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Abstract

On the complement of the unit disk B we consider solutions of the equations
describing the stationary flow of an incompressible fluid with shear dependent vis-
cosity. We show the vanishing of the velocity field u provided u|∂B = 0 and
lim|x|→∞ |x|1/3|u(x)| = 0 uniformly. For slow flows the latter condition can be
replaced by lim|x|→∞ |u(x)| = 0 uniformly. In particular, these results hold for the
classical Navier-Stokes case.

1 Introduction

In our note we investigate the following exterior problem for the stationary flow of a
generalized Newtonian fluid: let B denote the open unit disk in R2 and suppose that the
velocity field u: R2 \B → R2 and the pressure π: R2 \B → R satisfy the equations

− div [DH (ε(u))] + uk∂ku+∇π = 0 (1.1)

and
div u = 0 (1.2)

on R2 \B together with the boundary condition

u = 0 on ∂B . (1.3)

Here ε(u) denotes the symmetric gradient of the field u, uk∂ku represents the convective
term (the convention of summation is used throughout this paper) and we assume that
the stress tensor T is generated by a given potential H in the sense that TD = DH, where
TD is the deviatoric part of T .
We further assume the structural condition

H(ε) = h (|ε|) (1.4)

with prescribed function h : [0,∞) → [0,∞) of class C2. From (1.4) it follows

DH(ε) = µ (|ε|) ε

with viscosity function µ(t) := h′(t)
t

and, together with (1.2), this means that we consider
stationary flows of incompressible generalized Newtonian fluids being of shear thickening
type if µ is an increasing function, and of shear thinning type if the viscosity decreases.
For further mathematical and also physical explanations the reader is referred to the

monographs of Ladyzhenskaya [La], Galdi [Ga1],[Ga2] and Málek, Necǎs, Rokyta, Růžička
[MNRR] (see also [FuSe]).

Acknowledgement. The authors thank G.P. Galdi for valuable discussions on the results. As he
kindly pointed out to us, the decay condition (1.6) can be replaced by a suitable integrability assumption
imposed on the velocity field.
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In the particular case h(t) = t2/2, the equations (1.1)–(1.3) reduce to the exterior
problem for the stationary Navier-Stokes equations, and it is a challenging task to prove
(or disprove) that

Θ(R) := sup
|x|≥R

|u(x)| → 0 as R → ∞ , (1.5)

implies the vanishing of u. Further details including the historical background and related
problems are presented in Chapter X.3 of Galdi’s book [Ga2] and in his paper [Ga3].
Of course we will not give an answer to this open question: our goal is to show that

with the help of rather elementary energy estimates one can obtain the following results.

Suppose that the fluid is shear thickening or shear thinning. Let u denote a solution of
(1.1)–(1.3). Then we have u = 0 if

i) (1.5) holds and the convective term is neglected (“slow flows”)

or if

ii) (1.5) is replaced by the stronger condition

lim
R→∞

R1/3Θ(R) = 0 . (1.6)

In order to make these statements precise, we first have to introduce a reasonable class
of solutions.

Definition 1.1. A function u ∈ C1(R2 \ B), i.e. u and ∇u are continuous up to ∂B, is
a solution of (1.1)–(1.3), if (1.2) and (1.3) hold in the classical sense and if∫

R2\B
DH (ε(u)) : ε(φ) dx+

∫
R2\B

uk∂ku
iφi dx = 0 (1.7)

holds for all φ ∈ C1
0(R2 \B) satisfying divφ = 0.

Remark 1.1. Obviously (1.7) is the weak form of (1.1) and in the shear thickening case
we can replace Definition 1.1 just by the requirement that u is an element of a suitable
local energy space having finite energy on the annulus 1 < |x| < r.
In the shear thinning case the situation becomes more delicate and we decided to work

with Definition 1.1.
From the various hypothesis concerning h and the calculations presented below the reader

actually can deduce the minimal requirements concerning the field u in the cases under
investigation. However we emphasize that we do not assume the validity of global energy
bounds like

∫
R2\B h (|ε(u)|) dx < ∞ for our class of solutions.

Next we formulate our hypotheses imposed on the density h occurring in the structural
condition (1.4). We suppose that h satisfies:

h is strictly increasing and convex; we have h′′(0) > 0 and lim
t→0

h(t)

t
= 0. (A1)
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There is a constant a > 0 such that h(2t) ≤ ah(t) for all t ≥ 0 (A2)

(doubling property).

In the shear thickening case we have
h′(t)

t
≤ h′′(t) for all t > 0. (A3I)

In the shear thinning case we have h′′(t) ≤ h′(t)

t
for all t > 0. (A3II)

Remark 1.2. i) From (A1) it immediately follows that h(0) = h′(0) and h′(t) > 0 for
any t > 0.

ii) By considering d
dt

h′(t)
t

it is immediate that (A3I) and (A3II) express the fact that the
fluid is shear thickening and shear thinning, respectively.

iii) (A1) together with (A2) implies the balancing condition

c th′(t) ≤ h(t) ≤ th′(t) for all t ≥ 0 (1.8)

and for a suitable positive constant c. In fact, 0 = h(0) ≥ h(t) − th′(t) holds by
convexity, whereas by (A2) and the monotonicity of h′

h(t) ≥ 1

a
h(2t) =

1

a

∫ 2t

0

h′(s) ds ≥ 1

a

∫ 2t

t

h′(s) ds ≥ 1

a
th′(t) .

iv) It is easy to see that from (A2) it follows

h(t) ≤ h(1)ta for all t ≥ 1 ,

thus
h(t) ≤ c [ta + 1] for all t ≥ 0 . (1.9)

v) If we are in the shear thickening case (A3I), then
h′(t)
t

≥ lims→0
h′(s)
s

= h′′(0) gives

h(t) ≥ 1

2
h′′(0)t2 for all t ≥ 0 , (1.10)

and (A1) implies on account of h′′(0) > 0 that our energy is of at least quadratic
growth.

vi) In the shear thinning case we have

h(t) ≤ 1

2
h′′(0)t2 (1.11)

and
h′(t)2 ≤ ch(t) (1.12)
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for any t ≥ 0. For (1.12) we observe h′(t) ≤ th′′(0), which is an immediate conse-
quence of h′(t)/t ≤ lims→0 h

′(s)/s, thus

h′(t)2 ≤ th′′(0)h′(t)
(1.8)

≤ ch′′(0)h(t) .

Note that according to (1.11) the condition (A3II) implies that the energy has sub-
quadratic growth.

Actually, even the case of linear growth is covered , which means that we can easily
give examples of densities h satisfying (A1)–(A3II) for which limt→∞ h(t)/t ∈ (0,∞).

vii) It is not hard to show that (A1) and (A3II) already imply (A2), we refer to the
Appendix of [BF].

After these preparations we can state our main theorem:

Theorem 1.1. Suppose that u is a solution of (1.1)–(1.3) in the sense of Definition 1.1
with H from (1.4), where h satisfies (A1,2), (A3I) or (A1,2), (A3II). Then u vanishes, if

i) |u(x)| → 0 uniformly as |x| → ∞, i.e. (1.5) holds, and if uk∂ku is neglected

ii) or if |x|1/3 |u(x)| → 0 uniformly as |x| → ∞, i.e. we have (1.6).

In the subsequent sections we will present the proof of Theorem 1.1 distinguishing the
cases of increasing and decreasing viscosity.
However, in both cases we apply energy estimates originating in the papers [Fu] and

[FuZha] dealing with entire solutions of equations (1.1) and (1.2).
We finally remark that our arguments immediately extend to the exterior problem in

Rn leading to appropriate bounds in part a) and b) of Theorem 1.1. The details are left to
the reader. Moreover, it should be noted that Theorem 1.1 includes the exterior problem
for the stationary Navier-Stokes equations as a special case.

2 Some technical preliminaries

Our first tool is a slight extension (presented in [FuZha]) of the “ε-Lemma” due to Gi-
aquinta and Modica (see Lemma 0.5 in [GM]):

Lemma 2.1. Let Q := QR(z) := {x ∈ R2 : |xi − zi| < R, i = 1, 2} denote an arbitrary
square. Suppose that we are given non-negative functions f , f1, . . . , fl from the space
L1(Q) and exponents α1, . . . , αl > 0. Then we can find a number ε0 > 0 depending on
α1, . . . , αl as follows: if for ε ∈ (0, ε0) it is possible to calculate a constant c(ε) > 0 such
that the inequality∫

Qr(y)

f dx ≤ ε

∫
Q2r(y)

f dx+ c(ε)
l∑

j=1

r−αj

∫
Q2r(y)

fj dx
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holds for all squares Q2r(y) b Q, then there is a constant c > 0 (independent of Q) with
the property ∫

Qr(y)

f dx ≤ c
l∑

j=1

∫
Q2r(y)

fj dx

again for all squares Q2r(y) b Q.

In order to construct solenoidal testfunctions, we will make use of the following basic
lemma (see, e.g. [Ga1], Chapter III, Section 3).

Lemma 2.2. Suppose that we are given numbers 1 < p1 ≤ p ≤ p2 < ∞. Then there
is a constant c = c(p1, p2) with the following property: if f ∈ Lp (BR(x0)), BR(x0) :=
{x ∈ R2 : |x− x0| < R}, satisfies

∫
BR(x0)

f dx = 0, then there exists a field v in the Sobolev

class
◦
W1

p(BR(x0)) such that div v = f on the disk BR(x0) together with the estimate∫
BR(x0)

|∇v|s dx ≤ c

∫
BR(x0)

|f |s dx (2.1)

for any exponent s ∈ [p1, p]. The same is true if the disk is replaced by a square QR(x0)
or an annulus B2R(x0) \BR(x0).

For handling the shear thickening case we need the following result stated in Lemma
2.5 of [Fu] and being a consequence of (1.8) and (1.9).

Lemma 2.3. Let h satisfy (A1), (A2) and (A3I). Then there exists a number τ ∈ (1, 2]
such that

h′(t) ≤ c
(
h(t)1/τ + t

)
for all t ≥ 0 , (2.2)

where c denotes a suitable positive constant.

3 Shear thinning case

Let h satisfy (A1), (A2), (A3II) and suppose that we have a solution u in the sense of
Definition 1.1 satisfying at least (1.5). Note that in this case u is an element of the space
L∞(R2). We fix a square Q having positive distance to the unit disk B and consider
subsquares Q2r(z) b Q.
Our first goal is to obtain an estimate (see (3.8)) for the energy

∫
Qr(z)

h (|ε(u)|) dx. To
this purpose we let in equation (1.7) φ = η2u−v, where η ∈ C1

0(Q2r(z)), 0 ≤ η ≤ 1, η = 1
on Qr(z), |∇η| ≤ c/r.
The field v is defined according to Lemma 2.2 with the choices s = p1 = p2 = 2,
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f = div(η2u)
(1.2)
= ∇η2 · u and with BR(x0) replaced by Q2r(z). We obtain from (1.7)∫

Q2r(z)

η2DH (ε(u)) : ε(u) dx

+ 2

∫
Q2r(z)

∂H

∂εiα
(ε(u)) ∂αη ηu

i dx−
∫
Q2r(z)

DH (ε(u)) : ε(v) dx

+

∫
Q2r(z)

uk∂ku
iuiη2 dx−

∫
Q2r(z)

uk∂ku
ivi dx

= T1 + T2 − T3 + T4 − T5 = 0 . (3.1)

From (1.4) and (1.8) it follows

T1 =

∫
Q2r(z)

η2h′ (|ε(u)|) ε(u)

|ε(u)|
: ε(u) dx ≥ c

∫
Q2r(z)

η2h (|ε(u)|) dx . (3.2)

By Young’s inequality and again (1.8) we have

|T2| ≤ c

∫
Q2r(z)

h′ (|ε(u)|) η|∇η||u| dx

= c

∫
Q2r(z)

[
h′ (|ε(u)|)
|ε(u)|

] 1
2

|∇η||u|η
[
h′ (|ε(u)|) |ε(u)|

] 1
2 dx

≤ δ

∫
Q2r(z)

η2h (|ε(u)|) dx+ c(δ)

∫
Q2r(z)

h′ (|ε(u)|)
|ε(u)|

|∇η|2|u|2 dx .

If δ is choosen sufficiently small, we deduce from the above estimate in combination with
(3.1) and (3.2) and by recalling the inequality stated after (1.12)∫

Q2r(z)

η2h (|ε(u)|) dx ≤ c

[
r−2

∫
Q2r(z)

|u|2 dx+ |T3|+ |T4|+ |T5|
]
. (3.3)

For any δ > 0 it holds on account of (2.1) and (1.12)

|T3| ≤ δ

∫
Q2r(z)

h′ (|ε(u)|)2 dx+ δ−1

∫
Q2r(z)

|∇v|2 dx

≤ c

[
δ

∫
Q2r(z)

h (|ε(u)|) dx+ δ−1r−2

∫
Q2r(z)

|u|2 dx
]
,

and if we replace c δ by δ we get from this estimate in combination with (3.3)∫
Qr(z)

h (|ε(u)|) dx ≤ δ

∫
Q2r(z)

h (|ε(u)|) dx+c

[
δ−1r−2

∫
Q2r(z)

|u|2 dx+ |T4|+ |T5|
]
. (3.4)

We further have

T4 =
1

2

∫
Q2r(z)

uk∂k|u|2η2 dx
(1.2)
= −1

2

∫
Q2r(z)

u · ∇η2|u|2 dx ,
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hence

|T4| ≤
1

r

∫
Q2r(z)

|u|3 dx , (3.5)

moreover it holds

|T5|
(1.2)
=

∣∣∣∣∫
Q2r(z)

ukui∂kv
i dx

∣∣∣∣
≤

[∫
Q2r(z)

|u|4 dx
] 1

2
[∫

Q2r(z)

|∇v|2 dx
] 1

2

(2.1)

≤ c r−1

[∫
Q2r(z)

|u|4 dx
∫
Q2r(z)

|u|2 dx
] 1

2

≤ c r−1

[∫
Q2r(z)

|u|4 dx+

∫
Q2r(z)

|u|2 dx
]
. (3.6)

From (3.4)–(3.6) we finally obtain∫
Qr(z)

h (|ε(u)|) dx ≤ δ

∫
Q2r(z)

h (|ε(u)|) dx+ c

[
δ−1r−2

∫
Q2r(z)

|u|2 dx

+r−1

∫
Q2r(z)

(
|u|2 + |u|3 + |u|4

)
dx

]
(3.7)

being valid for any δ > 0 and all squares Q2r(z) ⊂ Q. Inequality (3.7) shows that we can
apply Lemma 2.1 with the result∫

Qr(z)

h (|ε(u)|) dx ≤ c

[
r−2

∫
Q2r(z)

|u|2 dx+ r−1

∫
Q2r(z)

(
|u|2 + |u|3 + |u|4

)
dx

]
, (3.8)

which holds for all squares Q2r(z) ⊂ Q. Let us consider a square Q = QR(x0) with side
length R > 1. Choosing r = R/4, z = x0 in (3.8) and recalling the boundedness of u we
get ∫

QR
4
(x0)

h (|ε(u)|) dx ≤ cR−1

∫
QR

2
(x0)

|u|2 dx . (3.9)

With (3.9) we return to (3.7) with the choices r = R/8, z = x0, but this time we

estimate |T5| through the quantity c r−1
[∫

Q2r(z)
|u|4 dx

∫
Q2r(z)

|u|2 dx
]1/2

(compare (3.6)).

This yields for any δ > 0:

∫
QR

8
(x0)

h (|ε(u)|) dx ≤ c

δR−1

∫
QR

2
(x0)

|u|2 dx+ δ−1R−2

∫
QR

4
(x0)

|u|2 dx

+R−1

∫
QR

4
(x0)

|u|4 dx
∫
QR

4
(x0)

|u|2 dx

 1
2

 .
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If we choose δ = R−1/2, this inequality implies

∫
QR

8
(x0)

h (|ε(u)|) dx ≤ c

R− 3
2

∫
QR

2
(x0)

|u|2 dx

+R−1

∫
QR

2
(x0)

|u|4 dx
∫
QR

2
(x0)

|u|2 dx

 1
2

 . (3.10)

Next we fix an annulus TR := B2R(0)\BR(0) of very large radius R and cover its closure
with a finite number N of squares QR

8
(xi) having centers xi in TR. Note that N can be

chosen independent of the radius R. We apply (3.10) to these squares and estimate |u|
on QR

2
(xi) just through Θ(R/4) being defined in (1.5). After summation with respect to

i we deduce ∫
TR

h (|ε(u)|) dx ≤ c

[
R

1
2Θ

(
R

4

)2

+RΘ

(
R

4

)3
]
. (3.11)

Note that assumption (1.6) immediately implies the vanishing of
∫
TR

h(|ε(u)|) dx passing
to the limit R → ∞.
In the absence of the convective term this is already true under the weaker hypothesis

(1.5): under the assumption uk∂ku ≡ 0 inequality (3.8) reduces to∫
Qr(z)

h (|ε(u)|) dx ≤ c r−2

∫
Q2r(z)

|u|2 dx ,

and (3.11) has to be replaced by∫
TR

h (|ε(u)|) dx ≤ cΘ

(
R

4

)2

.

In a next step we show that (1.6) implies∫
|x|>1

h (|ε(u)|) dx = 0 , (3.12)

which forces u to be a rigid motion, hence u = 0 on account of the boundary condition
(1.3).
Proving (3.12) we recall (3.11), thus instead of (3.12) it just remains to verify the validity

of

lim
R→∞

∫
1<|x|<R

h (|ε(u)|) dx = 0 (3.13)

under the hypothesis (1.6) (or (1.5) in case uk∂ku = 0).
To this purpose we fix a radius R ≫ 1 and choose

φ :=

{
u if 1 ≤ |x| ≤ R ,

η2u− v if R ≤ |x| ≤ 2R
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as testfunction in equation (1.7) with η = 1 on 1 ≤ |x| ≤ R, 0 ≤ η ≤ 1 in 1 ≤ |x| ≤ 2R,
η = 0 outside of |x| ≤ 2R and |∇η| ≤ c/R.
The field v is defined according to Lemma 2.2 with the choices s = p1 = p2 = 2,

f = div(η2u) and for the domain TR, i.e. v ∈
◦
W 1

2(TR), div v = f on TR and v satisfies
(2.1). Note (recall (1.3)) that φ vanishes on |x| = 1, moreover we have∫

TR

f dx = 0 , (3.14)

which justifies the application of Lemma 2.2: in fact, by the choice of η it holds∫
TR

f dx =

∫
∂TR

η2uNTR
dH1 = −

∫
∂BR

u · N∂BR
dH1

(1.3)
= −

∫
∂(BR\B)

u · N∂(BR\B)dH1

= −
∫
BR\B

div u dx = 0

and (3.14) follows. HereN denotes the exterior normal of the domains under consideration
and H1 denotes the one-dimensional Hausdorff measure.
Equation (1.7) then yields

0 =

∫
1<|x|<R

DH (ε(u)) : ε(u) dx+

∫
TR

DH (ε(u)) : ε(η2u) dx

−
∫
TR

DH (ε(u)) : ε(v) dx+

∫
1<|x|<2R

uk∂ku
iφi dx

or equivalently ∫
1<|x|<2R

η2DH (ε(u)) : ε(u) dx

= −
∫
TR

DH (ε(u)) :
(
∇η2 ⊗ u

)
dx

−
∫
TR

DH (ε(u)) : ε(v) dx−
∫
1<|x|<2R

uk∂ku
iφi dx . (3.15)

We have∣∣∣∣∫
TR

DH (ε(u)) : ∇
(
η2 ⊗ u

)
dx

∣∣∣∣ ≤
∫
TR

h′ (|ε(u)|) |∇η||u| dx

≤ c

[∫
TR

h′ (|ε(u)|)2 dx+R−2

∫
TR

|u|2 dx
]

(1.12)

≤ c

[∫
TR

h (|ε(u)|) dx+R−2

∫
TR

|u|2 dx
]

9



as well as∣∣∣∣∫
TR

DH (ε(u)) : ε(v) dx

∣∣∣∣ ≤
∫
TR

h′ (|ε(u)|) |ε(v)| dx

≤ c

[∫
TR

h (|ε(u)|) dx+R−2

∫
TR

|u|2 dx
]
,

where we used Young’s inequality and the definition of v. Returning to (3.15) we find
(recall (1.8))∫

1<|x|<R

h (|ε(u)|) dx ≤ c

[∫
TR

h (|ε(u)|) dx+R−2

∫
TR

|u|2 dx+ |S|
]
,

S :=

∫
1<|x|<2R

uk∂ku
iφi dx . (3.16)

With (3.11) we immediately see that (3.16) implies our claim (3.13), i.e. finishes the proof,
as soon as we can show that

lim
R→∞

S = 0 . (3.17)

It holds

S = −
∫
1<|x|<2R

ukui∂kφ
i dx

= −
∫
1<|x|<2R

ukui∂k(η
2ui) dx+

∫
TR

ukui∂kv
i dx

=: −T1 + T2 , (3.18)

and for T2 we have

|T2| ≤
∫
TR

|u|2|∇v| dx

≤
[∫

TR

|u|4 dx
] 1

2
[∫

TR

|∇v|2 dx
] 1

2

≤ cR−1

[∫
TR

|u|4 dx
] 1

2
[∫

TR

|u|2 dx
] 1

2

≤ cRΘ(R)3 ,

thus by (1.6)
lim
R→∞

T2 = 0 . (3.19)

For T1 we observe the identity

T1 =

∫
1<|x|<2R

ukui∂kη
2ui dx+

∫
1<|x|<2R

ukui∂ku
iη2 dx

=

∫
TR

uk|u|2∂kη2 dx+

∫
1<|x|<2R

ukui∂ku
iη2 dx , (3.20)
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which follows from the support properties of ∇η. At the same time an integration by
parts yields

T1 = −
∫
1<|x|<2R

∂k(u
kui)η2ui dx = −

∫
1<|x|<2R

ukui∂ku
iη2 dx ,

and (3.20) can be rewritten as

T1 =

∫
TR

uk|u|2∂kη2 dx− T1

i.e. T1 =
1
2

∫
TR

uk|u|2∂kη2 dx, and this immediately shows

lim
R→∞

T1 = 0 . (3.21)

With (3.19) and (3.21) we obtain (3.17), and as outlined before this completes the proof
of Theorem 1.1 in the shear thinning case. �

4 Shear thickening case

With h satisfying (A1), (A2) and (A3I) we consider a solution u of the exterior problem
(1.1)–(1.3) as explained in Definition 1.1. We further assume the validity of (1.6) (or
of (1.5) in the case that uk∂ku = 0). The calculations follow the same ideas as in the
previous section, for the necessary adjustments we benefit from [Fu], Section 4.

Let p := τ
τ−1

≥ 2 with exponent τ being defined in Lemma 2.3. For l ∈ N sufficiently

large we let φ := η2lu − v with η as introduced in front of equation (3.1), but now we

choose v ∈
◦
W1

p(Q2r(z)) such that div v = div(η2lu)(= ∇η2l · u) on Q2r(z) together with

∥∇v∥Lp(Q2r(z)) ≤ c∥∇η2l · u∥Lp(Q2r(z)) and ∥∇v∥L2(Q2r(z)) ≤ c∥∇η2l · u∥L2(Q2r(z)) . (4.1)

Replacing η2 by η2l in (3.1) we obtain for the terms Ti, i = 1, . . . , 5

T1 ≥ c

∫
Q2r(z)

η2lh (|ε(u)|) dx , (4.2)

|T2| ≤ c

∫
Q2r(z)

h′ (|ε(u)|) η2l−1|∇η||u| dx

(2.2)

≤ c

∫
Q2r(z)

η2l−1|∇η||u|
[
h (|ε(u)|)

1
τ + |ε(u)|

]
dx

≤ δ

∫
Q2r(z)

η(2l−1)τh (|ε(u)|) dx+ c(δ)

∫
Q2r(z)

|∇η|p|u|p dx

+δ

∫
Q2r(z)

η(2l−1)2 |ε(u)|2 dx+ c(δ)

∫
Q2r(z)

|∇η|2|u|2 dx ,
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where we have used Young’s inequality with arbitrary δ > 0. Observing (1.10) and
selecting l so large that (2l − 1)τ ≥ 2l, we see that after suitable choice of δ it follows
from (4.2)∫

Q2r(z)

η2lh (|ε(u)|) dx ≤ c

[
r−p

∫
Q2r(z)

|u|p dx

+r−2

∫
Q2r(z)

|u|2 dx+ |T3|+ |T4|+ |T5|
]
. (4.3)

Again by (1.10) and Young’s inequality we get

|T3| ≤ c

∫
Q2r(z)

h′ (|ε(u)|) |ε(v)| dx

≤ c

∫
Q2r(z)

[
h (|ε(u)|)

1
τ + |ε(u)|

]
|ε(v)| dx

≤ δ

∫
Q2r(z)

h (|ε(u)|) dx+ cδ1−p

∫
Q2r(z)

|ε(v)|p dx

+δ

∫
Q2r(z)

|ε(u)|2 dx+ cδ−1

∫
Q2r(z)

|ε(v)|2 dx ,

and if we use (4.1) and (1.10) we have shown

|T3| ≤ δ

∫
Q2r(z)

h (|ε(u)|) dx

+c

[
δ1−pr−p

∫
Q2r(z)

|u|p dx+ δ−1r−2

∫
Q2r(z)

|u|2 dx
]
. (4.4)

Returning to (4.3) and using (4.4) we obtain in place of (3.4)∫
Qr(z)

h (|ε(u)|) dx ≤ δ

∫
Q2r(z)

h (|ε(u)|) dx+ c

[
δ1−pr−p

∫
Q2r(z)

|u|p dx

+δ−1r−2

∫
Q2r(z)

|u|2 dx+ |T4|+ |T5|

]
,

and since the estimates for T4 and T5 remain unchanged we deduce in place of (3.7)∫
Qr(z)

h (|ε(u)|) dx ≤ δ

∫
Q2r(z)

h (|ε(u)|) dx

+c

[
δ1−pr−p

∫
Q2r(z)

|u|p dx+ δ−1r−2

∫
Q2r(z)

|u|2 dx

+r−1

∫
Q2r(z)

(
|u|2 + |u|3 + |u|4

)
dx

]
. (4.5)
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Inequality (4.5) enables us to use Lemma 2.1, hence∫
Qr(z)

h (|ε(u)|) dx ≤ c

[
r−p

∫
Q2r(z)

|u|p dx + r−2

∫
Q2r(z)

|u|2 dx

+r−1

∫
Q2r(z)

(
|u|2 + |u|3 + |u|4

)
dx

]
. (4.6)

With the notation introduced after (3.8) we see that (4.6) implies in a first step the
inequality (3.9), that is we obtain∫

QR
4
(x0)

h (|ε(u)|) dx ≤ cR−1

∫
QR

2
(x0)

|u|2 dx . (4.7)

With the help of (4.7) we then proceed exactly as done after (3.9) and get (for any δ > 0)

∫
QR

8
(x0)

h (|ε(u)|) dx ≤ c

δR−1

∫
QR

2
(x0)

|u|2 dx+ δ1−pR−p

∫
QR

4
(x0)

|u|p dx

+δ−1R−2

∫
QR

4
(x0)

|u|2 dx

+R−1

∫
QR

4
(x0)

|u|4 dx
∫
QR

4
(x0)

|u|2 dx

 1
2

 .

Let δ = R−1/2. The above inequality implies (3.10) with the additional term

R− 1
2
− p

2

∫
QR

2
(x0)

|u|p dx

on the right-hand side. Therefore we get in place of (3.11)∫
TR

h (|ε(u)|) dx ≤ c

[
R

1
2Θ

(
R

4

)2

+RΘ

(
R

4

)3

+R
3
2
− p

2Θ

(
R

4

)p
]
,

but on account of p ≥ 2 and the vanishing of Θ it clearly holds

R
1
2Θ

(
R

4

)2

≥ cR
3
2
− p

2Θ

(
R

4

)p

,

and as in Section 3 we obtain

lim
R→∞

∫
TR

h (|ε(u)|) dx = 0

under the assumption (1.6) (or (1.5) for slow flows).
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It remains to verify (3.13). We use the same testfunction φ as introduced after (3.13)
observing that v satisfies

∥∇v∥Ls(TR) ≤ c∥∇η2 · u∥Ls(TR) (4.8)

for s = 2 and s = p.
Passing to (3.15) the first two terms on the right-hand side are now estimated as follows:∣∣∣∣∫

TR

DH (ε(u)) :
(
∇η2 ⊗ u

)
dx

∣∣∣∣ (2.2)

≤ c

∫
TR

(
h

1
τ (|ε(u)|) + |ε(u)|

)
|∇η||u| dx

≤ c

[∫
TR

h (|ε(u)|) dx+R−p

∫
TR

|u|p dx

+

∫
TR

|ε(u)|2 dx+R−2

∫
TR

|u|2 dx
]

(1.10)

≤ c

[∫
TR

h (|ε(u)|) dx+R−2

∫
TR

|u|2 dx
]

on account of p ≥ 2 and the boundedness of u. With (4.8) the same bound is seen to be
true for

∫
TR

DH(ε(u)) : ε(v) dx, hence we get (3.16) with S being defined there. Clearly

(3.17) remains valid, thus we get (3.13), and the proof of Theorem 1.1 is complete.
�
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