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Ground waves in atomic chains

with bi-monomial double-well potential

Michael Herrmann∗

October 30, 2011

Abstract

Ground waves in atomic chains are traveling waves that corresponds to minimal non-trivial
critical values of the underlying action functional. In this paper we study FPU-type chains with
bi-monomial double-well potential and prove the existence of both periodic and solitary ground
waves. To this end we minimize the action on the Nehari manifold and show that periodic ground
waves converge to solitary ones. Finally, we compute ground waves numerically by a constrained
gradient flow.

Keywords: Fermi-Pasta-Ulam chain with double well potential,
Nehari manifold, ground waves
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1 Introduction

Atomic chains with nearest neighbor interactions, which are sometimes called FPU-type chains, are
ubiquitous in physics and materials science as they provide simple atomistic models for solids. They
are moreover prototypical examples for nonlinear Hamiltonian lattice equations and shed light on
the dynamical properties of discrete media with dispersion.

The lattice equation for infinite FPU-type chains stems from Newton’s law of motion and reads

ẍj = Φ′
(
xj+1 − xj

)
− Φ′

(
xj − xj−1

)
, (1)

where Φ is the interaction potential and xj = xj(t) ∈ R denotes the position of atom j ∈ Z at time t.
Coherent structures such as traveling waves are of particular interest in the analysis of nonlinear

lattice equations since they can be regarded as the nonlinear fundamental modes and describe how
energy propagates through the chain. Traveling waves are special solutions to (1) that depend on a
one-dimensional phase variable ϕ = j − σt via the ansatz

xj(t) = rj + vt+X(j − σt) .
∗Universität des Saarlandes, FR Mathematik, michael.herrmann@math.uni-sb.de
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Here σ the phase speed and r, v are some constants. The profile function X must comply with

σ2X ′′(ϕ) = Φ′
(
r +X(ϕ+ 1)−X(ϕ)

)
− Φ′

(
r +X(ϕ)−X(ϕ− 1)

)
. (2)

This advance-delay differential equation is equivalent to the nonlinear eigenvalue problem

σ2W = AΦ′(AW ) + µ (3)

for the function W defined by W (ϕ) = r + X ′(ϕ). Here, µ is some constant of integration and the
convolution operator A is defined by

(AW )(ϕ) =

∫ ϕ+1/2

ϕ−1/2
W (s) ds. (4)

Traveling waves in atomic chains have been studied intensively during the last two decades, and the
existence of several types of solutions to (2) has been established for various interaction potentials by
different methods. The standard references are [FW94] for constrained optimization, [SW97, PP00]
for critical point techniques, [Ioo00] for bifurcation results via spatial dynamics, [FP99] for near-sonic
waves, and [FM02] for the high-energy limit. For further results and a more detailed discussion,
especially of the variational methods, we refer to [HR10, Her10].

In this paper we consider chains with double well potential, which play an important role in the
atomistic theory of martensitic phase transitions. In order to keep the presentation as simple as
possible, we restrict ourselves to bi-monomial potentials with

Φ(w) = dp |w|p − dq |w|q with 2 < p, 1 < q < p ,

and by a simple scaling we can achieve that dp = dq = 1. We further restrict our considerations to
the case µ = 0, see the discussion below, and seek non-trivial solutions to the traveling wave equation

σ2W +AΨq(AW ) = AΨp(AW ), (5)

where the function Ψr is defined by Ψr(w) := r sgn (w) |w|r−1. Notice that the solution set to (5) is
invariant under shifts W (ϕ) W (ϕ+ ϕ0) and reflections via W (ϕ) W (−ϕ) or W (ϕ) −W (ϕ).
Moreover, it always contains the trivial solutions W ≡ −c, W ≡ 0, and W ≡ +c, where c ∈ R+ is
the unique positive solution to σ2c+ qcq−1 = pcp−1.

Due to the Hamiltonian nature and the shift invariance of (1), there is a variational characteri-
zation of traveling waves with prescribed σ. In fact, we readily verify that each solution W ∈ L2(IK)
to (5) is a critical point of the action functional

LK(W ) := 1
2σ

2‖W‖22,IK +QK(W )− PK(W ) .

The term 1
2σ

2‖W‖22,IK = 1
2σ

2
∫
IK
W 2 dϕ can be regarded as the kinetic energy, whereas QK and PK

defined by

QK(W ) :=

∫
IK

|AW |q dϕ, PK(W ) :=

∫
IK

|AW |p dϕ ,

give the two contributions to the potential energy. The parameter K ∈ (0, ∞] can be either finite
or infinite, corresponding to 2K-periodic wave with periodicity cell IK := (−K, K] or solitary waves
with I∞ := R, respectively. Notice that solitary waves are homoclinic via limϕ→±∞W (ϕ) = 0.

By definition, a ground wave is a traveling wave that corresponds to a minimal non-trivial critical
value of the action functional LK . However, since LK is unbounded from below, ground waves are
not minimizers but saddle points. Our main result concerns the existence of ground waves in L2(Ik)
and can be summarized as follows.
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Theorem 1. Let σ2 > 0 be given. Then, for each K ∈ (0, ∞] there exists a ground wave WK ∈
L2(IK) ∩ BC1(R) which satisfies

0 < LK(WK) = min
{
LK(W ) : W ∈ L2(IK) with ∂LK(W ) = 0

}
= min

W∈L2(IK)
max
ζ>0
LK(ζW ) ,

and which is non-constant provided that K is sufficiently large. Moreover, solitary ground waves can
be approximated (in some strong sense) by period ground waves.

In order to prove these assertions, we introduce in §2 the Nehari manifold MK , which has co-
dimension 1 and contains all non-trivial critical points of LK . In §3.1 we employ the direct method
from the calculus of variations and show that the functional LK attains its minimum on MK for
K < ∞. Afterwards in §3.2 we demonstrate that periodic ground waves with K → ∞ provide
minimizing sequences for L∞|M∞ and converge to a solitary ground wave. Finally, we compute
ground waves numerically in §4.

Our work is closely related to the discussion of ground waves in [Pan05, Section 3.4]. The results
presented there imply the assertions of Theorem 1 for the special case q = 2 and are likewise based
on the Nehari manifold and approximation by periodic waves. The proof, however, is different as it
employs the Mountain Pass Theorem and the Palais-Smale condition for K < ∞; see §3 for more
details.

A variant of the Mountain Pass Theorem was also used in [SZ07] to construct certain homoclinic
waves for chains with double well potential. These waves satisfy W = w∗+U with U ∈ L2(R), where
w∗ is one of the local minimizer of Φ. The key idea is that the relative profile U can be regarded as
solitary wave with respect to a tilted potential Φ∗. This is defined by Φ∗(u) = Φ(w∗ + u)−Φ′(w∗)u−
Φ(w∗) and has, at least for some Φ, two increasing branches as it satisfies uΦ′∗(u) > 0 for all u. The
relation to our approach becomes apparent in the periodic case. Instead of tilting the potential we
can impose the constraint |IK |−1

∫
IK
W dϕ = w∗, and we easily check that critical points of LK now

satisfy the traveling wave equation (3) with Lagrangian multiplier µ ∈ R. Due to the constraint,
however, the corresponding traveling waves are not ground waves for the action LK . Moreover, it is
not clear whether these waves extend to the spinodal region of Φ, or remain confined to the convex
well around w∗.

We finally mention that LK has, at least for K < ∞, infinitely many critical points in L2(IK).
In particular, each ground wave for K/n with n ∈ N is also a critical point of LK , but qualitatively
different types of traveling waves might exist as well. Moreover, for K = ∞ we expect to find a
plethora of waves with W 6∈ L2(R). Of particular importance are phase transitions waves, which
are heteroclinic connections of two period waves corresponding to either one of wells. Unfortunately,
very little is known about their existence. The only available results concern bi-quadratic potentials,
which allow for solving (2) by Fourier methods [TV05, SZ09]. It remains a challenging task to find
alternative, maybe variational, existence proofs for phase transition waves that apply to more general
double well potentials.

2 Variational setting and Nehari manifold

In this section we develop our variational framework for both finite and infinite K and introduce
the Nehari manifold, on which we minimize the action in §3. To this end we denote by Lr(IK) and
W1,r(IK) the usual Sobolev spaces of IK-periodic functions (or functions on R for K =∞), and write

‖·‖r,IK and 〈·, ·〉IK

for the norm on Lr(IK) and the scalar product in L2(IK), respectively. Notice that there is a natural
embedding W1,r(IK) ↪→ BC(R) for all K ∈ (0, ∞].

We first summarize some properties of the convolution operator A. In particular, we show that
A maps L2(IK) compactly into Lr(IK) provided that 1 ≤ r <∞ and K <∞.
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Lemma 2. Let K ∈ (0, ∞] and 1 ≤ r < ∞ be given. Then, the linear operator A maps Lr(IK)
continuously into W1,r(IK) ⊂ BC(R) with

‖(AW )′‖r,IK ≤ 2‖W‖r,IK , ‖AW‖∞,IK ≤ ‖W‖r,IK , ‖AW‖r,IK ≤ ‖W‖r,IK .

Moreover, Wn ⇀W∞ weakly in L2(IK) implies AWn → AW∞ pointwise for all K and also strongly
in Lr(IK) for K <∞.

Proof. Thanks to (AW )′(ϕ) = W (ϕ+ 1/2)−W (ϕ− 1/2) and since Hölders inequality implies∣∣(AW )(ϕ)
∣∣r ≤ ∫ ϕ+1/2

ϕ−1/2
|W (s)|r ds,

all estimates follows immediately. Moreover, the pointwise convergence AWn → AW follows from
the definition of A in (4), and implies the strong convergence for K < ∞ due to L∞(IK) ↪→ Lr(IK)
and the Dominated Convergence Theorem.

Lemma 2 reveals that the functionals QK , PK , and LK are well defined on L2(IK) for all K ∈
(0, ∞]. Moreover, we easily show that they are also Gâteaux-differentiable with derivatives

∂LK(W ) = σ2W − ∂QK(W ) + ∂PK(W ), ∂QK(W ) = AΨq(AW ), ∂PK(W ) = AΨp(AW ),

where the continuous and nonlinear functions Ψq and Ψp are defined above.

Remark 3. For K =∞ or K /∈ πQ, the operator A : L2(IK)→ L2(IK) has only trivial kernel.

Proof. The operator A diagonalizes in Fourier space via Aeikϕ = %(k/2)eikϕ with %(κ) = sin (κ)/κ
for all k ∈ R, and the claim follows immediately.

2.1 Necessary condition for traveling waves

A key property of the action functional LK is that its restriction to the positive ray ζ > 0 7→ ζW
has a unique maximizer for every non-degenerate W . To see this, we start with an auxiliary result
about the maximizers of certain tri-monomial functions.

Lemma 4. The function ξ̄ with

ξ̄(c2, cq, cp) := argmaxξ>0 c2ξ
2 + cqξ

q − cpξp

is well-defined and continuous on R3
+.

Proof. For given c = (c2, cq, cp) ∈ R3
+, the function fc(ξ) := c2ξ

2 + cqξ
q − cpξ

p is continuously
differentiable with

f ′c(ξ) > 0 and f ′c(ξ) < 0

for small and large ξ, respectively. The derivative f ′c has thus at least one zero ξ̄(c) > 0, which
obviously satisfies

0 = gc
(
ξ̄(c)

)
= 2c2ξ̄(c)

2 + qcq ξ̄(c)
q − pcpξ̄(c)p, gc(ξ) := ξfc

′(ξ) . (6)

A further straight forward computation yields

ξ̄(c)g′c
(
ξ̄(c)

)
= ξ̄(c)2f ′′c

(
ξ̄(c)

)
= (4− 2p)c2ξ̄(c)

2 +
(
q2 − qp

)
cq ξ̄(c)

q < 0 ,

and we conclude that ξ̄(c) is the only zero of both gc and f ′c in the interval (0, ∞). In particular,
we have f ′c(ξ) > 0 and f ′c(ξ) < 0 for ξ < ξ̄(c) and ξ > ξ̄(c), respectively, that means ξ̄(c) is a global
maximizer of fc. Finally, using (6) we readily verify the estimates

max

{(
2c2
pcp

)1/(p−2)
,

(
qcq
pcp

)1/(p−q)
}
≤ ξ̄(c) ≤ max

{(
4c2
pcp

)1/(p−2)
,

(
2qcq
pcp

)1/(p−q)
}
,

which in turn imply the claimed continuity of ξ̄ since we have fcn → fc uniformly as cn → c ∈ R3
+

on each compact subset of R+.

4



Corollary 5. Let K ∈ (0, ∞] and W ∈ L2(IK) be given with AW 6= 0. Then, there exists a unique
ζ̄K(W ) ∈ R+ such that

0 < LK
(
ζ̄K(W )W

)
= max

ζ>0
LK(ζW ) .

Moreover Wn →W strongly in L2(IK) with AW 6= 0 implies ζ̄K(Wn)→ ζ̄(W ).

Proof. All assertions follow from Lemma 4 via ζ̄K(W ) := ξ̄
(
1
2σ

2‖W‖22,IK , QK(W ), PK(W )
)
.

In view of Corollary 5, we introduce the functional

FK(W ) :=
d

dζ
LK(ζW )|ζ=1 =

〈
∂LK(W ), W

〉
IK

= σ2‖W‖22,IK + qQK(W )− pPK(W ) ,

which is well defined and Gâteaux differentiable on L2(IK) with

∂FK(W ) = 2σ2W + qAΨq(AW )− pAΨp(AW ) .

We further define the Nehari manifold by

MK :=
{
W ∈ L2(IK) : W 6= 0, FK(W ) = 0

}
,

and notice that ζ̄K(W )W ∈ MK for all W with AW 6= 0. Moreover, W ∈ MK implies AW 6= 0, and
AW 6= 0 implies

W ∈ MK ⇐⇒ ζ̄K(W ) = 1 ⇐⇒ LK(W ) = max
ζ>0
LK(ζW ) .

Remark 6. Each non-vanishing traveling wave W ∈ L2(IK) belongs to MK and BC1(R).

Proof. W 6= 0 combined with the traveling wave equation (5) implies AW 6= 0, and W ∈ MK follows
since testing (5) with W gives FK(W ) = 0. Moreover, W ∈ BC1(R) is a direct consequence of Lemma
2 and (5).

Our strategy for proving the existence of ground waves is to show that LK attains its minimum
on MK . We can then conclude that each minimizer satisfies the traveling wave equation (5), and
Remark 6 guarantees that the minimum is in fact the smallest non-vanishing critical value of LK .

2.2 Properties of the Nehari manifold

We next derive some estimates for functions in the Nehari manifold.

Lemma 7. There exist positive constants c and C, both independent of K, such that

1. ‖W‖2,IK ≥ c and ‖W‖2,IK ≤ C
√
LK(W ),

2. ‖AW‖∞,IK ≥ c and ‖AW‖∞,IK ≤ C
√
LK(W ),

3. LK(W ) ≥ c,

4.
〈
∂FK(W ), W

〉
IK
≤ −c,

hold for all W ∈ MK .

Proof. Employing FK(W ) = 0 and Lemma 2 we estimate

qQK(W ) ≤ σ2‖W‖22,IK + qQK(W ) = pPK(W ) ≤ p‖AW‖p−q∞,IKQK(W )

and find, thanks to QK(W ) > 0 and Lemma 2, that

‖W‖2,IK ≥ ‖AW‖∞,IK ≥ (q/p)1/(p−q). (7)
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Due to FK(W ) = 0 we also have

LK(W ) = σ2
(

1

2
− 1

p

)
‖W‖22,IK +

(
1− q

p

)
QK(W ) ≥ σ2

(
1

2
− 1

p

)
‖W‖22,IK ,

and combining this estimate with (7) we arrive at the first three claims. Moreover, a direct compu-
tation yields〈

∂FK(W ), W
〉
IK

= 2σ2‖W‖22,IK + q2QK(W )− p2PK(W )

= (2− p)σ2‖W‖22,IK +
(
q2 − qp

)
QK(W ) ≤ − |p− 2|σ2‖W‖22,IK ,

which in turn implies the final estimate.

The fourth assertion in Lemma 7 ensures that the Nehari manifold MK is strictly transversal to
each positive ray ζ > 0 7→ ζW with W ∈ MK . It is therefore clear that minimizers of LK |MK

are
critical points of LK . Here we give an alternative proof of this assertion that relies on the constrained
gradient flow for LK , that is

d
dτWτ = −∂LK(Wτ ) + λK(Wτ )∂FK(Wτ ), λK(W ) :=

〈
∂LK(W ), ∂FK(W )

〉
IK

‖∂FK(W )‖22,IK
(8)

where τ is the flow time and τ 7→Wτ denotes a curve in MK . This gradient flow is also the starting
point for the numerical approximation of ground waves in §4.

Lemma 8. For each K ∈ (0, ∞], the initial value problem to the MK-valued ODE (8) is well-posed.
Moreover, LK is strictly decreasing along each non-stationary trajectory and each stationary point
solves the traveling wave equation (5).

Proof. Let some initial datum W0 ∈ MK be given. Lemma 7 implies ∂FK(W0) 6= 0, and by continuity
there exists a small ball B ⊂ L2(IK) around W0 such that the multiplier λK is a well defined and
Lipschitz continuous function on B. Consequently, there exists a local solution τ ∈ [0, τ1) 7→ Wτ ∈
L2(IK). The definition of λK implies

d
dτFK(Wτ ) =

〈
∂FK(Wτ ), d

dτWτ

〉
K

= 0,

so MK is indeed invariant under the flow of (8). Moreover, a direct computation gives

d
dτLK(Wτ ) =

〈
∂LK(Wτ ), d

dτWτ

〉
IK

=
‖∂LK(Wτ )‖22,IK‖∂FK(Wτ )‖22,IK −

〈
∂L(Wτ ), ∂F(Wτ )

〉
IK

2

‖∂FK(Wτ )‖22,IK
≥ 0,

where the inequality is strict provided that ∂LK(Wτ ) and ∂FK(Wτ ) are not co-linear, that means as
long as the right hand side in (8) does not vanish. Finally, suppose that Wτ ≡W ∈ MK is stationary
under the flow of (8). Then we have

∂LK(W ) = λK(W )∂FK(W ),

and testing this identity with W we find

0 =
〈
∂LK(W ), W

〉
IK

= λK(W )
〈
∂FK(W ), W

〉
IK
.

Lemma 7 now implies λK(W ) = 0, and hence ∂LK(W ) = 0.

A particular consequence of Lemma 8 is that each minimizer of LK |MK
is a stationary point of

(8), and thus in fact a traveling wave.
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3 Ground waves as Nehari minimizers of the action

In this section we finish the proof of Theorem 1 by showing that LK attains its minimum on the
Nehari manifold MK . To this end we employ the direct method for K <∞, and pass afterwards to
the limit K →∞. For the proofs we define

`K := inf LK |MK

and recall that Lemma 7 provides a constant c > 0 such that `K ≥ c for all K ∈ (0, ∞].

3.1 Existence of periodic ground waves

We now fix 0 < K < ∞ and employ the compactness of A to show that each minimizing sequence
for LK |MK

contains a subsequence that converges to a minimizer. Alternatively, we could employ
critical point techniques as follows. Using similar estimates as in the proof of Lemma 7, one easily
shows that the action landscape has a mountain pass geometry via

LK(0) = 0, ‖W‖2,IK = 1 =⇒ LK(W ) ≥ 1
2σ

2, AW 6= 0 =⇒ lim
ζ→∞

LK(ζW ) = −∞ ,

and the compactness of A ensures that LK satisfies the Palais-Smale condition. The existence of
non-vanishing critical values is hence implied by the Mountain Pass Theorem, and the Palais-Smale
condition guarantees that there is a minimal critical value. The details for this line of argument can,
for the special case q = 2, be found in [Pan05, Section 3.4.1].

Theorem 9. For each 0 < K <∞ there exists a minimizer of LK |MK
.

Proof. Let (Wn)n∈N ⊂ MK be any minimizing sequence for LK |MK
. By construction and Lemma 7,

we then have

c ≤ ‖Wn‖2,IK ≤ C, c ≤ LK(Wn) ≤ C

for some constants 0 < c < C < ∞ independent of n. By passing to a (not relabeled) subsequence
we can assume that Wn ⇀ W weakly in L2(IK), and that limn→∞ ‖Wn‖22,IK exists. Our strategy is
now to show that W minimizes LK on MK .

The properties of A, see Lemma 2, guarantee that AWn → AW pointwise and strongly in Lr(IK)
for all 1 < r <∞, so by Lemma 7 we have AW 6= 0 and hence W 6= 0. By definition of MK , we also
have maxζ>0 LK(ζWn) = LK(Wn) = `K , and the above convergencies imply

LK(ζW ) ≤ 1

2
σ2
(
‖W‖22,IK − lim

n→∞
‖Wn‖22,IK

)
+ `K for all ζ > 0 .

Taking the maximum over ζ > 0 gives

`K ≤ max
ζ>0
LK(ζW ) ≤ 1

2
σ2
(
‖W‖22,IK − lim

n→∞
‖Wn‖22,IK

)
+ `K ,

and we conclude that

`K = max
ζ>0
LK(ζW ), ‖W‖2,IK = lim

n→∞
‖Wn‖2,IK .

These identities imply the strong convergence Wn → W as well as W ∈ MK with LK(W ) = `K =
limn→∞ LK(WN ).

To complete our existence proof for periodic ground waves we finally derive an upper bound for
`K which in turn implies that minimizer of LK are non-trivial for large K.

Lemma 10. We have lim supK→∞ `K < `∞.
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Proof. Let W∞ ∈ M∞ be given. For each 1 < K <∞ we define VK ∈ L2(R)

VK(ϕ) :=

{
W∞(ϕ) for |ϕ| < K − 1,
0 else,

and WK ∈ L2(IK) as periodic continuation of VK |IK . This implies ‖VK −W∞‖2,R → 0, and by
continuity of L∞ and ζ̄∞ we get

L∞(W∞) = lim
K→∞

L∞
(
VK
)
, 1 = ζ̄∞(W∞) = lim

K→∞
ζ̄∞
(
VK
)
.

Moreover, the properties of A ensure that (AVK)(ϕ) = (AWK)(ϕ) for all ϕ ∈ IK , and thus we find

LK(WK) = L∞
(
VK
)
, ζ̄K

(
WK

)
= ζ̄∞(VK).

Consequently, we have L∞(W∞) = limK→∞ LK
(
ζ̄K(WK)WK

)
, and `K ≤ LK

(
ζ̄(WK)WK

)
yields

lim supK→∞ `K ≤ L∞(W∞). The thesis now follows since W∞ ∈ M∞ was arbitrary.

Corollary 11. Let K <∞ be sufficiently large. Then, each minimizer of LK |MK
is non-constant.

Proof. The only constant function in MK is given by the unique maximizer ζ̄ := ξ̄
(
σ2/2, 1, 1

)
> 0

of the function

ζ 7→ 1
2σ

2ζ2 + ζq − ζp =
LK
(
ζ
)

2K
,

see Lemma 4. In particular, for all sufficiently large K we have LK
(
ζ̄
)

= KL1
(
ζ̄
)
> `∞, and hence

LK
(
ζ̄
)
> `K due to Lemma 10.

Combing Theorem 9 and Lemma 8 with Remark 6 and Corollary 11 we now obtain our existence
result on periodic ground waves as formulated in Theorem 1.

3.2 Convergence to solitary ground waves

Our final goal is to prove that L∞ attains its minimum on M∞. Since the operator A is no longer
compact, we cannot argue as in the proof of Theorem 9. Instead, we construct minimizers as limit
of period ground waves. The same strategy was used in [Pan05, Section 3.4.2] and some of our key
arguments are inspired by those presented there.

Theorem 12. L∞ attains its minimum on M∞ and we have `∞ = limK→∞ `K . In particular, each
unbounded sequence (Km)m∈N has at least one subsequence (Kn)n∈N with the following property:
There exists a corresponding sequence (Wn)n∈N of period ground waves Wn ∈ MKn ∩ BC1(R) that
converges to a solitary ground wave W∞ ∈ M∞ ∩ BC1(R) in the sense of

‖W∞ − Vn‖2,R
n→∞−−−→ 0,

where Vn ∈ L2(R) is defined by Vn(ϕ) = Wn(ϕ) for ϕ ∈ IKn and Vn(ϕ) = 0 for ϕ /∈ IKn.

Proof. Step 1: According to Theorem 9 and Remark 6, for each m there exists a periodic traveling
wave Wm ∈ MKm ∩ BC(R) which minimizes LKm |MKm

. Since (5) is invariant under shifts W  
W (·+ ϕ0) and reflections W  −W , we can assume that

(AWm)(0) = ‖AWm‖∞,IKm
. (9)

By Lemma 7 and Lemma 10 we also have

c ≤ LKm(Wm) ≤ C, c ≤ ‖Wm‖2,IKm
≤ C c ≤ ‖AWm‖∞,IKm

≤ C (10)

8



for some constants 0 < c < C < ∞ independent of m. Moreover, from the traveling wave equation
(5) we infer, using Lemma 2 and (10), that

‖(AWm)′‖∞,IKm
≤ 2‖Wm‖∞,IKm

≤ C‖AWm‖∞,IKm
.

In view of (9) we thus obtain

Wm(ϕ) = Wm(0) +

∫ ϕ

0
(AWm)′(s) ds ≥ d for all |ϕ| ≤ d, (11)

for some constant d independent of m.
Step 2: By definition, we have ‖Vm‖2,R = ‖Wm‖2,IKm

≤ C and

(AVn)(ϕ) = (AWn)(ϕ) for |ϕ| < Kn − 1
2 . (12)

We now choose a subsequence (Kn)n∈N such that Vn ⇀ W∞ ∈ L2(R), and Lemma 2 provides the
pointwise convergence

(AW∞)(ϕ) = lim
n→∞

(AVn)(ϕ) = lim
n→∞

(AWn)(ϕ).

Moreover, thanks to (5) and (12) we conclude that the sequence (Vn)n∈N converges pointwise, and
combining this with Vn ⇀W∞ we arrive at the pointwise convergence

W∞(ϕ) = lim
n→∞

Vn(ϕ) = lim
n→∞

Wn(ϕ) .

In particular, W∞ ∈ L2(R) is a traveling wave. Thanks to (11) and Remark 3 we also have W∞ 6= 0
with AW∞ 6= 0, so Remark 6 yields W∞ ∈ M∞ ∩ BC1(R).

Step 3: For each 0 < D <∞ and 1 ≤ r <∞ we have∫ D

−D
|AW∞|r dϕ = lim

n→∞

∫ D

−D
|AWn|r dϕ ≤ lim inf

n→∞

∫
IKn

|AWn|r dϕ

due to (10) and the Dominated Convergence Theorem, and the limit D →∞ gives

Q∞(W∞) ≤ lim inf
n→∞

QKn(Wn), P∞(W∞) ≤ lim inf
n→∞

PKn(Wn). (13)

Similarly, using Fatou’s Lemma and passing afterwards to D →∞ we prove that

‖W∞‖22,R = lim
D→∞

∫ D

−D
W∞(ϕ)2 dϕ ≤ lim

D→∞
lim inf
n→∞

∫ D

−D
Wn(ϕ)2 dϕ ≤ lim inf

n→∞
‖Wn‖22,IKn

. (14)

Combining (13) and (14) with Wn ∈ MKn for all n ∈ N ∪ {∞} we now estimate

`∞ ≤ L∞(W∞) = σ2
(

1

2
− 1

p

)
‖W∞‖22,R +

(
1− q

p

)
Q∞(W∞)

≤ σ2
(

1

2
− 1

p

)
lim inf
n→∞

‖Wn‖22,IKn
+

(
1− q

p

)
lim inf
n→∞

Qn(Wn) (15)

= lim inf
n→∞

LKn(Wn) = lim inf
n→∞

`Kn .

On the other hand, by Lemma 10 we have lim supn→∞ `Kn ≤ `∞, and thus we find

`∞ = L∞(W∞) = lim inf
n→∞

`Kn = lim sup
n→∞

`Kn .

Consequently, W∞ is in fact a solitary ground wave and we have an equality sign in (15). This implies

‖W∞‖2,R = lim
n→∞

‖Wn‖2,In = lim
n→∞

‖Vn‖2,R,

which in turn provides the strong convergence Vn → W∞. Finally, `∞ = limK→∞ `K holds since
we have already shown that any unbounded sequence (Km)m∈N has a subsequence (Kn)n∈N with
`∞ = limn→∞ `Kn .
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Figure 1: Numerical approximations of ground wave for different values of σ2 and q = 3, p = 4 (left column)
or q = 3/2, p = 3 (right column). The numerical parameters are K = 6, N = 2400, and 4τ ≥ 0.0005.

4 Numerical solutions

In order to illustrate our theoretical findings we implemented the following discretization of the
constrained gradient flow for LK |MK

:

1. Given 0 < K < ∞, we divide the periodicity cell [−K, K) into N equidistant grid points and
approximate all integrals by Riemann sums.

2. We choose a small flow time 4τ and minimize the action on MK by iterating the following two
steps:

(a) We compute an explicit Euler step for (8), that means we update W tangential to MK via

W 7→W −4τ
(
∂LK(W )− λK(W )∂FK(W )

)
.

(b) We update in radial direction via

W 7→
(
1 +4τFK(W )

)
W

to enforce the constraint FK(W ) = 0.

3. We initialize the iteration by discretizing reasonable initial data, as for instance W (ϕ) =
exp

(
−ϕ2

)
for |ϕ| < K.

Although this scheme is rather simple, it exhibits good convergence properties provided that the
flow time 4τ is sufficiently small. Moreover, numerical simulations indicate that each time-discrete
trajectory converges to a limit that is independent of the particular choice of the initial data, and
thus we expect that this limit approximates a global minimizer of LK |MK

.
Typical numerical solutions for K = 6 are displayed in Figure 1. We clearly observe that periodic

ground waves are localized but have rather different shapes for large and small speeds, respectively.
If σ2 is sufficiently large, the double well structure of Φ is less important and the wave looks like a
unimodal wave for the convex potential Φ(w) = wp, see [Her10] for details. For small σ2, however,
the contributions from the different monomials balance and W has several local extrema.
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