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Abstract

We establish interior gradient bounds for functions u ∈ W 1
1,loc(Ω) which locally

minimize the variational integral J [u,Ω] =
∫
Ω h (|∇u|) dx under the side condition

u ≥ Ψ a.e. on Ω with obstacle Ψ being locally Lipschitz. Here h denotes a rather
general N -function allowing (p, q)-ellipticity with arbitrary exponents 1 < p ≤ q <
∞. Our arguments are based on ideas developed in [BFM] combined with techniques
originating in [F3].

1 Introduction

In our note we discuss the local Lipschitz (and even the interior C1,α-) regularity of
functions u from the local Sobolev class W 1

1,loc(Ω) which locally minimize the functional

J [u,Ω] :=

∫
Ω

H(∇u) dx (1.1)

under the side condition u ≥ Ψ a.e. on Ω with a given Lipschitz function Ψ : Ω → R. Here
Ω is some open subset in Rn, n ≥ 2, and the energy density is a strictly convex function
from Rn into the non-negative numbers. By definition u is a local J-minimizer subject
to the constraint u ≥ Ψ if J [u,Ω′] < ∞ for any subdomain Ω′ with compact closure in
Ω and if J [u,Ω′] ≤ J [v,Ω′] holds for all v ∈ W 1

1,loc(Ω) such that v ≥ Ψ a.e. on Ω and
spt(u−v) ⊂ Ω′. The investigation of the regularity properties of such local minimizers for
the obstacle problem has a long tradition starting with the discussion of energy densities
H being of quadratic growth. We refer to the monographs [KS] and [FR] for a survey of
the most important contributions and a detailed outline of the various regularity results
including regularity up to the boundary and the regularity of the free boundary under
suitable hypothesis on the data. A natural extension of quadratic growth is the p-growth
condition (for some exponent 1 < p < ∞), which requires the validity of (λ,Λ denoting
positive constants)

λ
(
1 + |ξ|2

) p−2
2 |η|2 ≤ D2H(ξ)(η, η) ≤ Λ

(
1 + |ξ|2

) p−2
2 |η|2 (1.2)

for all ξ, η ∈ Rn or its degenerate variant. Here we mention the papers [CL], [F1],
[F2], [LIN], [MIZ],[MUZ] and the references quoted therein. If we replace (1.2) by the
(anisotropic) ellipticity condition

λ
(
1 + |ξ|2

) p−2
2 |η|2 ≤ D2H(ξ)(η, η) ≤ Λ

(
1 + |ξ|2

) q−2
2 |η|2 (1.3)

with exponents 1 < p < q < ∞, then unconstrained local minima (even in the vectorial
setting) have been first investigated in [M1]-[M4] exhibiting conditions like

q < c(n)p, c(n) → 1 as n → ∞ , (1.4)
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as sufficient conditions for interior regularity, and from [BFM] it follows that

q < p
n+ 2

n
(1.5)

(together with some minor technical assumptions imposed on H) implies the interior reg-
ularity of constrained minimizers. Moreover, as it is shown in [B] p.149 f., the hypothesis
(1.5) can be replaced by the dimensionless condition

q < p+ 2 , (1.6)

if the local minimizer belongs to the space L∞
loc(Ω). For completeness we remark that

energy densities H being of nearly linear growth as for example H(ξ) := |ξ| ln (1 + |ξ|)
do not fall in the category (1.3) with exponents 1 < p < q < ∞. However, based on the
works [FS1], [FS2], [FO] and [MS] the question of full interior regularity for the obstacle
problem was answered in [FM].

The purpose of this paper is to establish the following result:
suppose that u ∈ W 1

1,loc(Ω) is local J [·,Ω]-minimizer subject to the constraint u ≥ Ψ a.e.
on Ω with Lipschitz obstacle Ψ. Let H satisfy (1.3) with 1 < p < q < ∞. Then we have
|∇u| ∈ L∞

loc(Ω) without any relation like (1.4), (1.5) or (1.6), provided H is of the special
form

H(ξ) = h(|ξ|) (1.7)

with h : [0,∞) −→ [0,∞) of class C2.

To make our statement precise, we fix the assumptions concerning h. The requirements
are:

h is strictly increasing and convex together with

h′′(0) > 0 and lim
t→0

h(t)

t
= 0 .

 (A1)

For a constant a > 0 it holds h(2t) ≤ ah(t), t ≥ 0 (doubling property) . (A2)

There exists a constant α > 0 such that αh′(t)
t

≤ h′′(t) is true for all t > 0 . (A3)

With q ≥ 2 and A > 0 we have for any t ≥ 0: h′′(t) ≤ A(1 + t2)
q−2
2 . (A4)

Note that α can be arbitrary small and that there is no upper bound for the exponent q.
Before proceeding further let us add some comments:

i) From (A1) we immediately get h(0) = h′(0) = 0.

ii) By taking the derivative and using (A3) we see that the function t 7→ h′(t)
tα

is in-
creasing on (0,∞), in particular it follows with a suitable constant c > 0

h(t) ≥ c
(
t1+α − 1

)
, t ≥ 0 . (1.8)
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iii) We have the following balancing condition:

cth′(t) ≤ h(t) ≤ th′(t), t ≥ 0 . (1.9)

In fact, the second inequality follows from convexity of h together with h(0) = 0.
For the first inequality we observe:

h(t)
(A2)

≥ 1

a
h(2t) =

1

a

∫ 2t

0

h′(r)dr ≥ 1

a

∫ 2t

t

h′(r)dr ≥ 1

a
th′(t) .

iv) We claim: condition (1.3) holds with p := 1+α and with q from (A4). In fact, from
the structural condition (1.7) we obtain

min

{
h′′ (|ξ|) , h

′(|ξ|)
|ξ|

}
|η|2 ≤ D2H(ξ)(η, η) ≤ max {. . .} |η|2 ,

hence by (A3) and (A4)

α
h′(|ξ|)
|ξ|

|η|2 ≤ D2H(ξ)(η, η) ≤ 1

α
A
(
1 + |ξ|2

) q−2
2 |η|2 .

We have h′(t)
t

→ h′′(0) as t → 0, hence

h′(t)

t
≥ 1

2
h′′(0) on (0, t0] ,

whereas for t ≥ t0 it holds

h′(t)

t
=

h′(t)

tα
t−1+α ≥ h′(t0)

tα0
t−1+α ,

so that
h′(t)

t
≥ c

(
1 + t2

)α−1
2 = c

(
1 + t2

) p−2
2

for any t > 0. This proves our claim.

v) For later purpose we observe

c (h(t)ts)1/2 ≤
∫ t

t/2

(
h′(r)

r
rs
)1/2

dr , (1.10)

∫ t

0

(
h′(r)

r
rs
)1/2

dr ≤ c (h(t)ts)1/2 (1.11)

being valid for any choices of s, t ≥ 0. Both inequalities essentially follow from ii):
it holds∫ t

0

(
h′(r)

r
rs
)1/2

dr =

∫ t

0

(
h′(r)

rα

)1/2

r
s
2
− 1

2
+α

2 dr

≤
(
h′(t)

tα

)1/2∫ r

0

r
s
2
− 1

2
+α

2 dr = c

(
h′(t)

tα

)1/2

t
s
2
+ 1

2
+α

2 = c (h′(t)t ts)
1/2

,
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thus we get (1.11) on account of (1.9). At the same time we have∫ t

t/2

(
h′(r)

r
rs
)1/2

dr ≥
(
h′(t/2)

(t/2)α

)1/2 ∫ t

t/2

r
s
2
− 1

2
+α

2 dr ≥ c (h′(t/2)t ts)
1/2

,

and (1.10) is a consequence of (1.9) and (A2).

After these preparations we can formulate our result:

Theorem 1.1. Assume that h satisfies (A1-4) and define H and the functional J ac-
cording to (1.7) and (1.1), respectively. Then any local J-minimizer u subject to the
constraint u ≥ Ψ a.e. on Ω is locally Lipschitz provided the obstacle Ψ has this property.
If the gradient of Ψ satisfies a local Hölder condition, then the same is true for ∇u.

Remark 1.1. The above results easily extend to the double obstacle problem as studied
for example in [BFM]. Moreover, the conditions on h can be relaxed in order to handle
the degenerate case h′′(0) = 0.

Remark 1.2. Since we deal with the scalar case, the structural condition (1.7) is not
really needed. It can be replaced by suitable inequalities imposed on DH(ξ) and D2H(ξ),
ξ ∈ Rn, relating these quantities as outlined for example in [LIE], where the degenerate
case for the double obstacle problem under non-standard growth conditions is addressed.
The reader should note that Theorem 1.1 is a consequence of the results obtained in [LIE],
if instead of (A4) we require the validity of

h′′(t) ≤ c
h′(t)

t
, t ≥ 0 , (1.12)

since (1.12) together with (A3) implies the condition of uniform ellipticity (c1, c2 positive
constants)

c1 ≤
t h′′(t)

h′(t)
≤ c2, t ≥ 0 , (1.13)

which corresponds to (0.1) in [LIE]. However, in comparison to (1.12) and thereby (1.13),
our assumptions (A3) and (A4) are less restrictive.

Remark 1.3. Let us finally compare our assumptions with the hypotheses imposed on the
density h in the paper [MP]. Clearly (A3) is more restrictive compared to the first part of
inequality (2.9) from [MP], however we do not require an upper bound for h′′(t) in terms
of h′(t)/t as expressed in the second part of (2.9). In fact, in Section 2 we construct a
density h for which h′(t)/t is bounded, whereas (A4) holds with arbitrary (large) prescribed
number q, so that the second inequality from (2.9) in [MP] is violated.

Our paper is organized as follows: in Section 2 we give an example of a density h satisfying
(A1-4). In Section 3 we introduce a suitable sequence of local regularizations as done in
[BFM] and show following ideas from [F3] that any constrained local minimizer u satisfies

|∇u| ∈ Lr
loc(Ω), 1 ≤ r < ∞ , (1.14)

4



if Ψ is locally Lipschitz. In Section 4 we show that (1.14) implies the local Lipschitz
regularity of u, which proves the first part of Theorem 1.1. From this the local Hölder
continuity of ∇u (for sufficiently regular obstacle Ψ) follows along the lines of [BFM].
Some additional results including the non-autonomous case are collected in Section 5.

2 An example

In this section we construct an energy density h : [0,∞) → [0,∞) satisfying (A1-4) with
α = 1 and arbitrary large exponent q. Thus the integrand H(ξ) = h(|ξ|) is (2, q)-elliptic
in the sense of (1.3) but for appropriate choices of q the conditions (1.4) - (1.6) fail to
be true. The reader should note that H(ξ) is of quadratic growth w.r.t. ξ ∈ Rn. The
construction works like this:

• we start with a “suitable”function Θ : [0,∞) −→ [0,∞) (playing the role of the

derivative of h′(t)
t
);

• then we let g(t) := 1 +
∫ t

0
Θ(s)ds (g(t) represents h′(t)

t
);

• finally we set h(t) :=
∫ t

0
sg(s)ds.

To be precise consider a sequence {ai} of numbers such that 0 ≪ ai < ai+1 and limi→∞ ai =
∞. We choose εi > 0 with the property

Ii ∩ Ij = ∅, if i ̸= j, Ii := (ai − εi, ai + εi) ,

and
∞∑
i=1

εia
ω
i < ∞ (2.1)

for some number ω to be fixed later. We then define the continuous function Θ : [0,∞) →
[0,∞) through

Θ(t) :=


0 on [0,∞)−

∪∞
i=1 Ii ,

affine linear on (ai − εi, ai) and on
(ai, ai + εi) with value aωi at t = ai ,
i ∈ N

and introduce g(t), h(t) as done above. Clearly

g′ = Θ, h′(t) = t g(t) , (2.2)

and from the definition of g we obtain

g(t) ≤ 1 +

∫ ∞

0

Θ(s)ds = 1 +
∞∑
i=1

εia
ω
i =: g∞ ,

thus by (2.1)
1 = g(0) ≤ g(t) ≤ g∞ < ∞, t ∈ [0,∞) . (2.3)
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Inserting (2.3) in the definition of h, we find

t2

2
≤ h(t) ≤ g∞

1

2
t2, t ≥ 0 , (2.4)

and (2.4) shows that h is of quadratic growth. The validity of (A1) is immediate. For
(A3) with α = 1 we observe

h′′(t) =
d

dt
(tg(t)) = g(t) + tg′(t) ≥ g(t)

(2.2)
=

h′(t)

t
.

Let us look at (A4): from h′′(t) = g(t) + tg′(t) = g(t) + tΘ(t) and (2.3) it follows

1 + tΘ(t) ≤ h′′(t) ≤ g∞ + tΘ(t), t ≥ 0 . (2.5)

Suppose that a number q > 2 is given. According to (2.5) we see that (A4) holds if we let
ω := q − 3 in the definition of Θ. Moreover, again by (2.5), it is immediate that in (A4)
we can not replace q by some smaller exponent q̃. For proving (A2) we first observe that
(2.3) gives the inequality g(2t) ≤ g∞g(t), hence

h(2t) =

∫ 2t

0

sg(s)ds = 4

∫ t

0

sg(2s)ds ≤ 4g∞

∫ t

0

sg(s)ds = 4g∞h(t) ,

therefore we obtain (A2) with a := 4g∞. �

3 Higher integrability of the gradient

In the following we assume that u is a local minimizer of the functional J [·,Ω] from (1.1)
under the side condition u ≥ Ψ a.e. on Ω with Ψ being locally Lipschitz. We further
assume that the density h satisfies the assumptions (A1-4). As in Section 2 of [BFM] we
work with a suitable local regularization. Let us briefly recall the basic notation: with
ε and δ we denote two sequences of positive numbers such that ε → 0 and δ → 0, and
we will keep these symbols also for subsequences. As usual, c will denote a finite positive
constant, whose value may change from line to line, and depending on various quantities
but always being independent of ε and δ. We fix a radius R > 0 and x0 ∈ Ω such that
B2R is compactly contained in Ω, Br := Br(x0). Let uε and Ψε denote the mollifications
of u and Ψ, respectively, with radius ε and define

Cε :=
{
v ∈ uε+

◦
W

1
q(B2R) : v ≥ Ψε a.e. on Ω

}
with exponent q from (A4). Finally we consider the unique solution uε,δ ∈ Cε of the
problem

Jδ[w,B2R] :=

∫
B2R

Hδ(∇w) dx −→ min in Cε , (3.1)

Hδ(ξ) := hδ (|ξ|) , hδ(t) := h(t) + δ(1 + t2)q/2 .
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Lemma 3.1. We can choose a suitable sequence δ = δ(ε) such that for any r ∈ (0, 2R)
and all 1 ≤ s < ∞ there is a finite constant (independent of ε)

c = c (r, s, J [u,B2R])

with the property ∥∥∇uε,δ(ε)

∥∥
Ls(Br)

≤ c . (3.2)

Remark 3.1. Of course the constant c will depend on other (irrelevant) quantities as
∥∇Ψ∥L∞(B2R).

Proof of Lemma 3.1: From e.g. [CL] or [MUZ] it follows that

uε,δ ∈ C1,β(B2R) ∩W 2
q,loc(B2R), (3.3)

and this initial regularity justifies our calculations carried out below. For notational
simplicity we will drop the subscripts ε and δ just denoting

uε,δ = u, Hδ = H, hδ = h, Ψε = Ψ, Cε = C ,

but the reader should keep in mind that actually we work with the regularization. Fol-
lowing the lines of [F1] (see also [FM] and [BFM], Lemma 2.1) we use the minimality of
u (recall (3.1)) to get the equation∫

B2R

DH(∇u) · ∇φdx =

∫
B2R

φg dx (3.4)

for any φ ∈ C1
0(B2R), where

g := 1S (− div [DH(∇Ψ)]) ,

1S denoting the characteristic function of the coincidence set S := {x ∈ B2R : u(x) =
Ψ(x)}. We fix a number M > 1 + ∥∇Ψ∥2L∞(B2R) and define a function Φ : [0,∞) → [0, 1]
such that

Φ(t) = 0 on [0,M ], Φ(t) = 1 on [2M,∞), Φ′ ≥ 0 . (3.5)

From the smoothness properties stated in (3.3) we see that we can replace φ by ∂βφ in
(3.4) and obtain after integration by parts∫

B2R

∂β (DH(∇u)) · ∇φdx = −
∫
B2R

g∂βφdx (3.6)

again for all φ ∈ C1
0(B2R). Letting Γ := 1 + |∇u|2 we choose

φ := η2Γs/2Φ2(Γ)∂βu, η ∈ C1
0(B2R) ,
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in equation (3.6), where for the moment s ≥ 0 denotes some arbitrary parameter. Since
u = Ψ and thereby ∇u = ∇Ψ on the set S, it follows from the definition of Φ and the
choice of M that Φ(Γ) vanishes on S, thus∫

B2R

g∂β
(
η2Γs/2Φ2(Γ)∂βu

)
dx = 0

(we adopt the convention of summation from now on), and (3.6) yields∫
B2R

∂β (DH(∇u)) · ∇
(
η2Γ

s
2Φ2(Γ)∂βu

)
dx = 0 ,

hence ∫
B2R

D2H (∇u) (∂β∇u, ∂β∇u) η2Γs/2Φ2) dx (3.7)

= −
∫
B2R

∂β (DH(∇u)) · ∇
(
η2Γs/2Φ2(Γ)

)
∂βu dx .

Let us abbreviate Φ̃(Γ) := Γs/2Φ2(Γ). Then we get

r.h.s. of (3.7) = −
∫
B2R

D2H(∇u)
(
∂β∇u,∇Φ̃(Γ)

)
η2∂βudx

−
∫
B2R

∂β (DH(∇u)) · ∇η2Φ̃(Γ)∂βu dx =: −T1 − T2 ,

and it is easy to check that

D2H(∇u)
(
∂β∇u,∇Φ̃(Γ)

)
∂βu = Φ̃′(Γ)aβγ∂βΓ∂γΓ ,

where we have abbreviated

aβγ :=
1

2
δβγ

h′(|∇u|)
|∇u|

+
1

2

[
h′′(|∇u|)− h′(|∇u|)

|∇u|

]
∂βu∂γu

|∇u|2
.

Since (aβγ) is an elliptic matrix and since Φ̃′ ≥ 0 (recall (3.5)), we see that −T1 ≤ 0, and
(3.7) yields ∫

B2R

D2H(∇u) (∂β∇u, ∂β∇u) η2Γs/2Φ2(Γ) dx ≤ −T2 . (3.8)

In a next step we observe that after integration by parts

−T2 =

∫
B2R

DH(∇u) · ∂β
(
∇η2∂βuΦ

2(Γ)Γs/2
)
dx

≤ c

{∫
B2R

h′(|∇u|)η|∇η|Φ2(Γ)Γs/2|∇2u| dx

+

∫
B2R

h′(|∇u|)η|∇η|
∣∣∇ (

Φ2(Γ)Γs/2
)∣∣ |∇u| dx

+

∫
B2R

h′(|∇u|)|∇2η|Φ2(Γ)Γs/2|∇u| dx
}

=: c {S1 + S2 + S3} .
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From (1.9) it follows

S3 ≤ c

∫
B2R

h(|∇u|)Φ2(Γ)Γs/2|∇2η| dx . (3.9)

For S1 we observe (using Young’s inequality)

S1 =

∫
B2R

η

(
h′(|∇u|)
|∇u|

)1/2

Φ(Γ)Γs/4|∇2u||∇η| (h′(|∇u|)|∇u|)1/2Φ(Γ)Γs/4 dx

(1.9)

≤ τ

∫
B2R

η2
h′(|∇u|)
|∇u|

Φ2(Γ)Γs/2|∇2u|2 dx+ τ−1

∫
B2R

|∇η|2h(|∇u|)Φ2(Γ)Γs/2 dx .

Now, if we recall iv) from Section 1, it is immediate that for τ sufficiently small the
“τ -term” can be absorbed in the l.h.s. of (3.8). Taking into account (3.9), it is shown∫

B2R

h′(|∇u|)
|∇u|

∣∣∇2u
∣∣2 η2Φ2(Γ)Γs/2 dx (3.10)

≤ c

{∫
B2R

(
|∇η|2 + |∇2η|

)
h (|∇u|) Φ2(Γ)Γs/2 dx+ |S2|

}
.

Let us discuss S2: we have

|S2| ≤ c

{∫
B2R

h′ (|∇u|) η|∇η|Φ′(Γ)Φ(Γ)|∇u|2|∇2u|Γs/2 dx

+

∫
B2R

sh′ (|∇u|) η|∇η|Φ2(Γ)Γs/2|∇2u| dx
}

=: c {U1 + sU2} ,

and with Young’s inequality applied to U2 (compare the estimate concerning S1) we see
in combination with (3.10)∫

B2R

h′(|∇u|)
|∇u|

∣∣∇2u
∣∣2 η2Φ2(Γ)Γs/2 dx (3.11)

≤ c

{∫
B2R

(
|∇η|2 + |∇2η|

)
h (|∇u|) Φ2(Γ)Γs/2 dx+ U1

}
with constant c now depending also on s. Recalling (3.5) we have

Φ′(Γ) = 1[M≤Γ≤2M ]Φ
′(Γ) ,

thus Φ′(Γ)|∇u|2 ≤ c(M)Φ′(Γ) and therefore

U1 ≤ c(M)

∫
B2R

h′(|∇u|)η|∇η|Φ′(Γ)Φ(Γ)|∇2u|Γs/2 dx

≤ τ

∫
B2R

h′(|∇u|)
|∇u|

η2|∇2u|2Φ2(Γ)Γs/2 dx

+c(τ,M)

∫
B2R

h(|∇u|)|∇η|2Φ′(Γ)2Γs/2 dx ,
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and after appropriate choice of τ > 0 we end up with (cf. (3.11))∫
B2R

h′(|∇u|)
|∇u|

|∇2u|2Φ2(Γ)Γs/2 dx ≤ c

∫
B2R

(
|∇η|2 + |∇2η|

)
h(|∇u|)Γs/2 dx (3.12)

for a constant c depending on s and additionally on the number M . We emphasize that
up to now η and s can be chosen arbitrarily in estimate (3.12). Next we fix

δ := δ(ε) :=
(
1 + ε−1 + ∥∇uε∥2qLq(B2R)

)−1

(compare [BFM], Step 5 in Section 5) and denote by the symbol vε the solution uε,δ(ε) of
problem (3.1). From (2.22) in [BFM] we infer∫

B2R

hδ(ε) (|∇vε|) dx ≤
∫
B2R

h (|∇u|) dx+ 0(ε) , (3.13)

and (3.13) states in particular the uniform boundedness of the energies of the approxima-
tions. Dropping the subscripts ε and δ(ε) again, which means that we use the symbols v
and h in place of vε and hδ(ε), respectively, we see by (3.12) that∫

Ω1

h′(|∇v|)
|∇v|

|∇2v|2Φ2(Γ)Γs/2 dx ≤ c

∫
Ω2

h (|∇v|) Γs/2 dx (3.14)

for arbitrary subdomains Ω1 b Ω2 b B2R and any exponent s ≥ 0, the constant c
depending on s and the domains Ωi but being independent of ε. Let s0 = 0 and define

Ψ0 :=

∫ |∇v|

0

Φ
(
1 + t2

)(h′(t)

t

)1/2

dt .

From (3.14) and the remark stated after (3.13) it follows

|∇Ψ0| ∈ L2
loc(B2R) (3.15)

uniformly w.r.t. ε. At the same time (1.11) (with s = s0) implies

Ψ0 ∈ L2
loc(B2R) (3.16)

again uniformly w.r.t. ε, and from (3.15) and (3.16) we infer in combination with Sobolev’s
embedding theorem

Ψt
0 ∈ L1

loc(B2R), t

{
< ∞, if n = 2
≤ 2n

n−2
, if n ≥ 3

. (3.17)

On the set
[
|∇v| ≥ 2

√
2M − 1

]
we clearly have

Ψ0 ≥
∫ |∇v|

|∇v|/2
Φ(1 + t2)

(
h′(t)

t

)1/2

dt

(3.5)
=

∫ |∇v|

|∇v|/2

(
h′(t)

t

)1/2

dt
(1.10)

≥ c h (|∇v|)1/2 ,

10



thus (3.17) shows the validity of

h (|∇v|)t ∈ L1
loc(B2R), t

{
< ∞, if n = 2
≤ n

n−2
, if n ≥ 3

. (3.18)

In case n = 2 we deduce from (3.18) in combination with (1.8) that ∇v = ∇vε is in any
space Lt

loc(B2R,Rn), t < ∞, uniformly w.r.t. to ε and our claim (3.2) follows. Let us

therefore assume that n ≥ 3. In this case we write h
n

n−2 = hh
2

n−2 and quote (1.8) (recall
p = 1 + α) in order to deduce from (3.18)

h (|∇v|) |∇v|
2p

n−2 ∈ L1
loc(B2R) (uniformly) . (3.19)

But (3.19) shows that the r.h.s. of (3.14) stays bounded now for the choice s := s1 :=
2p
n−2

,
hence the function

Ψ1 :=

∫ |∇v|

0

Φ
(
1 + t2

){h′(t)

t
ts1

}1/2

dt

satisfies on account of (3.14) and (1.11)

|∇Ψ1| ∈ L2
loc(B2R), Ψ1 ∈ L2

loc(B2R)

(uniformly). Using the resulting uniform L1
loc(B2R)-bound for Ψ

2n
n−2

1 and quoting (1.10),
the same reasoning as applied after (3.17) leads to the result

h (|∇v|)
n

n−2 |∇v|s1
n

n−2 ∈ L1
loc(B2R) ,

and in combination with (1.8) we get

h (|∇v|) |∇v|s2 ∈ L1
loc(B2R), s2 :=

2p

n− 2
+ s1

n

n− 2
.

With s0 = 0 we let

sk+1 :=
2p

n− 2
+ sk

n

n− 2
, k ∈ N0 .

Repeating the steps from above it follows for each k

h (|∇v|) |∇v|sk ∈ L1
loc(B2R)

uniformly w.r.t. ε, and since sk → ∞, it is shown

sup
ε

∫
Br

|∇vε|s dx ≤ c(r, s) < ∞ (3.20)

for any r < 2R and any s > 1. Obviously this proves Lemma 3.1 and by passing to the
limit ε → 0 we additionally see that |∇u| is in Ls

loc(Ω) for any s < ∞. �

11



4 Local boundedness of the gradient

Here we are going to show

Lemma 4.1. Under the assumptions and with the notation of Theorem 1.1 we consider
a local J-minimizer u subject to the constraint u ≥ Ψ a.e. on Ω with Ψ being locally
Lipschitz. Then it holds

|∇u| ∈ L∞
loc(Ω) . (4.1)

Proof: We work with our local regularization vε = uε,δ(ε) introduced in front of (3.13).
Of course (4.1) will follow as soon as we can show

|∇vε| ∈ L∞
loc(B2R) (4.2)

uniformly w.r.t. ε. With a slight abuse of notation we agree to write u in place of vε having
the advantage that we can use e.g. equation (3.4) without further change of symbols. The
local boundedness of ∇u follows via De Giorgi-type arguments as applied for example in
[B], Theorem 5.22, [BFM], Step 4 in Section 2, or [ABF]. We fix a ball Bρ(y) compactly
contained in B2R = B2R(x0), choose any number k ≥ 1 + ∥∇Ψ∥2L∞(B2R) and define the
sets

A(k, ρ) := {x ∈ Bρ(y) : Γ > k}
with Γ := 1 + |∇u|2. Finally we let η ∈ C∞

0 (Bρ(y)) and recall that equation (3.4) implies
the identity (3.6). In (3.6) we choose φ := η2∂βumax(Γ− k, 0) and observe ∇u = ∇Ψ on
the set S, thus ∫

Bρ(y)

g∂β
(
η2∂βumax(Γ− k, 0)

)
dx = 0

and therefore

0 =

∫
Bρ(y)

D2H(∇u)
(
∂β∇u,∇

[
η2∂βumax(Γ− k, 0)

])
dx .

This immediately implies∫
A(k,ρ)

η2aβγ∂βΓ∂γΓ dx ≤ −2

∫
A(k,ρ)

aβγ∂βΓ∂γηη(Γ− k) dx

with coefficients aβγ being defined in front of (3.8). On the r.h.s. we can apply the
Cauchy-Schwarz inequality to the symmetric bilinear form induced by the matrix (aβγ)
with the result ∫

A(k,ρ)

η2aβγ∂βΓ∂γΓ dx ≤ c

∫
A(k,ρ)

aβγ∂βη∂γη(Γ− k)2 dx . (4.3)

Let r < r̂ such that Br̂(y) b B2R, and consider η such that η = 1 on Br(y), 0 ≤ η ≤ 1,
spt(η) ⊂ Br̂(y), |∇η| ≤ c/(r̂ − r). Observing∫

A(k,r)

(Γ− k)
n

n−1 dx ≤
∫
Br̂(y)

(
η[Γ− k]+

) n
n−1 dx ,

12



[. . .]+ denoting the positive part of [. . .], and using Sobolev’s theorem we find∫
A(k,r)

(Γ− k)
n

n−1 dx ≤ c
[
I

n
n−1

1 + I
n

n−1

2

]
, (4.4)

where we have abbreviated

I
n

n−1

1 :=

[∫
A(k,r̂)

|∇η|(Γ− k) dx

] n
n−1

≤ c (r̂ − r)−
n

n−1

[∫
A(k,r̂)

(Γ− k) dx

] n
n−1

,

I
n

n−1

2 :=

[∫
A(k,r̂)

η|∇Γ| dx
] n

n−1

.

Since k ≥ 1 it holds on the set A(k, r̂)

h′(|∇u|)
|∇u|

(1.9)

≥ cΓ−1h(|∇u|), h′′(|∇u|)
(1.9)

≥
(A3)

cΓ−1h(|∇u|) ,

h′(|∇u|)
|∇u|

(1.9)

≤ cΓ−1h(|∇u|) and h′′(|∇u|)
(A4)

≤ cΓ
q−2
2 ,

and clearly the r.h.s. of the last inequality also serves as an upper bound for h′(|∇u|)
|∇u| on

the set A(k, r̂). Recalling the ellipticity estimate

1

2
min

{
h′(|∇u|)
|∇u|

, h′′(|∇u|)
}
|τ |2 ≤ aβγτβτγ ≤ 1

2
max {. . .} |τ |2, τ ∈ Rn ,

we find after an application of Hölder’s inequality:

I
n

n−1

2 =

[∫
A(k,r̂)

η |∇Γ|h (|∇u|)1/2 Γ−1/2Γ1/2h (|∇u|)−1/2 dx

] n
n−1

≤
[∫

A(k,r̂)

η2 |∇Γ|2 h (|∇u|) Γ−1 dx

] 1
2

n
n−1

[∫
A(k,r̂)

Γh (|∇u|)−1 dx

] 1
2

n
n−1

≤ c

[∫
A(k,r̂)

η2aβγ∂βΓ∂γΓ dx

] 1
2

n
n−1

[∫
A(k,r̂)

Γh (|∇u|)−1 dx

] 1
2

n
n−1

(4.3)

≤ c(r̂ − r)−
n

n−1

[∫
A(k,r̂)

(Γ− k)2Γ
q−2
2 dx

] 1
2

n
n−1

[∫
A(k,r̂)

Γh (|∇u|)−1 dx

] 1
2

n
n−1

.

Another application of Hölder’s inequality yields

I
n

n−1

1 ≤ c(r̂ − r)−
n

n−1

[∫
A(k,r̂)

(Γ− k)2 Γ
q−2
2 dx

] 1
2

n
n−1

·
[∫

A(k,r̂)

Γ
2−q
2 dx

] 1
2

n
n−1

.

13



Returning to (4.4) it is shown that∫
A(k,r)

(Γ− k)
n

n−1 dx ≤ c(r̂ − r)−
n

n−1

[∫
A(k,r̂)

(Γ− k)2 Γ
q−2
2 dx

] 1
2

n
n−1

(4.5)

·
[∫

A(k,r̂)

Γh (|∇u|)−1 dx

] 1
2

n
n−1

.

Here we have used one more time that from (A1) and (A4) it follows h(t) ≤ ctq for t ≥ 1,
hence on the set A(k, r̂)

Γ
2−q
2 ≤ cΓh (|∇u|)−1

and (recall (1.8)) in addition

Γh (|∇u|)−1 ≤ cΓ
µ
2 , µ := 1− α .

This shows that (4.5) exactly corresponds to inequality (24) in Lemma 5.23 of [B] and
we can follow the calculations from p.158 in [B] using Lemma 3.1 to get our claim (4.2),
which proves Lemma 4.1. �

5 Additional results

It would be interesting to know if Theorem 1.1 remains valid under the hypotheses (A1)
and (A2), but with (A3) and (A4) being replaced by

There exists a constant K ≥ 1 such that h′′(t) ≤ K h′(t)
t

is true for all t > 0 . (A3*)

For some exponent p > 1 and a constant λ > 0 we have

λ(1 + t2)
p−2
2 ≤ h′′(t) for any t ≥ 0 . (A4*)

The reader should note that (A2) actually is a consequence of (A1) and (A3*), since by

(A3*) h′(t)
tK

is a decreasing function, which yields the doubling property for h′. From this
we obtain (A2) by using the formula

h(2t) =

∫ 2t

0

h′(s) ds = 2

∫ t

0

h′(2s) ds .

Moreover, from (A2) we deduce the existence of an exponent q (w.l.o.g. q ≥ 2) such that

h(t) ≤ c(tq + 1) , h′(t) ≤ c(tq−1 + 1) (5.1)

holds for all t ≥ 0. Inequality (5.1) in combination with (A3*) yields

h′′(t) ≤ c(tq−2 + 1) , t ≥ 0 , (5.2)

14



i.e. we have (p, q)-ellipticity in the sense of (1.3) on account of (5.2), (A3*), (A4*) and
iv) of Section 1. In addition, the balancing condition (1.9) is still satisfied. However,
we cannot follow the lines of Section 3 for proving the statement of Lemma 3.1 in this
different setting. Quoting [BFM] we obtain Lemma 3.1 only under the extra smallness
condition (1.5) or its weaker variant (5.5) stated below (needed in case n ≥ 3), and we
would like to know if such an additional limitation is really necessary.

There is a way to avoid (1.5) but leading to another restriction: we return to the proof
of Lemma 3.1, in particular equation (3.7), but this time we do not perform an integration
by parts in the quantity T2. After some calculations we see that we arrive at (3.12), where

now on the l.h.s. the term h′(|∇u|)
|∇u| has to be replaced by h′′(|∇u|). For this reason the

function Ψ0 introduced after (3.14) takes the principle form

Ψ0 :=

∫ |∇u|

0

h′′(t)
1
2 dt ,

and in order to start our iteration procedure in case n ≥ 3 it is sufficient to assume

h′′(t) ≥ c
(h′(t)

t

)n−2
n
t−2β (5.3)

at least for t ≥ t0 with exponent β < 2/n. In fact, (5.3) together with (1.9) yields

h′′(t)
1
2 ≥ ch(t)

n−2
2n t−

n−2
n

−β t ≥ t0 ,

hence by (A2) (w.l.o.g. t0 = 0)

Ψ0 ≥ c

∫ |∇u|

0

h(t)
n−2
2n t

2
n
−1−β dt ≥ c

∫ |∇u|

|∇u|/2
h(t)

n−2
2n t

2
n
−1−β dt

≥ ch(|∇u|/2)
n−2
2n

∫ |∇u|

|∇u|/2
t
2
n
−1−β dt ≥ h(|∇u|)

n−2
2n |∇u|

2
n
−β .

Since Ψ0 is in the space L
2n
n−2

loc , we arrive at

h(|∇u|)|∇u|γ ∈ L1
loc (5.4)

for a suitable exponent γ. As in Section 3 we can iterate (5.4) to get Lemma 3.1. The
arguments from Section 4 are easily adjusted, thus it is shown:

Theorem 5.1. Let h satisfy (A1), (A2), (A3*) and (A4*). Suppose in addition that we
have (5.3) with β < 2/n at least in case n ≥ 3. Then any local J-minimizer u subject to
the constraint u ≥ Ψ a.e. on Ω is locally Lipschitz, if so is the obstacle Ψ. Moreover, ∇u
satisfies a local Hölder condition, if ∇Ψ has this property.

Remark 5.1. The reader should note that (A3*) together with (5.3) implies a condition
similar to (2.9) of [MP].
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Figure 1: The function a(t).

Remark 5.2. Suppose that we have (A1), (A2), (A3*) and (A4*) together with

q < p
n

n− 2
. (5.5)

Then it is easy to check that (5.3) holds with β < 2/n, thus we have the conclusions of
Theorem 5.1. At the same time condition (5.5) corresponds to (1.11) in [BFM], and since
our hypotheses imply (1.9) from this paper, we see that Theorem 5.1 slightly extends part
(a) of Theorem 1.1 from [BFM].

Remark 5.3. Clearly it is possible to replace inequality (5.3) in Theorem 5.1 through the
weaker requirement that there exist a constant c > 0 and an exponent γ > 0 such that∫ t

0

h′′(s)
1
2 ds ≥ ch(t)

n−2
2n tγ (5.3∗)

holds for all t ≥ t0. We note that (5.3∗) is more adequate in the case of oscillatory
behaviour of h′′.

We next give an example of a density h with (A1), (A2), (A3*) and (A4*), which does
not satisfy (5.3), if the parameter q is chosen large enough, but for which (5.3∗) holds.
For numbers 1 < p < q < ∞, q ≥ 2, we let

Θ(t) := (1 + t2)
p−2
2 + a(t)tq−2 , t ≥ 0 ,

and define

h(t) :=

∫ t

0

[∫ r

0

Θ(ρ) dρ

]
dr t ≥ 0 ,

where the function a: [0,∞) → [0,∞) is the periodic extension of the function [0, 1] →
[0, 1] indicated in Figure 1 below.
Here ε ∈ [0, 1/2) denotes some free parameter. The properties (A1) and (A4*) are

immediate. For (A3*) it is enough to show

a(t)tq−2 ≤ c
1

t

∫ t

0

a(r)rq−2 dr (5.6)
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for a constant c > 0 and all sufficiently large values of t. Given t we choose n ∈ N such
that t ∈ [n, n+ 1]. We get∫ t

0

a(r)rq−2 dr ≥
∫ n

0

a(r)rq−2 dr =
n−1∑
k=0

∫ k+1

k

a(r)rq−2 dr ≥
n−1∑
k=0

kq−2

∫ k+1

k

a(r) dr

= c
n−1∑
k=0

kq−2 = c
n−1∑
k=1

∫ k+1

k

rq−2
[k
r

]q−2

dr ≥ c
n−1∑
k=1

∫ k+1

k

rq−2
[ k

k + 1

]q−2

dr

≥ c

n−1∑
k=1

∫ k+1

k

rq−2 dr = c

∫ n

1

rq−2 dr = crq−1|n1 = c(nq−1 − 1) ≥ cnq−1

= ctq−1
[n
t

]q−1

≥ ctq−1
[ n

n+ 1

]q−1

≥ ctq−1 ,

and for t ≥ 1 it follows

ctq−2 ≤ 1

t

∫ t

0

a(r)rq−2 dr . (5.7)

Since 0 ≤ a(t) ≤ 1, inequality (5.7) clearly implies (5.6), and (A3*) is established. As
remarked earlier, condition (A2) follows from (A1) and (A3*), thus the density h satisfies
the requirements of Theorem 5.1 with the exception of (5.3): from (5.7) it follows that
h′(t)
t

is bounded from below by ctq−2, whereas h′′(t) = (1 + t2)(p−2)/2 on the set [a = 0].
Thus, for q large enough, (5.3) is violated, and for the same reason inequality (2.9) of [MP]
fails to hold. However, it is easy to see that inequality (5.3∗) is fulfilled with γ = q/n, so
that we have the conclusions of Theorem 5.1 for local minimizers of this particular energy.

For completeness we look at a non-autonomous variant of Theorem 1.1, which means
that we consider densities H(x, ξ) = h(x, |ξ|), h = h(x, t), x ∈ Ω, t ≥ 0, satisfying the
required conditions uniformly in x ∈ Ω replacing h′ by ∂

∂t
h, etc.

Theorem 5.2. Assume that (A1)-(A4) hold for the density h(x, t). Suppose that (A3) is
satisfied with α = 1, moreover we have∣∣∣∇x

∂

∂t
h(x, t)

∣∣∣ ≤ c
∂

∂t
h(x, t) , x ∈ Ω , t ≥ 0 . (A5)

a) Then the conclusions of Theorem 1.1 extend to local minimizers u of
∫
Ω
h(x, |∇u|) dx

subject to the constraint u ≥ Ψ.

b) If the vectorial case is considered, i.e. if u: Ω → RM , M ≥ 1, is an unconstrained
local minimizer of the energy

∫
Ω
h(x, |∇u|) dx, then ∇u is locally bounded.

Formally the proof of Theorem 5.2 is easily obtained by following the arguments lead-
ing to the statements of Theorem 1.1, where the additional terms resulting from the
x-dependence are handled with the help of (A5). Thus the proof would be complete, if
we assume a sufficient degree of initial regularity. However, as it is outlined in [ELM],
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the local approximation procedure from Section 3 cannot be applied. To overcome this
difficulty we follow ideas of [M4] and of [CGM] by introducing a quadratic regularization
from below. The reader should note that at this stage the validity of (A3) with α = 1
enters in an essential way. For details we refer to Section 3 of [BF]. We wish to remark
that (A5) does not cover the case of “variable exponents” as discussed for example in
[CM].

References

[ABF] Apushkinskaya, D., Bildhauer, M., Fuchs, M., Interior gradient bounds for local
minimizers of variational integrals under nonstandard growth conditions. Prob-
lems in Math. Anal. 43, 35–50 (2009); J. Math. Sciences 164(3), 345–363 (2010).

[B] Bildhauer, M., Convex variational problems: linear, nearly linear and anisotropic
growth conditions.. Lecture Notes in Mathematics 1818, Springer, Berlin-
Heidelberg-New York, 2003.

[BFM] Bildhauer, M., Fuchs, M., Mingione, G., Apriori gradient bounds and local C1,α-
estimates for (double) obstacle problems under nonstandard growth conditions.
Z. Anal. Anw. 20, 959-985 (2001).

[BF] Bildhauer, M.; Fuchs, M., Differentiability and higher integrability results for
local minimizers of splitting-type variational integrals in 2D with applications to
nonlinear Hencky-materials. Calc. Var. Partial Diff. Equ. 37 (2010), 167–186.

[CL] Choe, H. J., Lewis, J. L., On the obstacle problem for quasilinear elliptic equa-
tions of p–Laplace type. SIAM J. Math. Anal. 22, No.3 (1991), 623–638.
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