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Abstract. We consider the equations of slow stationary motion of a perfectly plastic fluid
in a bounded domain Ω ⊂ Rn (n = 2 or n = 3). The proof of the existence of a weak solution
to these equations leads to the minimization of a functional of linear growth on the space

BDdiv(Ω) =

{
u ∈ BD(Ω) :

∫
Ω
u · ∇φ dx = 0 ∀ φ ∈ W 1,n(Ω)

}
.

The elements of this space are divergence free BD-vector fields with vanishing normal component

of the trace in suitable sense. The main result of our paper is an approximation theorem for

these vector fields by smooth, compactly supported and divergence free vector fields. This

approximation theorem implies the equality between the infimum of the above mentioned

functional on its “natural energy space” and the infimum of the extension of this functional on

BDdiv(Ω).

1. Introduction

Let Ω ⊂ Rn (n = 2 or n = 3) be an open bounded set with Lipschitz boundary ∂Ω.
The slow motion of a homogeneous incompressible fluid in Ω is modeled by the following

2010 AMS Subject Classification: 35J50, 76A05, 76D99
Keywords: power law fluids; perfectly plastic fluids; minimization problems with linear growth; bounded
deformations; space BDdiv; relaxation
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system of PDEs

divu = 0 in Ω ,(1.1)

−∇ · S+∇P = f in Ω ,(1.2)

where

u = (u1, . . . , un) velocity ,

S = {Sij}i,j=1,...,n deviatoric stress ,

P = pressure ,

f = external force .

The full stress tensor of the fluid is then given by � = S + P I. We complete (1.1), (1.2)
by the assumption that the fluid adheres to the boundary of Ω, i.e.

(1.3) u = 0 on ∂Ω .

To proceed, for vector fields u = (u1, . . . , un) we introduce the notation

D(u) =
1

2

(
∇u+ (∇u)⊤

)
rate of strain .

We then consider constitutive laws of the form S = ρ(|D(u)|)D(u) 1, where ρ is a
nonnegative real function defined on [0,+∞). For notational simplicity, in this section
we write D in place of D(u).

(I) Power law model.

Let ν = const > 0 be fixed. For 1 < p < +∞ we define S = Sp by

2 ≤ p < +∞ : Sp := ν|D|p−2D ,(i)

1 < p < 2 : Sp :=

{
0 if D = 0 ,
ν|D|p−2D if D ̸= 0 ,

(ii)

and the fluid is called
dilatant if 2 < p < +∞ ,
Newtonian if p = 2 ,
pseudo-plastic if 1 < p < 2 .

The above power law model is widely used in chemical engineering to express an
elementary non-Newtonian behavior of an incompressible fluid (see, e.g., [10] for a

1For A = {Aij}, B = {Bij} (i, j = 1, . . . , n) we define A : B = AijBij , |A| = (AijAij)
1/2 (repeated

indices imply summation over 1, . . . , n). Notice that D = D(u) = {Dij(u)}, Dij(u) =
1
2 (∂iuj + ∂jui)

(i, j = 1, . . . , n).
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discussion of these fluids from the chemical engineering point of view).

(II) Bingham plastics. (Bingham, Green [9]; Bingham [8])

Let g = const > 0 be fixed. For ν > 0, we consider the constitutive law

(1.4)


|Sν,g| < g if D = 0 ,

Sν,g =

(
ν +

g

|D|

)
D if D ̸= 0 .

This constitutive law characterizes an incompressible, visco-plastic fluid, where g is its
yield value and ν its viscosity. The properties of such a fluid can be possibly easier
understood by considering the following equivalent formulation of (1.4):

(1.5)


if |Sν,g| < g , then D = 0 ,

if |Sν,g| ≥ g , then D =
1

ν

(
1− g

|Sν,g|

)
Sν,g

(cf. also [18], [11], Chap. VI, §1). Thus, inside of the region where |Sν,g| < g only rigid
motions of the continuum are possible (i.e. the continuum moves as a “plug of solid”).
On the other hand, if |Sν,g| > g, then the continuum moves as a Newtonian fluid with
|Sν,g| = ν|D|+ g (i.e. g is the value of activation of the viscous flow).

The formal passage to the limit p→ 1 in (ii) gives

S1 = 0 if D = 0 , S1 =
g

|D|
D if D ̸= 0 ,

while ν → 0 in (1.4) leads to

|S0,g| < g if D = 0 , S0,g =
g

|D|
D if D ̸= 0 .

These limit cases can be viewed as motivation for the following constitutive law.

(III) Perfectly plastic fluids.

Let g = const > 0 be fixed. We define S in terms of D by

(1.6) |S| < g if D = 0 , S =
g

|D|
D if D ̸= 0 .

With a slightly different notation, this constitutive law has been introduced by von Mises
[24] for the first time (cf. also [15], [18]). Incompressible continua which obey (1.6) are
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also called “von Mises solids”. These continua cannot withstand deviatoric stresses S
such that |S| > g. We notice that (1.6) is equivalent to

(1.7)

{
if |S| < g , then D = 0 ,
if |S| = g , then ∃ λ ≥ 0 : D = λS

(cf., e.g., [11], Chap VI, §1, Remark 1.2).

2. Minimization problems

We start from the above power law model. Given any vector field u = (u1, . . . , un) in Ω,
we define Sp = Sp(D(u)) according to (i) resp. (ii) above. Inserting Sp in place of S into
(1.2) we obtain

(1.2′) −ν∇ ·
(
|D(u)|p−2D(u)

)
+∇P = f .

If 1 < p < 2, this system of PDEs has to be considered within the set

{x ∈ Ω : D(u(x)) ̸= 0} .

From now on we continue our discussion for any space dimension n ≥ 2. We then
consider the weak formulation of (1.1), (1.2′), (1.3) and introduce the equivalent
minimization problem. For notational simplicity, we restrict our discussion to the case
1 < p < n. The passage to the limit p → 1 leads in a natural way to the minimization
problem with (1.2′) for the case p = 1 (cf. also (1.6) above).

Let W 1,r(Ω) denote the usual Sobolev space. We set

W 1,r
0 (Ω) :=

{
u ∈ W 1,r(Ω) : u = 0 a.e. on ∂Ω

}
and 2

W1,r
0,div(Ω) :=

{
u ∈ W1,r

0 (Ω) : divu = 0 a.e. in Ω
}
.

We introduce the following

Definition 2.1 Let t = np/(n − p) and f ∈ Lt′(Ω) 3 (1 < p < n). Then u ∈ W1,p
0,div(Ω)

is called a weak solution to (1.1), (1.2) (with S = Sp), (1.3) if
4

(2.1) ν

∫
Ω

|D(u)|p−2D(u) : D(v) dx =

∫
Ω

f · v dx ∀ v ∈ W1,p
0,div(Ω) .

2By bold capitals we denote spaces of functions with values in Rn, i.e. Lp(Ω) = Lp(Ω;Rn) etc.
3By t′ = t/(t− 1) we denote the conjugate of 1 < t < ∞.
4Cf. footnote 1 for the notation D(u) : D(v).

4



The theory of monotone operators from a reflexive Banach space into its dual implies that
for every f ∈ Lnp/(n−p)(Ω) there exists exactly one solution u ∈ W1,p

0,div(Ω) to (2.1).

Remark 2.1 Let u ∈ W1,p
0,div(Ω) satisfy (2.1). Then there exists P ∈ Lp/(p−1)(Ω) such

that ∫
Ω

P dx = 0 ,

ν

∫
Ω

|D(u)|p−2D(u) : D(w) dx =

∫
Ω

f ·w dx+

∫
Ω

P divw dx ∀ w ∈ W1,p
0 (Ω) .

This follows from [13], Chap. III, or [20], Chap. II.

As above, let t = np/(n − p) and f ∈ Lt′(Ω) (1 < p < n). Given v ∈ W1,p
0,div(Ω), we

define

Fp(v) :=
ν

p

∫
Ω

|D(v)|p dx−
∫
Ω

f · v dx .

This functional is continuous and strictly convex. Korn’s inequality implies that Fp is
coercive.

Let us consider the problem

(Pp) minimize Fp over W1,p
0,div(Ω) .

By standard arguments, one readily proves the existence and uniqueness of a minimizer
up ∈ W1,p

0,div(Ω) for Fp. Moreover, the following equivalence is valid:

up ∈ W1,p
0,div(Ω) fulfills (2.1) ⇔ Fp(up) = min

v∈W1,p
0,div(Ω)

Fp(v) .

Now let us consider the minimum problem (Pp) for the case p = 1. Since Korn’s
inequality fails in W1,1

0 (Ω) we introduce the space 5

LD(Ω) :=
{
u ∈ L1(Ω) : Dij(u) ∈ L1(Ω), i, j = 1, . . . , n

}
.

It is easily seen that LD(Ω) is a Banach space with respect to the norm

∥u∥LD(Ω) := ∥u∥L1(Ω) +
n∑

i,j=1

∥Dij(u)∥L1(Ω) .

5Cf. footnote 1.
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Clearly, W1,1(Ω) ⊂ LD(Ω) (proper inclusion). We notice that the embedding theorems
and the trace theorem for W1,1(Ω) continue to hold for LD(Ω) (see [23], pp. 20-21, 114-
137, for details).
Next we define

LD0,div(Ω) :=
{
u ∈ LD(Ω) : divu = 0 a.e. in Ω, u = 0 a.e. on ∂Ω

}
.

This space is the “natural energy space” for the functional F1.
Let ν = const > 0, and let f ∈ Ln(Ω). For v ∈ LD0,div(Ω) we define 6

F(v) ≡ F1(v) = ν

∫
Ω

|D(v)| dx−
∫
Ω

f · v dx .

We consider the minimization problem

(P) minimize F over LD0,div(Ω) .

Since F(0) = 0, the following two alternatives hold for (P):

(1o) inf
v∈LD0,div(Ω)

F(v) = 0 ;

(2o) inf
v∈LD0,div(Ω)

F(v) = −∞ .

Clearly, (1o) is equivalent to

(2.2)

∣∣∣∣∣
∫
Ω

f · v dx

∣∣∣∣∣ ≤ ν

∫
Ω

|D(v)| dx ∀ v ∈ LD0,div(Ω) .

This inequality represents a “safe load condition” on the pair (ν, f) (cf. [23] for details
within the field of perfectly plastic solids). If (2.2) is satisfied, then a concept of weak
solution to (1.1), (1.2) (with S as in (1.6), cf. Section 1.), (1.3) can be introduced. A
detailed discussion will appear in [7] and [17].

On the other hand, (2o) is equivalent to

∃ ṽ ∈ LD0,div(Ω) : F(ṽ) < 0 .

Remark 2.2 Let ν = const > 0 and let f ∈ Ln(Ω) satisfy (2.2). Let up ∈ W1,p
0,div(Ω)

(1 < p < n/(n − 1)) verify (2.1). Choosing v = up in (2.1) and applying Young’s
inequality we obtain for all 1 < p < n/(n− 1)

(2.3) F(up)− ν
(
1− 1

p

)
measΩ ≤ Fp(up) =

(1
p
− 1
)∫

Ω

f · up dx .

6Here, the constant ν represents the yield value of the perfectly plastic fluid under consideration
(cf. the constitutive laws (1.4) and (1.6) of Section 1., where this value was denoted by g).
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Hence

ν

∫
Ω

|D(up)| dx− ν
(
1− 1

p

)
measΩ ≤ 1

p

∫
Ω

f · up dx ≤ ν

p

∫
Ω

|D(up)| dx

and in conclusion

(2.4)

∫
Ω

|D(up)| dx ≤ meas Ω .

Moreover, from (2.3) and (2.4) it follows that

lim
p→1

F(up) = lim
p→1

Fp(up) = 0 .

3. The space BD(Ω)

3.1 Basic notions

Definition of BD(Ω).

Let Ω ⊂ Rn be an open set. We introduce the following notations:

B(Ω) := σ-algebra of all sets A = B ∩ Ω, B ⊂ Rn Borel ,

M(Ω) := set of all signed measures m defined on B(Ω) such that |m|(Ω) < +∞ .

Next, given u = (u1, . . . , un) ∈ L1
loc(Ω), we identify ui with a distribution on Ω and denote

by ∂jui its partial derivative with respect to xj in the sense of distributions. Then we
consider the distributions

Dij(u) :=
1

2
(∂iuj + ∂jui) , i, j = 1, . . . , n ,

and introduce the following

Definition 3.1 The space BD(Ω) is given by

BD(Ω) :=

{
u ∈ L1(Ω) : ∀ i, j ∈ {1, . . . , n} ∃ µij ∈ M(Ω) s.t.

⟨Dij(u), φ⟩ =
∫
Ω

φ dµij ∀ φ ∈ C∞
c (Ω)

}
.

Clearly, the space LD(Ω) can be identified with a subspace of BD(Ω), namely, for u ∈
LD(Ω) there holds

⟨Dij(u), φ⟩ =
∫
Ω

Dij(u)φ dx ∀ φ ∈ C∞
c (Ω) ,
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where

µij(A) =

∫
A

Dij(u) dx ∀ A ∈ B(Ω) .

The elements of BD(Ω) are called vector fields of bounded deformation. This space
has been introduced in [21], [22] for the study of mathematical problems in the theory of
plasticity of solids. It has been also introduced in [16]. We refer the reader to [2], [12]
and [23] for the discussion of the basics of BD(Ω). Fine properties of the elements of
this space have been investigated in [1], [14].

Our motivation for the use of the space BD(Ω) is the study of the limit case p = 1
of a power law fluid (cf. Sections 1. and 2.) as well as the vanishing viscosity limit of a
Bingham plastic (see [7] and [17], respectively), where we recall that in our discussion
the vector field u represents the velocity of an incompressible fluid. Therefore, in Section
3.2 we consider the subspace of those u ∈ BD(Ω) such that divu = 0 and u · n = 0 on
∂Ω (in a sense to be specified).

Let u ∈ BD(Ω) and let µij ∈ M(Ω) (i, j = 1, . . . , n) be as in Definition 3.1. We define

(3.1) µ :=

 µ11 . . . µ1n
...

...
µn1 . . . µnn

 .

Then µ is an Rn2
-valued measure on B(Ω) 7. For A ∈ B(Ω) we set

∥µ∥(A) :=

{
∞∑
k=1

∥µ(Ak)∥Rn2 : Ak ∈ B(Ω) pairwise disjoint, A =
∞∪
k=1

Ak

}
= total variation of µ .(3.2)

It is well known that ∥µ∥ is a finite measure on B(Ω).

7For sequences (aij,k)k∈N ⊂ R we define

lim
k→∞

 a11,k . . . a1n,k
...

...
an1,k . . . ann,k

 =

 a11 . . . a1n
...

...
an1 . . . ann


in the sense of the Euclidian norm in Rn2

.
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Equivalent characterization of BD(Ω).

Let u ∈ L1
loc(Ω). For open sets A ⊂ Ω we define

|D(u)|(A) := sup

{
1

2

∫
A

(ui∂jφij + uj∂iφij) dx : φij ∈ C1
c (A), |φ| ≤ 1 in A

}
.

It is easily seen that for every u ∈ LD(Ω)

(3.3) |D(u)|(Ω) =
∫
Ω

|D(u)| dx .

By routine arguments, we obtain

Proposition 3.1 1) BD(Ω) = {u ∈ L1(Ω) : |D(u)|(Ω) < +∞};

2) for every u ∈ BD(Ω) there holds

∥µ∥(A) = |D(u)|(A) ∀ A ⊂ Ω open

(µ and ∥µ∥ as in (3.1) and (3.2), respectively).

Some basic results.

From the definition of |D(u)| one easily deduces

(3.4) if uk ⇀ u in L1(Ω) as k → ∞, then |D(u)|(Ω) ≤ lim infk→∞ |D(uk)|(Ω) .

Clearly, BD(Ω) is a Banach space with respect to the norm

∥u∥BD(Ω) := ∥u∥L1(Ω) + |D(u)|(Ω) .

We present some results which will be used below.

Proposition 3.2 Let Ω ⊂ Rn be a bounded domain with Lipschitz boundary ∂Ω. Then

1) BD(Ω) ⊂ Lp(Ω) compactly if 1 ≤ p < n/(n− 1), continuously if p = n/(n− 1).

2) (Existence of a trace) There exits a linear mapping 
: BD(Ω) → L1(∂Ω) such that


(u) = u|∂Ω ∀ u ∈ C(Ω) ∩BD(Ω)

and

(3.5)

∫
∂Ω

|
(u)| dHn−1 ≤ ∥u∥BD(Ω) .
8

8Here Hn−1 denotes the (n − 1)-dimensional Hausdorff measure. A detailed discussion of mea-
sure and integration on k-dimensional Lipschitz-manifolds in Rn (1 ≤ k < n) can be found
in: Naumann, J.; Simader, C.G., Measure and integration on Lipschitz-manifolds. Preprint
2007-15, Inst. f. Math. Humboldt-Univ. Berlin (2007). Available at: http://www.mathematik.hu-
berlin.de/publ/pre/2007/P-07-15.pdf.
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3) Let B ⊂ Rn be an open ball such that Ω ⊂ B. For u ∈ BD(B) define

u+ := 

+(u|Ω) = trace of u|Ω on ∂Ω ,

u− := 

−(u|B\Ω) = trace of u|B\Ω on ∂Ω .

Then

(3.6) |D(u)|(∂Ω) =
∫
∂Ω

|�(u+ − u−)| dHn−1 ,

where

�(ξ) = {τij(ξ)}1≤i,j≤n , τij(ξ) =
1

2
(ξinj + ξjni) , ξ = (ξ1, . . . , ξn) ∈ Rn

and where n = (n1, . . . , nn) denotes the unit outward normal along ∂Ω.

The proofs of these results can be found in [2], [12], [23]. We notice that besides (3.5),
the trace mapping 
 obeys the following continuity property:

for every sequence (uk)k∈N ⊂ BD(Ω) such that

uk → u in L1(Ω), |D(uk)|(Ω) → |D(u)|(Ω) as k → ∞

there holds


(uk) → 
(u) in L1(∂Ω) as k → ∞

(cf. [23], pp. 160-162).

3.2 The space BDdiv(Ω)

Let ∂Ω be of class C1. Observing the embedding BD(Ω) ⊂ Ln/(n−1)(Ω) (cf. Proposition
3.2, Proposition 3.1), we define

BDdiv(Ω) :=

{
u ∈ BD(Ω) :

∫
Ω

u · ∇φ dx = 0 ∀φ ∈ W 1,n(Ω)

}
.

Of course, u ∈ BDdiv(Ω) implies

(3.7)

∫
Ω

u · ∇ζ dx = 0 ∀ ζ ∈ C∞
c (Ω) ,

i.e. divu = 0 in the sense of distributions in Ω. We notice that (3.7) is, however, not
sufficient to prove (4.8) below.

To get an information on the normal component of u ∈ BDdiv(Ω) along the boundary
of ∂Ω we consider the space

W̃q(Ω) := {u ∈ Lq(Ω) : divu ∈ Lq(Ω)} , 1 < q < +∞ .
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Clearly, W̃q(Ω) is a Banach space with respect to the norm

∥u∥W̃q := ∥u∥Lq + ∥ divu∥Lq .

From [13], pp. 113-115, or [19], Theorem 5.3, it follows that there exists a linear continuous
and surjective mapping

γn : W̃q(Ω) →W−1/q , q(∂Ω)

such that
γn(u) = (u|∂Ω) · n ∀ u ∈ C1(Ω) ,

where n = (n1, . . . , nn) again denotes the unit outward normal along ∂Ω (for the case
W̃2(Ω) see also [20], p. 83 (∂Ω Lipschitz), and [23], pp. 13-14 (∂Ω of class C2)). Moreover,
for all u ∈ W̃q(Ω) and all φ ∈ W 1,q′(Ω) there holds the generalized Gauß-Green formula∫

Ω

u · ∇φ dx+

∫
Ω

(divu)φ dx = ⟨γn(u), φ⟩ ,

where the bracket on the right-hand side denotes the dual pairing between
γn(u) ∈ W−1/q , q(∂Ω) and (with a slight abuse of notation) the trace of φ (cf. [19],
Theorem 5.3).

Now, the above mentioned embedding of BD(Ω) gives BDdiv(Ω) ⊂ W̃n/(n−1)(Ω). From
(3.7) and the generalized Gauß-Green formula it follows that u ∈ BDdiv(Ω) verifies

(3.8) ⟨γn(u), φ⟩ = 0 ∀ φ ∈ W 1,n(Ω) .9

Conversely, if u ∈ BD(Ω) verifies (3.7) and (3.8) then u is of class BDdiv(Ω).

We thus obtain the following equivalent definition

BDdiv(Ω) = {u ∈ BD(Ω) : u satisfies (3.7) and (3.8)} .

4. An approximation theorem for BDdiv(Ω)

The main result of our paper is the following

9The surjectivity of the trace mapping of W 1,n(Ω) implies that (3.8) is equivalent to

⟨γn(u), χ⟩ = 0 ∀ χ ∈ W (n−1)/n,n(∂Ω) .
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Theorem 4.1 Let Ω ⊂ Rn be a bounded star-shaped domain with Lipschitz boundary ∂Ω.
Then, for every u ∈ BDdiv(Ω) there exists a sequence (uk)k∈N ⊂ C∞

c (Ω) such that

divuk = 0 in Ω and ∀ k ∈ N ,(4.1)

uk → u in Ln/(n−1)(Ω) as k → ∞ ,(4.2) ∫
Ω

|D(uk)| dx → |D(u)|(Ω) +
∫
∂Ω

|�(
(u))| dHn−1 as k → ∞ .(4.3)

We notice that density theorems for BD(Ω) are proved in [3], [12] and [23].

Before turning to the proof we make some

Preliminaries.

Let Ω ⊂ Rn be a bounded domain which is star-shaped with respect to a point x0 ∈ Ω
(without loss of generality we may assume that x0 = 0). It follows

1) if t > t′ > 1, then 1
t
Ω b 1

t′
Ω b Ω,

2) if (tk) is any sequence of reals such that tk > tk+1 > · · · > 1 and limk→∞ tk = 1,
then

∞∪
k=1

(
1

tk
Ω

)
= Ω .

Next, for u ∈ Lp(Ω) (1 ≤ p < +∞), define

ũ(x) :=

{
u(x) for a.e. x ∈ Ω ,
0 for a.e. x ∈ Rn\Ω ,

ũt(x) := ũ(tx) for t > 1 , for a.e. x ∈ Rn .

Then ũt(x) = 0 for a.e. x ∈ Rn\
(
1
t
Ω
)
. If (tk) is any sequence of reals such that tk >

tk+1 > · · · > 1 and limk→∞ tk = 1, then by 2)∫
Ω\
(

1
tk

Ω
) |u(x)|p dx→ 0 as k → ∞

and therefore

(4.4)

∫
Ω

|ũtk − u|p dx =

∫
1
tk

Ω

|u(tkx)− u(x)|p dx+
∫
Ω\
(

1
tk

Ω
) |u(x)|p dx→ 0

as k → ∞.
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Let ω ∈ C∞(Rn) be a (fixed) function such that

0 ≤ ω(x) ≤ const , ω(x) = ω(−x) ∀ x ∈ Rn ,

supp(ω) ⊂ B1(0) ,

∫
B1(0)

ω dx = 1 .

For ρ > 0 and x ∈ Rn define

ωρ(x) :=
1

ρn
ω
(x
ρ

)
,

(ũt)ρ(x) :=

∫
Rn

ωρ(x− y)ũt(y) dy =

∫
Bρ(x)∩

(
1
t
Ω
) ωρ(x− y)u(ty) dy .

Clearly, (ũt)ρ ∈ C∞(Rn). Set

dt :=
1

2
dist

(1
t
Ω, ∂Ω

)
(recall t > 1). Then, for every 0 < ρ < dt and x ∈ Ω with dist(x, ∂Ω) < dt we have(
1
t
Ω
)
∩Bρ(x) = ∅. Thus

(4.5) (ũt)ρ(x) = 0 ∀ 0 < ρ < dt , ∀x ∈ Ω with dist(x, ∂Ω) < dt .

Now, let u ∈ Lp(Ω) (1 < p < +∞) satisfy

(4.6)

∫
Ω

u · ∇φ dx = 0 ∀φ ∈ C∞(Rn) .

As above, let t > 1. The substitution ξ = tx (x ∈ Rn) implies ξ ∈ Ω iff x ∈ 1
t
Ω. Next, for

any φ ∈ C∞(Rn), define

ψ(ξ) := φ
(ξ
t

)
, ξ ∈ Rn .

Observing the definition of BDdiv(Ω), from (4.6) it follows

(4.7)

∫
Ω

ũt · ∇φ dx =

∫
1
t
Ω

u(tx) · ∇φ(x) dx = t1−n

∫
Ω

u(ξ) · ∇ψ(ξ) dξ = 0 .

Moreover, we consider the mollification (ũt)ρ (componentwise). It follows

(4.8) div(ũt)ρ(x) = 0 ∀ 0 < ρ < dt , ∀ x ∈ Ω .

13



Indeed, the function φ: y 7→ φ(y) = ωρ(x− y) is admissible in (4.7) (notice that supp(φ)
need not be included in Ω). We find

div(ũt)ρ(x) =

∫
Rn

divx
(
ωρ(x− y)ũt(y)

)
dy

=

∫
Rn

(
∇xωρ(x− y)

)
· ũt(y) dy

= −
∫
Rn

(
∇yωρ(x− y)

)
· ũt(y) dy

= 0 .

Proof of the theorem.

To begin with, we fix an open ball B ⊂ Rn such that Ω ⊂ B. Let u ∈ BDdiv(Ω). We define
ũ and ũt (t > 1) as above and consider the mollification (ũt)ρ (componentwise). Then
we fix a sequence (tk) (k ∈ N) of reals such that tk > tk+1 > · · · > 1 and limk→∞ tk = 1.
Since u ∈ Ln/(n−1)(Ω) we obtain∫

B

|ũtk − ũ|n/(n−1) dx =

∫
Ω

|ũtk − u|n/(n−1) dx→ 0 as k → ∞

(c.f (4.4)).
Set

dtk :=
1

2
dist

( 1

tk
Ω, ∂Ω

)
, k ∈ N .

Clearly limk→∞ dtk = 0. Then we take ρk such that

(4.9) 0 < ρk < dtk , ∥ũtk − (ũtk)ρk∥Ln/(n−1)(B) ≤
1

k
, k ∈ N .

Define
ũk(x) := (ũtk)ρk(x) , x ∈ Rn , uk := ũk |Ω , k ∈ N .

We obtain

uk ∈ C∞
c (Ω) by (4.5) ,(4.10)

divuk = 0 in Ω by (4.8) ,(4.11)

ũk → ũ in Ln/(n−1)(B) as k → ∞ .(4.12)

Thus, as shown in (4.10)–(4.12), the sequence (uk)k∈N satisfies (4.1) and (4.2). It remains
to prove (4.3). To this end, we show two inequalities.
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Inequality 1.

Since uk ∈ C∞
c (Ω) we have∫

Ω

|D(uk)| dx =

∫
B

|D(ũk)| dx = |D(ũk)|(B)

(cf. (3.3)). Combining (4.12) and (3.4), (3.6) (B in place of Ω) one finds

lim inf
k→∞

∫
Ω

|D(uk)| dx = lim inf
k→∞

|D(ũk)|(B)

≥ |D(ũ)|(B)

= |D(u)|(Ω) + |D(u)|(∂Ω)

= |D(u)|(Ω) +
∫
∂Ω

|�(
(u))| dHn−1 .(4.13)

Inequality 2.

Fix δ > 0 such that
Ωδ := {x ∈ Rn : dist(x,Ω) ≤ δ} ⊂ B .

Then
Bρ(x) ∩ Ω = ∅

for all 0 < ρ < δ/3 and all x ∈ B\Ω such that dist(x, ∂Ω) > 2δ/3. Since tk > 0 and
limk→∞ tk = 1, there exists k0 ∈ N such that for all k ≥ k0

(4.14) dtk <
δ

3

and such that for all k ≥ k0

(4.15) Bρ

( x
tk

)
∩ Ω = ∅ ∀ 0 < ρ <

δ

3
, ∀ x ∈ B\Ω such that dist(x, ∂Ω) >

2δ

3
.

Let φij ∈ C1
c (Ω) (i, j = 1, . . . , n) satisfy |φ|2 =

∑n
i,j=1 φ

2
ij ≤ 1 in Ω. For ρ > 0 and

x ∈ Rn consider

(φij)ρ(x) :=

∫
Rn

ωρ(x− y)φij(y) dy =

∫
Bρ(x)∩supp(φij)

ωρ(x− y)φij(y) dy .

Then

(4.16)
n∑

i,j=1

(
(φij)ρ(x)

)2
≤ 1 ∀ x ∈ Rn ,
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and for i, j = 1, . . . , n

(φij)ρ

( x
tk

)
= 0∀ k ≥ k0 , ∀ 0 < ρ <

δ

3
,(4.17)

∀x ∈ B\Ω such that dist(x, ∂Ω) >
2δ

3
.

Now, for every k ≥ k0 and i, j = 1, . . . , n we have∫
Ω

(
uki∂jφij + ukj∂iφij

)
dx =

∫
Rn

[(∫
Ω

ωρk(x− y)∂jφij(x) dx

)
ũtk i(y)

+

(∫
Ω

ωρk(x− y)∂iφij(x) dx

)
ũtk j(y)

]
dy

=

∫
Rn

[(
∂j(φij)ρk

)
(y)ũi(tky) +

(
∂i(φij)ρk

)
(y)ũj(tky)

]
dy ,

where we used ωρ(x − y) = ωρ(y − x) and where an integration by parts as well as a
change of integration and partial differentiation was made. Hence, recalling ũ(tky) = 0
for all y ∈ Rn\( 1

tk
Ω), we obtain∫

Ω

(
uki∂jφij + ukj∂iφij

)
dx

=

∫
1
tk

Ω

[
ui(tky)

(
∂j(φij)ρk

)
(y) + uj(tky)

(
∂i(φij)ρk

)
(y)
]
dy

=
1

tnk

∫
Ω

[
ui(z)

(
∂j(φij)ρk

)( z
tk

)
+ uj(z)

(
∂i(φij)ρk

)( z
tk

)]
dz

=
1

tnk

∫
B

[
ũi(z)

(
∂j(φij)ρk

)( z
tk

)
+ ũj(z)

(
∂i(φij)ρk

)( z
tk

)]
dz .(4.18)

To proceed, for z ∈ B we define

ζ
(k)
ij (z) := (φij)ρk

( z
tk

)
=

∫
Bρk

( z
tk

)∩supp(φij)

ωρk

( z
tk

− ξ
)
φij(ξ) dξ

(k ≥ k0, i, j = 1, . . . , n). It follows

n∑
r,s=1

(
ζ(k)rs (z)

)2 ≤ 1 ∀ z ∈ B ,

and for i, j = 1, . . . , n (recall that 0 < ρk < dtk < δ/3, cf. (4.9), (4.14); observe (4.16)
and (4.15), (4.17))

ζ
(k)
ij (z) = 0 ∀ z ∈ B\Ω such that dist(z, ∂Ω) >

2δ

3
.
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Thus, ζ
(k)
ij ∈ C1

c (B). Finally, by the definition of ζ
(k)
ij ,(

∂i(φij)ρk
)( z
tk

)
= tk

(
∂iζ

(k)
ij

)
(z) ∀z ∈ B .

Inserting this into the integral on the right-hand side of (4.18) we find for every i, j = 1,
. . . ,n and for all k ≥ k0

1

2

∫
Ω

(
uki∂jφij + ukj∂iφij

)
dx =

t1−n
k

2

∫
B

(
ũi∂jζ

(k)
ij + ũj∂iζ

(k)
ij

)
dx

≤ t1−n
k sup

{
1

2

∫
B

(
ũi∂jηij + ũj∂iηij

)
dx :

ηij ∈ C1
c (B), |η| ≤ 1 in Ω

}
≤ |D(ũ)|(B) .

Thus

lim sup
k→∞

∫
Ω

|D(uk)| dx = lim sup
k→∞

|D(uk)|(Ω)

≤ |D(ũ)|(B)

= |D(u)|(Ω) +
∫
∂Ω

|�(
(u))| dHn−1 .(4.19)

Combining (4.13) and (4.19) we obtain (4.3).

5. The safe load condition in BDdiv(Ω)

Let ν = const > 0 and let f ∈ Ln(Ω). We define

G(v) := ν

(
|D(v)|(Ω) +

∫
∂Ω

|�(
(v))| dHn−1

)
−
∫
Ω

f · v dx , v ∈ BDdiv(Ω) .

This functional represents the relaxation of F with respect to BDdiv(Ω) (cf. [4], pp. 417-
420, 437-449; [5], pp. 174-181 and [6]).

Remark 5.1 To get more insight into the role of the boundary integral in the definition
of G(v), let us define

ξt := ξ − (ξ · n)n , ξ ∈ Rn
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(n = (n1, . . . , nn) denoting the unit outward normal along ∂Ω). Then, for every v ∈
BDdiv(Ω) ∩C(Ω) we have

v|∂Ω =
(
v|∂Ω

)
t
.

Thus, by Proposition 3.2, 2), for every v ∈ BDdiv(Ω) ∩C(Ω) there holds


(v) =
(

(v)

)
t

a.e. on ∂Ω .

Associated to the minimization problem (P), the relaxed minimization problem reads
as

(Prelax) minimize G over BDdiv(Ω) .

From the definition of G it follows

G(u) = F(u) ∀u ∈ LD0,div(Ω) ,

inf
u∈BDdiv(Ω)

G(u) ≤ inf
v∈LD0,div(Ω)

F(v) .

Now, fix f ∈ Ln(Ω). We recall the safe load condition

(5.1)

∣∣∣∣∣
∫
Ω

f · v dx

∣∣∣∣∣ ≤ ν

∫
Ω

|D(v)| dx ∀v ∈ LD0,div(Ω) ,

and suppose that Ω is a star-shaped Lipschitz domain. Then Theorem 4.1 implies that
(5.1) is equivalent to its counterpart

(5.2)

∣∣∣∣∣
∫
Ω

f · u dx

∣∣∣∣∣ ≤ ν

(
|D(u)|(Ω) +

∫
∂Ω

|�(
(u))| dHn−1

)
∀u ∈ BDdiv(Ω)

in BDdiv, where (5.2) can be seen as a relaxed version of the safe load condition.

We notice that (5.2) is equivalent to

inf
u∈BDdiv(Ω)

G(u) = G(0) = 0 .

and that
inf

u∈BDdiv(Ω)
G(u) = inf

v∈LD0,div(Ω)
F(v) = inf

w∈W1,1
0,div(Ω)

F(w) .

In [7] and [17] it will be shown that (5.1) implies the existence of an approximating
sequence (um)m∈N ⊂ W1,1

0,div(Ω) of physical relevance such that

um ⇀ u∗ in Ln/(n−1)(Ω) as m→ ∞, u∗ ∈ BDdiv(Ω) ,

lim
n→∞

F(um) = min
u∈BDdiv(Ω)

G(u) = G(u∗) = G(0) .

It remains an open question, whether u∗ ̸= 0 on a set of positive measure.
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Appendix. Inhomogeneous boundary data

The situation is much more involved in the case of inhomogeneous boundary data. Then,
as a matter of fact, the corresponding minimization problem in general fails to have a
solution even if the functional admits a finite infimum in the natural energy class.

We consider the system of PDEs (1.1), (1.2) with boundary condition

(1.3′) u = u0 on ∂Ω.

Let ν = const > 0, f ∈ Ln(Ω) and u0 ∈ LDdiv(Ω)
10. For v ∈ LD0,div(Ω) we define 11

Fu0(v) := ν

∫
Ω

|D(u0 + v)| dx−
∫
Ω

f · v dx

(cf. Section 2). The corresponding minimization problem reads

(Pu0) minimize Fu0 over LD0,div(Ω) .

With the help of elementary arguments we obtain the equivalence of the following
conditions (A.1’), (A.1”) and (A.2’), (A.2”), respectively:

(A.1’)

∣∣∣∣∣
∫
Ω

f · v dx

∣∣∣∣∣ ≤ ν

∫
Ω

|D(v)| dx ∀v ∈ LD0,div(Ω) (cf. (2.2)) ,

(A.1”) −ν
∫
Ω

|D(u0)| dx ≤ inf
v∈LD0,div(Ω)

Fu0(v) ,

and

(A.2’) ∃ṽ ∈ LD0,div(Ω) : Fu0(ṽ) < −ν
∫
Ω

|D(u0)| dx ,

(A.2”) inf
v∈LD0,div(Ω)

Fu0(v) = −∞ .

10LDdiv(Ω) :=
{
u ∈ LD(Ω) : divu = 0 a.e. in Ω

}
.

11Note that, given boundary values u0, the constant
∫
Ω
f · u0 dx can be neglected in the minimization

problem (Pu0).
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We introduce the relaxation of F

Gu0(v) := ν

[
|D(u0 + v)|(Ω) +

∫
∂Ω

|�(
(v))| dHn−1

]
−
∫
Ω

f · v dx , v ∈ BDdiv(Ω)

(cf. [5], pp. 174-181, and [6]), where we clearly have

Gu0(v) = Fu0(v) ∀v ∈ LD0,div(Ω) .

The relaxed minimization problem w.r.t. the boundary values u0 as above then reads as

(Pu0
relax) minimize Gu0 over BDdiv(Ω) .

Let us first note that the proof of Theorem 4.1 implies with minor changes

Corollary A.1 Suppose that we have the assumptions of Theorem 4.1 and that u0 is fixed
as above. Then there exists an u-approximating sequence (wk)k∈N such that (wk−u0)k∈N ⊂
C∞

c (Ω) and such that

divwk = 0 in Ω and ∀ k ∈ N ,

wk → u in Ln/(n−1)(Ω) as k → ∞ ,∫
Ω

|D(wk)| dx → |D(u)|(Ω) +
∫
∂Ω

|�(
(u− u0))| dHn−1 as k → ∞ .

Next we observe for all v ∈ BDdiv(Ω) similar to (A.1”)

(A.3) Gu0(v) ≥ ν

(
|D(v)|(Ω)− |D(u0)|(Ω) +

∫
∂Ω

|�(
(v))| dHn−1

)
−
∫
Ω

f · v dx ,

i.e. the appropriate safe load condition in the situation at hand is also given by (5.2).

To minimize Gu0 we impose on (ν, f) the following ”strict safe load condition”

(A.4) sup
v∈BDdiv(Ω)

∣∣∣∣∣
∫
Ω

f · v dx

∣∣∣∣∣
ν

(
|D(v)|(Ω) +

∫
∂Ω

|�(
(v))| dHn−1

) < 1 ,

which can be formulated as

(A.5)


∃0 < α0 < 1 s.t. ∀v ∈ BDdiv(Ω)∣∣∣∣∣
∫
Ω

f · v dx

∣∣∣∣∣ ≤ α0ν

(
|D(v)|(Ω) +

∫
∂Ω

|�(
(v))| dHn−1

)
.
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From (A.5) and (A.3) it follows that for all v ∈ BDdiv(Ω)

Gu0(v) ≥ (1− α0)ν

(
|D(v)|(Ω) +

∫
∂Ω

|�(
(v))| dHn−1

)
− ν|D(u0)|(Ω) .

Thus, (A.4) permits to prove the existence of a minimizer of Gu0 over BDdiv(Ω)
provided there exists ũ0 ∈ W1,1

div(B) 12 such that ũ0|∂Ω = u0 a.e. in Ω, where B ⊂ Rn is a

fixed open ball such that Ω ⊂ B (cf. also Proposition 3.2,3).

On account of Corollary A.1 we again have

inf
u∈BDdiv(Ω)

Gu0(u) = inf
v∈LD0,div(Ω)

Fu0(v) = inf
w∈W1,1

0,div(Ω)
Fu0(w) .

Here the main open question concerns the existence of generalized minimizers if we
just suppose the safe load condition (5.2) instead of its strict variant (A.4).

A different approach to solve the minimization problem for Gu0 over BDdiv(Ω) consists
in minimizing the functional

Fu0
p (v) :=

ν

p

∫
Ω

|D(u0 + v)|p dx−
∫
Ω

f · v dx , v ∈ LD0,div(Ω) p > 1 ,

over W1,p
0,div(Ω), proving a priori estimates on the minimizers and carrying out the passage

to the limit p→ 1 (cf. Section 2).

To sketch an outline of this approach, we assume that u0 ∈ W1,p
div(Ω) (for some 1 < p <

∞) Then there exists exactly one vp ∈ W1,p
0,div(Ω) such that

Fu0
p (vp) = min

v∈W1,p
0,div(Ω)

Fu0
p (v) .

To proceed, we now assume that

(A.6)

∣∣∣∣∣
∫
Ω

f ·w dx

∣∣∣∣∣ ≤ ν

∫
Ω

|D(w)| dx ∀w ∈ LDdiv(Ω) ,

(A.7)


u0 ∈ W1,p0

div (Ω) (1 < p0 <∞ fixed) ,

ν

p

∫
Ω

|D(u0)|p dx ≤
∫
Ω

f · u0 dx ∀1 < p < p0 .

Let vp ∈ W1,p
0,div(Ω) (1 < p ≤ p0) be as above. We obtain by (A.7)

Fu0
p (vp) ≤ Fu0

p (0) ≤ 0 .

12W1,p
div(Ω) :=

{
u ∈ W 1,p(Ω) : divu = 0 a.e. in Ω

}
.
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Set wp := u0 + vp. Then we have by (A.6)

ν

p

∫
Ω

|D(wp)|p dx ≤
∫
Ω

f ·wp dx ≤ ν

∫
Ω

|D(wp)| dx .

Hence, for every δ > 0 there exists 1 < pδ ≤ p0 such that∫
Ω

|D(wp)| ≤ (δ + e)measΩ ∀1 < p ≤ pδ .

This estimate forms the basis for the passage to the limit p→ 1 in order to get a minimizer
for Gu0 over {u0} +BDdiv(Ω). Moreover, this approach gives S ∈ L∞(Ω) which satisfies
(1.2) and (1.6) in a certain weak sense.
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