illustration that an inappropriate line placement can create visible
artefacts (top) which are not visible in a good hatching (down).

colour model, and that the introduced interaction matrices also work with any
other method to determine the number of particles of each colour.
Finally, we would like to stress that our interaction matrices make it straightfor-
ward to combine second order screening and colour halftoning. This does not only
allow to create second-order colour images, but also paves the road for multi-class
sampling algorithms used for object placement or procedural texture creation. An
illustration for the resulting interaction matrix in given in Figure 8, while various
examples are shown in Section 7.
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6 Hatching
As a last contribution in this paper, we illustrate how to approximate images with
lines, i.e. we explain how to generate a hatched version of an image.
The basic idea behind our hatching approach is to approximate each line in the
final image by two (or more) connected particles. Starting from an initial con-
figuration, the forces acting on each particle are computed as before, whereas the
movement of the lines is determined by the forces acting on each of the particles
in the line. To this end, we split these forces into different parts responsible for
translations, rotations, and stretching. This is illustrated in Figure 9 for a simple
approximation with two particles.
However, the result obtained with this simple approach looks far from pleasing,
as the resulting lines have arbitrary lengths and alignments. Thus, we additionally
introduce forces that urge lines to achieve the desired (position-depended) length
and direction. What line lengths and alignments are actually desired depends
on the application. Thus, our GPU hatching implementation simply reads these
values from a texture generated on the CPU at the beginning of the program. For
the experiments shown here, we set the desired line lengths to a constant, and
the desired direction orthogonal to the eigenvector corresponding to the largest
eigenvalue of the smoothed structure tensor [FG87]

Kρ ∗ (∇uσ∇u>σ ), where uσ := Kσ ∗u (8)

where K? is a Gaussian with standard deviation σ = 1.0 or ρ = 3.0 times the pixel
size, respectively. The width of the lines is chosen such that the average grey value
of output and input image are equal.
We compute the weighted average between the two forces responsible to change
the direction of each line to obtain the overall rotation. Note that, as in second-
order screening and colour halftoning, there are two constraints that should be
fulfilled. The appropriate weights can (and should) therefore be chosen by the user
depending on whether which is more important: a very accurate approximation of
the image, or a perfect match between desired and final line direction. For all
our experiments, we set both weights to 0.4. Since the sum of these weights is
less than one, this slows down the rotations, i.e. favours moving a line instead of
rotating it.
Additionally, it should be noted that there might not be a preferred direction at
each position in the image. In this situation, the force responsible to align actual
and desired line direction should be additionally weighted by a number in the
interval [0,1]. In our experiments, we set this number to the largest eigenvalue
of the smoothed structure tensor at the current position, divided by the largest
eigenvalue occurring anywhere in the image. This way, lines are forced to align
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perpendicular to image edges, but may arrange arbitrarily in homogeneous image
regions.
Similarly, the forces resulting in a change of the line length are also weighted
and averaged. For all experiments presented here, we choose the weights as 1

5
(force acting on particle) and 1

10 (force from desired line length), respectively.
Due to the fact that the sum of the weights is smaller than 1, the line lengths only
change slowly. This is advantageous to prevent particles from overlapping due to
these forces, which can result in crossing lines. As this is undesired, one should
also prevent lines from crossing when initialising the line positions. We propose
to start with very short lines distributed with the same approach as the points in
the halftoning algorithm [SGBW10]. Since the line lengths increase only quite
slowly, the lines have some time to distribute appropriately before the final line
lengths are reached, which allows to prevent basically all crossing lines.
The more particles are used to approximate a line, the better the estimation of the
hatching. For the experiments presented in this paper, we use an approximation
with three equispaced particles per line, i.e. there is one particle in the middle of
each line, and two at their ends, respectively. This already yields very good results
at a reasonable running time. Note that forces acting on the middle particle only
result in a translation of the line. Thus, this situation is very similar to the two
particle case.
Moreover, using (at least) three particles allows to easily prevent the problem
illustrated in the upper part of Figure 9(b): If the lines are allowed to distribute
arbitrarily, it is possible that the spaces between lines arrange in clearly visible
patterns. We simply prevent this problem by assigning a higher charge to the
particle in the middle of the line, as explained in Section 4. This automatically
encourages the line centres to distribute well. Thus, the situation shown in the
lower part of Figure 9(b) is obtained instead of the problematic situation shown in
the upper part of that figure. In our experiments, the charge of the middle particle
is six times as large as the charge of the particles at the end of each line. However,
results are very similar for a large range of charge ratios.
Note that it is also easy to approximate an image with both lines and inkblots,
as both are based on the same electrostatic forces. Examples are shown in the
experiment section. Similarly, extensions to coloured hatching and combinations
of coloured lines and points are also straightforward. In some applications, one
might even allow lines to bend. This is possible by replacing the constraint that
all points are on one line by a force that only favours this.
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Figure 10: Illustration of grey-value correction in dark image areas. Shown are
halftoning results of an image containing the word “DARK” with grey value 0 on
a background with grey value 10 (320×95). Top: Standard halftoning. Bottom:
With proposed grey-value correction. Note that the difference between both im-
ages might be indistinguishable on some output devices, e.g. due to ink bleeding.

7 Experiments
Finally, we illustrate the results obtained with the extensions introduced in each
of the previous sections. First of all, we judge the visual effect of the grey-value
correction. To this end, we consider an image containing the word “DARK” with
grey value 0 on a background with grey value 10, and halftone it with and without
this extension. The results and magnifications thereof are shown in Figure 10.
When viewing this image on an output device not susceptible to ink bleeding or
related problems, one can easily see that, without the proposed extension, the dots
do not completely cover the paper in image regions that should be completely
black. Consequently, these regions are brighter than they are supposed to be. This
is no longer the case using our novel approach, as visible in the bottom of the
figure.
In the left column of Figure 11, we show a halftoning of a Gaussian with the
two particle sizes 1 and 3 pixels, respectively. In accordance with the simple
experiment depicted in Figure 4, both the large particles as well as all inkblots
approximate the underlying image well. For this experiment, we have chosen the
number of particles of each class in such a way that wL =

1
3 and wS =

2
3 holds. The

right column of the image shows a halftoning of the image “skull” with inkblots
of area 1, 2, and 4 pixels with wL = 1

9 , wM = 2
9 , and wS = 6

9 . Again, the image
is approximated very well by the set of all particles as well as by the appropriate
subsets.
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Figure 11: Example halftoning results with second order (left) and third order
(right) screening techniques obtained with our algorithm. Left: Halftoning of
“Gaussian” (256× 256). Right: Halftoning of “skull” (200× 300). Top: Com-
plete images. Bottom: Zoom into the Gaussian and into the tip of the right eye,
respectively.
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Figure 12: Halftoning result with dots of continuously varying sizes for the image
“trui” (256×256). In all but the first image, some of the dots with smallest radius
were omitted. Top left: Result with all dots. Top right: Result when omitting
25% of the dots. Bottom left: Result when omitting 50% of the dots. Bottom
right: Result when omitting 75% of the dots. Even though the image gets notice-
ably brighter, it still approximates the underlying image well.
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To further illustrate this point, we halftoned the image “trui” using inkblots with
unique sizes linearly going from 0.5 to 2 pixels. The resulting halftone, as well
as results in which 25%, 50%, and 75% of the particles with smallest size are
omitted are shown in Figure 12. For this experiment, we used an interaction matrix
with i(A j,Ak) = min(A2

j ,A
2
k)A jAk for two particles with sizes A j and Ak. Apart

from the inevitable facts that the image becomes brighter and less detailed when
omitting particles, one clearly sees that each set of particles still approximates the
underlying image well.
Next, we show halftoning results on colour images using different colour models.
In Figure 13, results with the linear colour space CMY used in [SGBW10], with
the common CMYK colour space, and with the asymmetric CMY-RB-K colour
space are shown. Even though none of these colour spaces contains green as a
single colour, the dark green T-shirt is represented well in all results.
Figure 14 illustrates the influence of the parameter α on the tradeoff between good
representations of the total set of particles and good representations of subclasses
in multi-class sampling applications. Small α cause clusters in the subsets cor-
responding to single classes, while large α generate clusters in the total set to
improve the approximation of the single classes. Depending on which representa-
tion is more important, α should therefore be chosen application dependent.
As explained before, a similar tradeoff exists in multi-class sampling, which can
be steered using the parameter C. Since experiments demonstrating this influence
are comparable to Figure 14, we left them out to save space. However, they are
available on our supplementary material website.
Figure 15 shows halftoning results for second order multi-class sampling. Due to
the large number of constraints between which a compromise must be found, it is
very hard to find a good sampling. Nevertheless, our results are quite smooth and
do not exhibit striking artefacts which hint at the presence of a second class, or
particles with a different size, respectively. Note that, as before, it is still possible
to adapt the free parameters C and α if we want to increase the smoothness of
specific classes.
Next, we illustrate the visual performance of the proposed hatching algorithm. To
this end, we hatched the image “skull” with 20 000 lines with a desired length of
2 and 4 pixels, see Figure 16. In order to improve the visual appearance, edge
enhancement via unsharp masking has been performed on the input image before
hatching. As a result, even most small details are well visible in the resulting
image.
Figure 17 presents images in which both lines and inkblots are used. Shown are
results with and without edge enhancement, and with edge enhancement only for
the inkblots, but not for the lines. While the latter is likely to be problematic for
most other halftoning algorithms, it is straightforward in our approach: We simply
precompute the attractive image force with and without edge enhancement, and
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Figure 13: Colour halftoning of the image “comic”. Top left: Original image
(256× 256) Top right: Using the CMY colour model. Middle left: Using the
CMYK colour model. Middle right: Using the asymmetric CMY-RB-K colour
model. Bottom row: Zooms into the images.
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Figure 14: Influence of the weight α on single order multi-class sampling of a
uniform image. Shown are, from top to bottom, the total set and the individual
sets for α ∈ {1

6 ,
3
6 ,

5
6}.
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Figure 15: Second order multi-class sampling of a uniform density. Top left:
Complete result, Top middle and right: Red and blue subsets, Bottom row:
Large particles only.

use the appropriate force in the calculations.
Finally, real-world example images created with our multi-class, multi-size halfton-
ing algorithm are shown in Figures 18 and 19. The first figure shows a forest with
two types of trees with two sizes each in which the tree positions are determined
with our algorithm. In the second figure, three kinds of ingredients with three
sizes each are put on a pizza. By combining hatching with multi-class sampling,
it is also possible to use line-like ingredients such as chillies or anchovies.

8 Conclusion
In this paper, we generalised electrostatic halftoning for various real-world ap-
plications. We introduced a versatile framework based on interaction matrices,
which allows to handle particles in an arbitrary number of colours and sizes. Our
approach is the first method to optimise the distribution of heterogeneous points
simultaneously based on a few freely adjustable and intuitive parameters. The
resulting adaptive sampling method enjoys a broad range of applications, such
as object placement, texture generation, or re-lighting. Printing processes benefit
from these strategies by a customised rendering process featuring arbitrary colour
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Figure 16: Hatching result of “skull” (200×300). Left: Original. Middle: Result
with a line length of 2 pixels. Right: Result with a line length of 4 pixels.

models and dot sizes. This is complemented by a model-based ink coverage cor-
rection which enhances the tonal accuracy of high-resolution halftones. The high
quality of our flexible framework carries over to anisotropic rendering primitives.
Besides sampling with elongated objects, it allows for the generation of hatched
images with fine details. All proposed ideas are freely combinable to solve chal-
lenging problems with a great simplicity. To this end, our work offers an intuitive
methodology to transfer the high quality of electrostatic halftoning to a large range
of exciting applications in various areas.
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