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Abstract

Topological skeletons are shape descriptors that have been applied
successfully in practical applications. However, many skeletonisation
methods lack accessibility, mainly due to the need for manual param-
eter adjustment and the shortage of tools for comparative analysis.
In this paper we address these problems. We propose two new homotopy-
preserving thinning algorithms: Flux-ordered adaptive thinning (FOAT)
extends existing flux-based thinning methods by a robust automatic
parameter adjustment, maximal disc thinning (MDT) combines max-
imal disc detection on Euclidean distance maps with homotopic thin-
ning. Moreover, we propose distinct quality measures that allow to
analyse the properties of skeletonisation algorithms. Tests of the new
algorithms and quality assessment tools are conducted on the widely
used shape database CE-Shape-1.

1 Introduction

Shape analysis is a central problem for many applications in image process-
ing and computer vision, such as object recognition or segmentation, see e.g.
[29] for an overview. While boundary descriptors are a classic instrument
for object representation, specific tasks in shape analysis demand alternative
shape representations that unite geometrical and topological information.
The widely-used medial axis transform (MAT) is such a shape descriptor.
Initially, the MAT was introduced in 1967 by Blum [3] as a mathematical
tool for modelling the biological problem of shape vision. It represents a
shape by a thin set of lines or arcs that are centred in the shape, eliminating
superfluous information of local symmetries. Intuitively, the MAT resembles
bone structures, thus motivating the alternative term (topological) skeleton.
Due to its useful properties, including equivalence to the shape boundary,
homotopy to the original shape and invariance under Euclidean transforma-
tions, the MAT has been used for numerous practical applications; examples
are object recognition [22, 28, 33] or medical imaging [31]. However, the
results of existing skeletonisation algorithms largely depend on model pa-
rameters that often need to be manually adjusted. Moreover, the literature
is lacking comprehensive quality analysis tools that allow to quantify impor-
tant features of skeletonisation algorithms.
In this work, we deal with these problems. We propose here two new thinning
algorithms for MAT computation, we call them FOAT and MDT. Both FOAT
and MDT are robust w.r.t. the choice of parameters. In addition, MDT is
particularly easy to understand and implement, and thus it is especially
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appealing for users. Moreover, we present new methods for comparative
analysis of MAT algorithms.

Previous work. Algorithms for MAT computation are plentiful and di-
verse, both in their methods and their theoretical background. In general,
three classes can be distinguished: Voronoi-based methods [10, 18] that ex-
ploit the similarity of the MAT and Voronoi diagrams, approaches related
to the distance map [15, 21], thinning algorithms [19, 32] and morphological
approaches [24, 12, 16, 2].
In our paper we focus on combinations of thinning algorithms and distance
map methods with further enhancements by additional pruning steps. In par-
ticular, the Hamilton-Jacobi method by Siddiqi et al. [27] combines thinning
and distance map methods with physical concepts of Hamiltonian mechan-
ics, and it forms the basis for one of our algorithms. We also propose a new
algorithm combining maximal disc detection using exact Euclidean distance
maps with homotopic thinning. The method of Pudney [20] is similar to ours,
but uses a different maximal disc detection method based on Chamfer dis-
tance maps. For mathematical definitions of thinning and pruning operators
see [23].
Despite the large number of publications on MAT computation, systematic
comparisons of existing methods are rare. Comparative studies of MAT algo-
rithms are usually performed by evaluating them in the context of a particular
application, e.g. for the purpose of object recognition. An example for such a
comparison strategy is the matching approach by Siddiqi et al. [30], see also
[1, 6, 9, 14, 33] for related approaches. One reason for this kind of indirect
comparative studies is the lack of formal quality criteria for skeletonisation
algorithms. However, from a more general point of view it is of interest to
measure the qualities of skeletons independently from a specific application.
In order to achieve this goal, we propose ways to assess in how far discrete
algorithms mimic structural properties of the corresponding continuous-scale
MAT. For this purpose, we also aim to quantify useful properties of the dis-
crete skeletons. An additional problem, especially in the context of practical
applications, is that many algorithms like the Hamilton-Jacobi method [27]
require manual parameter adjustment for optimal results.

Our contribution. We address the aforementioned issues by proposing re-
fined thinning algorithms that combine several state-of-the-art methods, and
by introducing quality measures that allow to assess meaningful properties
of MAT algorithms:
(i) Flux-Ordered Adaptive Thinning (FOAT) extends the Hamilton-Jacobi
method [27] with a secondary MAT detection (SMD) step. This allows an
automatic, robust adaption of input parameters to individual shapes.
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(ii) Maximal Disc Thinning (MDT) is an extension of the maximal disc de-
tection method of Remy and Thiel [21]. It combines the latter with the
homotopy preserving thinning steps of the Hamilton-Jacobi method [27].
This method is homotopy preserving as well as largely independent of input
parameters.
(iii) Quality Criteria are proposed that quantify useful properties of discrete
skeletons in a new way, namely exactness of reconstruction, skeleton minimal-
ity and skeleton complexity. These new quality measures allow to distinguish
important properties of MAT schemes.
(iv) Comparative Skeleton Graph Matching is employed as a means to test
MAT algorithms for invariances. Skeletons are transformed into graphs that
can be compared using a graph matching method [26] in a similar way as in
object recognition approaches.
Tests of both the newly proposed algorithms and the quality measures were
conducted on CE-Shape-1, a widely-used image database consisting of 1400
shapes, which was specifically designed for testing shape descriptors [13].

Paper organisation. In Section 2 we present our new skeletonisation al-
gorithms along with general information about thinning methods. Quality
assessment tools are discussed in Section 3. Section 4 contains the results
of experiments conducted with the new algorithms and quality criteria. The
paper is concluded by Section 5.

2 Algorithms

The algorithms described in the following paragraphs operate on a binary
image u : Ω ⊂ R2 → {0, 1}. In the image domain Ω, the points of the shape
form the object domain O = {x ∈ Ω | u(x) = 0}. The points of the skeleton
Σ ⊂ O are exactly the centres of inscribed circles, that are tangent to the
object boundary in at least two points. The distance map D of the object
boundary ∂O is defined as

D : Ω→ R+
0 , D(x) = min

y∈∂O
|y − x| (1)

Homotopic thinning. Both of the new algorithms are thinning methods
that share the same set of thinning rules. In each thinning step, the smallest
point in terms of the thinning order >thin is deleted from the object domain
O, until only the skeleton Σ remains. In addition to an appropriate thinning
order, a termination criterion is needed to compute an approximation to the
skeleton.
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Current thinning methods enforce important MAT properties by applying
additional thinning rules. In our work we use homotopic thinning [20, 27],
which guarantees both homotopy to the original object and thinness of the
skeleton. Homotopy to the original ensures that major topological features
of the object are preserved in its skeleton [11]. In particular, the skeleton
has the same number and configuration of connected components and holes.
Thinness means for discrete skeletons that the maximal width of the medial
axis is one pixel.
In practice, the homotopic thinning rules enforce that points are only re-
moved from the object if they do not disconnect it nor introduce holes, i.e.
if they do not change the discrete topology. Additionally, endpoints of thin
lines are preserved.

Hamilton-Jacobi skeletons. The Hamilton-Jacobi method of Siddiqi et al.
[27], also known as Flux-Ordered Thinning (FOT), is the basis for our FOAT
algorithm. Exploiting properties from Hamiltonian mechanics, Siddiqi et al.
[27] conclude that MAT points are exactly the sinks of the precomputed

distance map D’s gradient vector field ∇D, where ∇ :=
(

∂
∂x
, ∂
∂y

)>
. Sinks

of a vector field can be identified as points with large negative values of the
divergence div∇D = ∇ · ∇D of the field.
In order to compute div∇D efficiently, the average outward flux F : Ω→ R
is used, cf. [27] for a detailed discussion. Relating corresponding quantities
via the divergence theorem [7], the average outward flux of a point p ∈ Ω
can be computed as

F(p) :=
8∑

i=1

< ∇D(ni(p)), N(ni(p)) >

8
(2)

Thereby, n1(p), . . . , n8(p) are the direct neighbours of p on a discrete lattice,
and N(ni(p)) is the outward normal in ni(p) with respect to the correspond-
ing circles around p. The resulting flux map F is used to define the thinning
order >iflux:

∀p, q ∈ Ω : p >iflux q ⇔ F(p) < F(q) (3)

In the thinning process of FOT, weak points with high flux values are removed
first. As a termination criterion, thresholding of the flux map is applied to
endpoints of thin lines resulting from the thinning process. Points with a flux
value below the given threshold τ are marked as skeleton endpoints, other
points are removed in accordance to homotopic thinning.
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2.1 New Algorithm:
Flux-Ordered Adaptive Thinning (FOAT)

The FOT method uses thresholding of the flux map to identify skeleton
endpoints. Siddiqi et al. [27] propose choosing the threshold τ as a fixed
value or as a quantile of the number of object points.
Both of these choices imply the need for manual adjustment in order to ob-
tain good results, because geometric properties of the shapes are not taken
into account for the definition of the threshold. While this is obvious w.r.t.
the choice of a global fixed value for τ , let us note that quantiles guarantee
that a chosen percentage of the image points is removed by applying thresh-
olding to the flux map. However, quantiles do not take into account different
relations of skeleton size to object size resulting from varying amounts of
local symmetry in shapes. Extreme examples for this relation are a circle
and a thin line of equal area. While the circle has exactly one valid skeleton
point, its centre, the thin line is equal to the skeleton.
As a remedy, we propose to employ a secondary MAT detection (SMD) step.
The underlying idea is to use a first approximation to the skeleton for per-
forming an educated guess for the treshold parameter. The outward flux
values of the preliminary skeleton Σ̂ are used to determine the threshold by
averaging:

τ := (1− λ)

∑
x∈Σ̂F(x)

|Σ̂|
(4)

where λ is an adjustment parameter that weights the removal of boundary
artefacts against accuracy of reconstruction. While FOAT does not remove
parameter dependence, the construction in (4) improves the robustness of
the approach as we will show experimentally. In particular, the parameter λ
does not need to be adjusted to the size and geometry of each shape. Instead,
it influences the general balance of competing skeleton features such as size
and exactness.
Any skeletonisation algorithm can be used for SMD, however, fast algorithms
with less restrictive demands for skeleton properties like homotopy or thin-
ness should be preferred in order to lessen the impact on overall performance.
We choose the method of Remy and Thiel (RT) [21] for maximal disc de-
tection which identifies MAT points as centres of maximal inscribed discs
using lookup tables. In addition we use Meijster’s algorithm [17] for distance
map computation, which offers better performance and exactness than the
D-Euclidean method [4, 5] proposed for this purpose in [27].
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2.2 New Algorithm: Maximal Disc Thinning (MDT)

MDT is proposed as an extension of the RT maximal disc method [21] and
acts as a largely parameter-independent alternative to FOT and FOAT.
While MDT uses the same homotopic thinning process as FOT and FOAT,
it entirely discards the flux components of the algorithm, thus removing the
necessity for several computational steps, cf. Figure 1.

Distance Map 
Computation

Gradient Map
Computation

Flux Map
Computation

Flux-ordered
Thinning

Maximal Disk
Method

FOT
FOAT
MDT

Distance-ordered
Thinning

Figure 1: Flow chart of steps used in the FOT, FOAT and MDT algorithms.
Note that the maximal disc computation in the FOAT scheme can be per-
formed completely in parallel to the gradient and flux map computation.

The central idea of the MDT method is processing object points in order of
their distance to the boundary, mimicking the wave propagation idea of the
classical grass-fire model of Blum [3] and retaining only skeleton endpoints.
In this way, whole level sets of the boundary’s distance map are fully pro-
cessed, before the algorithm moves on to the level set with the next higher
distance value. This behaviour of the thinning process is achieved by defining
the thinning order >dist via the distance map D from (1):

∀p, q ∈ O : p >dist q ⇔ D(p) < D(q) (5)

Object points are removed if they are (i) not identified as skeleton points by
the RT scheme, and (ii) if they do not violate the homotopy. Endpoints of
the preliminary skeleton branches after the RT step are removed, if they are
not verified as endpoints during the thinning process.
In order to minimise the homotopy-induced occurence of large skeleton branches
that connect scattered isolated skeleton points, we perform a pruning on the
skeleton computed via the RT method. Isolated points correspond mainly to
small boundary perturbations, or they are caused by discretisation artefacts.
A pruning step is recommended in the context of skeletonisation methods,
cf. [1, 25].
Within our pruning step, we consider the number of points of the preliminary
skeleton that are in a fixed neighbourhood of the pruning candidate. This
candidate is removed from the preliminary skeleton, if the number of such
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neighbours does not exceed a predefined number. The latter is in fact the
only parameter left in the MDT algorithm.

3 Analysis of MAT Algorithms

The performance of MAT algorithms is difficult to assess: Depending on the
specific application, the desired priority of skeleton properties may vary sig-
nificantly. For example, compression methods require skeletons of minimal
size that produce reconstructions of maximal exactness. Other properties
like homotopy, thinness or Euclidean invariances are not crucial for this ap-
plication, but might be for others like object recognition or segmentation.
Because of these requirements, we propose a novel modular approach to the
analysis of MAT algorithms. This allows to express the quality of methods in
terms of distinct properties that can be weighted as the application demands.

3.1 Quality Criteria

The aim of the quality criteria that we will introduce is to measure the
difference between MAT algorithms (i.e. approximations of the MAT) and
the exact MAT with respect to important properties of the latter.
Homotopy to the original shape and thinness are two binary criteria, that
can be easily checked automatically. Within this paper, those criteria are not
important for comparisons, since all of the proposed algorithms automatically
guarantee both properties by their construction.
A natural quality criterion for discrete skeletons is the exactness of recon-
struction that is automatically given in the continuous-scale MAT setting. In
the discrete world, comparing the reconstructed shape to the original yields
the set E of erroneous points, including false positives and false negatives.
Normalising the number of errors in order to make the new classification
number independent of the size of shapes yields

ê(u,Σ) :=
min{|E|, |O|}

|O|
(6)

As we strive for a value of one (rather than zero) for exactness w.r.t. this
property, we subtract ê(u,Σ) from one, yielding finally as a quality measure

e(u,Σ) := 1− min{|E|, |O|}
|O|

(exactness of reconstruction) (7)

Another central property of the discrete skeleton is its size. The exact MAT
should ideally be the smallest, thin, connected subset of the object domain
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that yields an exact reconstruction of the original. Thus, the size of computed
skeletons should be minimal. This defines the quality measure

m(u,Σ) := 1− min{|Σ|, |O|}
|O|

(skeleton minimality) (8)

Additionally, noise and errors resulting from the discretisation of the bound-
ary must be taken into account. Skeletons are quite sensitive to boundary
perturbation, as small deviations from the exact boundary can lead to spu-
rious skeleton branches. Thus, a robust algorithm should give a minimal
number of branches, which can be identified via the set P of end and branch-
ing points of the skeleton. Consequently, the corresponding quality measure
can be defined as

c(u,Σ) := 1− min{|P |, |Σ|}
|Σ|

(skeleton complexity) (9)

Skeleton complexity is also important for applications that use the branches
or their endpoints as graph nodes. The three quality measures above quantify
major features of the skeleton and should be considered holistically.

3.2 Graph Matching for Invariance Validation

Graph matching is a standard tool in the context of using the MAT in object
recognition, cf. [1, 8] for discussions. We investigate this approach in the
context of desired invariances of the discrete skeleton, i.e. invariance under
Euclidean transformation and noise. Rotational and translational invariance
are natural properties of the continuous-scale MAT and should be preserved
in the discrete setting. Invariance under noise is an obvious practical criterion
while it is not included in a formal definition of the skeleton.
The quality of an algorithm’s invariance behaviour can be assessed by a
comparison of the transformed shape’s skeleton to the skeleton of the original
object. It is possible to use the quality criteria from the previous section for
this task, although it is advisable to use unnormalised cardinality of the sets
instead of the measures e, m and c, since in general, boundary perturbations
change the cardinality of the object domain.
We propose here to use graph matching as an effective way of assessing quality
w.r.t. invariances. A skeleton graph is composed of nodes that correspond
to the end and branching points of the MAT. The graph’s edges mirror the
connections of the end and branching points in the skeleton, and branch
lengths are used as edge weights. Similar set-ups for graph representations
have been used before in the literature, and also refinements of it have already
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been proposed, see e.g. [6]. However, to our knowledge they have not been
used before in order to investigate invariances. As for our purposes, we do
not consider merge or cut operations on the skeleton graphs as recommended
in [9, 14].
The graph matching method graphdiff by Shasha et al. [26] computes a one-
to-one mapping of nodes of a query graph Q and a database graph D, using a
scoring function that takes node types and edge weights into account. Each
possible mapping has a total score, and the mapping with the highest score
is considered as the best match. See Figure 2 for an illustrative example.

Figure 2: Rotational invariances are tested with rotations of shapes from CE-
Shape-1, varying from 5◦ to 45◦. The image on the right displays the skeleton
produced by FOAT and superimposed nodes of the corresponding skeleton
graphs. Square nodes represent endpoints, circles stand for branch points.
Connection lines between nodes mark the one-to-one matching produced by
graphdiff [26]. The matching score of this example is 0.74 (perfect score: 1.0),
indicating subtle differences in branch lengths.

If i, j are nodes in Q that are mapped to i′ and j′ in D, respectively, the
score for the matches is determined by the matching edges of the nodes. The
edge (i, j, w) with weight w matches (i′, j′, w′) if i and i′, as well as j and j′

are of the same node type. Then, the score is computed as min(w/w′, w′/w).
These scores can be used directly as quality measures for invariances.

4 Experiments

The experiments conducted for this work serve two distinct purposes: (i)
To investigate if the newly proposed quality assessment methods give new
meaningful information; (ii) to compare the new algorithms to the FOT
method. The general quality of the skeletonisation results is tested with the
MPEG-7 core experiment database for shape descriptors CE-Shape-1.
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Invariance tests are performed with images from CE-Shape-1 with added
boundary noise, translation and rotation. Both the new quality criteria and
the graph matching method are used to assess the invariance behaviour of
the MAT algorithms along with visual observations.

Comparison of algorithms. The invariance tests reveal that the new
algorithms either surpass FOT or yield comparable results. Table 1 shows
that FOAT has consistently higher scores than FOT in respect to rotational
and noise invariance.

Table 1: Average matching scores for invariance tests using the CE-
Shape-1 database. A score of 1.0 denotes a perfect match.

FOT FOAT MDT

noise 0.60 0.64 0.57
rotation 0.85 0.88 0.76

The MDT method is often competitive to FOT, but in some tests a careful
choice of parameters in FOT can give slightly better results. In particular,
the behaviour of FOT/FOAT and MDT concerning rotational and noise in-
variance is different. FOT and FOAT tend to produce large spurious branches
connecting the location of boundary perturbations with the exact skeleton,
while MDT skeletons vary little in size, but show subtle structural changes,
cf. Figure 3.
We do not compare against the RT method here, since it does often not
result in connected skeletons. However, the construction of a graph-based
representation useful for graph matching is beyond the scope of this paper.

Turning to the quality averages for the shape database, these reveal that
FOAT produces skeletons that are of slightly simpler structure than the ones
of FOT, while skeleton exactness and absolute size is in average slightly
higher. The MDT scheme confirms its tendency to produce skeletons of min-
imal length, staying nevertheless quite accurate but introducing some small
structures that result in a slightly higher complexity as FOT and FOAT, see
Table 2. Let us note in this context that the parameters used for the FOT
and FOAT results displayed in Table 2 are chosen as to give the best balance
in terms of all three quality scores e,m and c, i.e. one could obtain e.g. better
results w.r.t. e at the expense of weaker scores in c and m.
As an additional algorithm for our comparison, we employ here the accurate,
yet not homotopy-preserving RT method which we also used within the SMD
computation. We show these results in order to clarify the benefit of using a
homotopy-based approach w.r.t. skeleton size and complexity.
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Figure 3: Results of a noise invariance test. The shapes in the upper row
contain fifteen distinct boundary perturbations. For all algorithms, the cor-
responding skeletons show little or none deviations from the unmodified ver-
sion. In the lower row, thirty perturbations were added to the boundary.
FOT (lower left) and FOAT (centre) produce spurious branches of signifi-
cant size, while for MDT (lower right), skeleton size varies only slightly but
structural changes occur.

All of the algorithms work on average with high precision. However, let
us also point out that due to the size of 1400 shapes in our test database,
one may infer that the first 3 to 4 digits after the comma in the error bear
significance: As computational results of the three algorithms are similar for
many shapes leading to about the same error measure contributing in (7)-(9),
deviations from this rule may be significant but do not show their influence
in the first one or two digits.

Making algorithms even more comparable. With our new quality mea-
sures we have the tools at hand to study how the algorithms perform at a
common level of accuracy. To this end, we have performed a systematic
parameter search for FOT and FOAT that gives a uniform exactness score
of e(u,Σ) = 0.9535, matching the exactness of the MDT method (which is
parameter-free). The result is given in Table 3. We observe that MDT favors
in comparison to the other schemes skeletons that are of more minimal size
but of more complex structure. Moreover, a bit surprisingly, we observe that
at the accuracy of the MDT method – or, more generally speaking, at a given
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Table 2: Quality averages for the CE-Shape-1 database. The abbre-
viations e,m, c denote the normalised quality measures as defined in (7)-(9).
Ideally, scores should be close to 1.

RT MDT FOAT FOT

e(u,Σ) 0.9622 0.9535 0.9532 0.9539
m(u,Σ) 0.9484 0.9726 0.9719 0.9722
c(u,Σ) 0.8803 0.9708 0.9715 0.9712

average accuracy – FOT seems to slightly outperform FOAT.

Table 3: Comparison of methods for the CE-Shape-1 database. Pa-
rameters for FOT and FOAT are chosen as to match the accuracy e(u,Σ) =
0.9535 of the MDT method.

MDT FOAT FOT

m(u,Σ) 0.9726 0.9719 0.9723
c(u,Σ) 0.9708 0.9714 0.9716

Robustness vs. parameter choice. By the results documented in Table
3, one may come to the conclusion that the FOAT method may be not
better than the already existing FOT scheme. However, having at hand the
new rigorous measures for the quality of algorithms, we can now perform
a systematic study of the sensitivity of the FOT and FOAT methods vs.
the parameter choice. To this end, we have sampled a window of length
0.1 around the optimal parameter choice employed before and studied the
deviation in the error measures. As by Table 4 we observe that the FOAT
method is generally much less sensitive to parameter variations than the FOT
scheme; w.r.t. skeleton minimality and complexity it turns out that this can
be measured to be in the order of a considerable factor of ten and forty,
respectively. Moreover, for FOT deviations appear already in the second
digit after the comma which indicates a considerable difference.
The score differences illustrate the distinctive behaviours of the algorithms.
When attempting to fine tune the threshold parameter τ (see Section 2) or
when making use of the same value of τ for different shapes, FOT easily
produces more and larger branches at narrow regions of a shape. There,
additional skeleton points increase size and complexity, but yield only slight
differences in exactness of reconstruction, see Figure 4. On some shapes
however, FOT also omits large branches, thus losing boundary information.
Both effects can occur simultaneously, as displayed in Figure 5.

12



Figure 4: The lizard shape is an example of skeletons that are similar in size
and exactness of reconstruction, but vary in complexity. FOAT (middle) and
MDT (right) feature less branches in the small details of the lizard such as
in its toes. FOT (left) produces additional branches, in particular for jagged
edges that result from the discretisation of the shape boundary, as it strives
in this example for a very exact represenation.

Figure 5: The skeletons of the elephant shape reveal the improved adaption
capabilities of FOAT (middle) and MDT (right) to individual shapes. Similar
to Figure 4, FOT (left) produces spurious branches at jagged edges (e.g.
at the feet of the elephant), but omits branches that would give a refined
reconstruction of the elephant’s head and back.

A refined analysis of the new MDT algorithm. We now illustrate
that the new quality measures can be useful to infer information about the
properties of an algorithm if a related method is at hand.
Let us recall that, by construction, the MDT algorithm relies on the RT
method. The latter gives as observable via Table 2 in average considerably
more accurate skeletons than the MDT scheme. While the RT method is
missing thinness, homotopy and connectivity, one may wonder why the loss
in the accuracy quality score is relatively large as in the second digit after
the comma. The question arises, if there is a general loss of accuracy for the
shapes in our database (which would indicate a shortcoming of qualities like
thinness, homotopy and connectedness), or if it is due to a few outliers that
diminish the average quality score.
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Table 4: Parameter sensitivity for the CE-Shape-1 database. The
table gives the maximal deviation in the measures e,m, c as by (7)-(9) when
varying the parameter in an interval of length 0.1. Ideally, scores should be
as small as possible.

e(u,Σ) m(u,Σ) c(u,Σ)

FOT 0.0095 0.0210 0.0470
FOAT 0.0079 0.0017 0.0010

We now investigate this issue. For an illustration of the evolution step intro-
duced by the MDT algorithm in comparison to the RT method, we present
some typical skeletonisation results, cf. Figure 6. By adding the homotopy-
preserving thinning component, we clearly obtain thin, connected skeletons
with no spurious points. However, in very few cases as in the car or the
camel example given here, a significant branch can be missing because of
the general tendency of the MDT algorithm towards producing skeletons as
minimal as possible. In such singular cases the accuracy is obviously highly
diminished; in turn one can infer by the high average accuracy score in Table
2 that these cases are very rare.
As a proof-of-concept that one can easily give a remedy for such rare cases
(that can in principle be identified e.g. by computing individually for each
shape the reconstruction error e, or by a more local procedure) we propose
to fine tune the basic MDT method as follows. In a first step, the modified
MDT scheme uses the RT pilot points to construct a preliminary skeleton
that is homotopic, but not necessarily thin. This skeleton is then thinned
according to homotopy preserving thinning rules that do obey the distance
ordering, but do not remove skeleton endpoints, i.e. no branches are deleted
from the preliminary skeleton. Finally, branches of very small length are
removed with a simple graph based pruning algorithm. See the last row of
Figure 6 for typical results of this procedure.

5 Conclusions

In this paper we have proposed two new MAT algorithms, FOAT and MDT,
based on homotopic thinning. The FOAT scheme relies on a robustification
of the thresholding step in FOT. The MDT scheme is with the exception of
the pruning step parameter-free. As it is also relatively easy to implement
and gives in general results of good quality, it is in our opinion an attractive
algorithm for applications.
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Additionally, we have proposed quality assessment techniques that give an
insight into properties of MAT algorithms. Moreover, they allow to perform a
systematic parameter sensitivity analysis, and to analyse construction steps
in an algorithm. The quality measures are easy to evaluate and can be
applied with any MAT method. However, the evaluation of the invariance
tests as proposed here is not straightforward for MAT methods that do not
preserve homotopy since it relies on graph matching.
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[18] Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi skeletons. Pattern
Recognition 28, 343–359 (1995)

[19] Palagyi, K., Nemeth, G.: Fully parallel 3D thinning algorithms based
on sufficient conditions for topology preservation, in: Proceedings of
the International Conference on Discrete Geometry for Computer Im-
agery, volume 5810 of Lecture Notes in Computer Science, pp. 481492,
Springer (2009)

[20] Pudney, C.: Distance-ordered homotopic thinning: a skeletonization
algorithm for 3D digital images. Computer Vision and Image Under-
standing 72, 404–413 (1998)

16
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Figure 6: Comparison of skeletonisation results illustrating the MDT algorithm. Top

row. The algorithm of Remy and Thiel without pruning. Second row. The algorithm

of Remy and Thiel with an additional pruning step. Third row. The new MDT scheme

including pruning. Note that not all branches of the pruned RT skeleton are preserved

during the MDT thinning phase due to the thinning order. For these selected shapes the

problem appears that important branches are pruned. Bottom row. Result of modified

MDT algorithm which will give a better accuracy for such shapes.
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