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A note on the Toeplitz projection

associated with spherical isometries

Michael Didas

In [7], Prunaru constructed a projection onto the space of Toeplitz oper-
ators associated with arbitrary families of spherical isometries. We show
that, in the case of a finite spherical isometry T ∈ B(H)n (or, more gen-
eral, a regular A-isometry), this projection takes a particularly simple form.
As a consequence we deduce that, in this case, the space of Toeplitz op-
erators T (T ) associated with T is 2-hyperreflexive, extending a result of
Ptak (Theorem 4.1 in [8]) for the Hardy space H2(D) on the unit polydisc
D = D

n to the case of strictly pseudoconvex or bounded symmetric domains
D ⊂ Cn. Another application concerns the exact sequence for the corre-
sponding Toeplitz C∗-algebra, 0 −→ C →֒ C∗(T (T )))

π

−→ (U)′ −→ 0, which
has been established by Prunaru in [7]. We are able to give a concrete for-
mula for π based on the Toeplitz projection according to the minimal normal
extension U of T .

The present paper is a continuation of [2] and [3]. In particular, the reader is
assumed to be familiar with the definitions and notations concerning A-isometries
and their Toeplitz operators determined in Chapter 2 of [3]. For those who are
not, we just want to mention that every spherical isometry T ∈ B(H)n (i.e. a
commuting tuple of Hilbert-space operators satisfying

∑n
i=1 T ∗

i Ti = 1H) is a regular
A-isometry with respect to the ball algebra A = A(Bn), and that every commuting
tuple of isometries is a regular A-isometry for the polydisc algebra A = A(Dn).
In these special cases, the operator algebra HT ⊂ B(H) associated with T (see
[2] for the precise definition) coincides with the smallest weak∗ closed dual algebra

AT = C[T1, . . . , Tn]
w∗

containing 1H and the components of T .

An element X ∈ B(H) belongs to the set T (T ) of T -Toeplitz operators if it satisfies
the generalized Brown-Halmos condition J∗XJ = X for every isometry J ∈ HT . In
[7], Prunaru constructed a completely positive unital mapping Φ : B(H) → B(H)
with Φ2 = Φ and ran(Φ) = T (T ) for every commuting family T of (spherical)
isometries. For an A-isometry T ∈ B(H)n, this construction takes a particularly
simple form. To be more precise, let IT denote the commutative semi-group of all
isometries in HT . By a result of Dixmier [4], we may choose an invariant mean
m : ℓ∞(IT ) → C, i.e. a state m on ℓ∞(IT ) such that m((aJ)J) = m((aV J)J)
whenever (aJ )J ∈ ℓ∞(IT ) and V ∈ IT . Motivated by Prunaru’s approach (see the
proof of Lemma 2.7 in [7]) we define a linear map Φ : B(H) → B(H) by the formula

〈Φ(X)x, y〉 = mJ(〈J∗XJx, y〉) (X ∈ B(H), x, y ∈ H).

The following theorem summarizes some important properties of this map.

1 Theorem. Let T ∈ B(H)n be a regular A-isometry. Then the map Φ defined
above . . .

(a) is a self-adjoint, completely positive and unital projection (Φ2 = Φ), with
ran(Φ) = T (T ),

(b) has the property that A∗Φ(X)B = Φ(A∗XB) for all A,B ∈ (T )′ and X ∈
B(H),

(c) and maps every operator X ∈ B(H) into the WOT-closed convex hull of the
set {J∗XJ : J ∈ IT } ⊂ B(H).
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Proof. First observe that, for X ∈ T (T ) and arbitrary vectors x, y ∈ H, we have
〈Φ(X)x, y〉 = mJ(〈Xx, y〉) = 〈Xx, y〉. This proves that Φ is unital and T (T ) ⊂
ran(Φ). From now on, let X ∈ B(H) be an arbitrary operator. Making use of the
invariance of m we immediately obtain the identity

Φ(V ∗XV ) = Φ(X) (for every isometry V ∈ IT and every X ∈ B(H)).

Given A,B ∈ (T )′ and arbitrary vectors x, y ∈ H, the calculation

〈A∗Φ(X)Bx, y〉 = mJ(〈J∗XJBx,Ay〉) = mJ(〈J∗A∗XBJx, y〉) = 〈Φ(A∗XB)x, y〉

shows that the assertion of part (b) holds. Now applying these two relations to
A = B = V with an isometry V ∈ IT , we obtain V ∗Φ(X)V = Φ(V ∗XV ) = Φ(X).
This settles the inclusion ran(Φ) ⊂ T (T ) and furthermore guarantees that Φ2 = Φ,
since mJ(〈J∗Φ(X)Jx, y〉) = 〈Φ(X)x, y〉 for x, y ∈ H.

To finish the proof of part (a), it remains to show that Φ is completely positive.
Towards this, fix an integer n ≥ 1, a positive operator-matrix X(n) = (Xij) ∈
Mn(B(H)) as well as a vector x(n) = (x1, . . . , xn) ∈ Hn. We have to show that the
n-th inflation Φ(n) : Mn(B(H)) → Mn(B(H)) of Φ is positive. But this can be seen
by the identity

〈Φ(n)(X(n))x(n), x(n)〉 =
∑

1≤i,j≤n

〈Φ(Xij)xj , xi〉

=
∑

1≤i,j≤n

mJ(〈J∗XijJxj, xi〉)

= mJ(〈(J∗XijJ)ijx
(n), x(n)〉)

and the fact that the conjugation map B(H) → B(H), X 7→ J∗XJ is completely
positive.

Towards a proof of part (c) suppose that, for some X ∈ B(H), the image Φ(X) is not
contained in the WOT-closed convex hull of the set M = {J∗XJ : J ∈ IT }. Then,
by the Hahn-Banach theorem, there exists a WOT-continuous linear functional ϕ :
B(H) → C separating Φ(X) and M . This means that, for some ε > 0, we have

Re
k∑

i=1

〈Φ(X)xi, yi〉 + ε ≤ Re
k∑

i=1

〈J∗XJxi, yi〉 (J ∈ IT ),

where the vectors xi, yi ∈ H (i = 1, . . . , k) arise from a representation of ϕ as finite
sum ϕ =

∑k
i=1 xi ⊗ yi.

Applying the invariant mean m to both sides preserves the inequality (m is positive)
and leaves the left-hand side unchanged, while on the right-hand side we obtain

mJ

(

Re

k∑

i=1

〈J∗XJxi, yi〉

)

= Re

k∑

i=1

mJ(〈J∗XJxi, yi〉) = Re

k∑

i=1

〈Φ(X)xi, yi〉.

This yields a contradiction which finishes the proof. �

It should be mentioned that, as a consequence of part (a) of the above theorem, the
map Φ is completely bounded and satisfies ‖Φ‖ = ‖Φ‖cb = 1.

As a first application we prove that the space T (T ) is 2-hyperreflexive. This can be
done by a well-known argument (see Theorem 4.1 in Ptak [8]) which relies on the
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validity of condition (c) of the above theorem. First recall that a weak∗-closed subset
S ⊂ B(H) is k-hyperreflexive if there is a constant a > 0 such that the distance
estimate

d(A,S) ≤ a sup{|trace(Af)| : f ∈ S⊥, rank(f) ≤ k, ‖f‖1 ≤ 1} (A ∈ B(H))

holds, where ‖·‖1 refers to the norm in the trace class. For fixed k ∈ N, the infumum
of all possible constants a > 0 occuring in this estimate is denoted by κk(S). Now
we can state the announced 2-hyperreflexivity result.

2 Corollary. For every regular A-isometry T ∈ B(H)n, the space T (T ) ⊂ B(H) of
all T -Toeplitz operators is 2-hyperreflexive with κ2(T (T )) ≤ 2.

Proof. It is an easy exercise to deduce that, for every subset W ⊂ B(H), the norm
estimate

‖A‖ ≤ sup
C∈M

‖C‖ (A ∈ convWOT(M))

holds. Thus, using part (c) of the above theorem, we have , we have

d(A,T (T )) ≤ ‖A − Φ(A)‖ ≤ sup
J∈IT

‖A − J∗AJ‖ (A ∈ B(H)).

Since ‖x ⊗ y‖1 = ‖x‖ · ‖y‖ (x, y ∈ H), the latter norm can be computed as

‖A − J∗AJ‖ = sup{|〈(A − J∗AJ)x, y〉| : x, y ∈ H with ‖x ⊗ y‖1 = 1}.

Now observe that the scalar product occuring in the supremum can be written as
〈(A−J∗AJ)x, y〉 = trace(Af) with the rank 2-operator f = x⊗y−Jx⊗Jy ∈ T (T )⊥.
Since J is an isometry, we have ‖f‖1 ≤ 2 if ‖x ⊗ y‖1 = 1, and hence

d(A,T (T )) ≤ 2 · sup{|trace(Af)| : f ∈ T (T )⊥, rank(f) ≤ 2, ‖f‖1 ≤ 1}

for every A ∈ B(H), as we claimed. �

Since the above corollary applies in particular to the tuple T = (Mz1
, . . . ,Mzn

) ∈
B(H2(D))n of multiplication with the coordinate functions on the Hardy spaces over
strictly pseudoconvex or bounded symmetric domains D ⊂ C

n, it extends the cited
result of Ptak for the polydisc-case D = D

n.

Another consequence of the simple explicit formula for the Toeplitz projection Φ
concerns compact perturbations of T -Toeplitz operators. It is known that there
is no compact T -Toeplitz operator if σp(T ) = ∅ (see [2]), so it seems natural to
conjecture that Φ vanishes on the compact operators in this case. The following
proposition settles this at least in the completely non-unitary case.

3 Proposition. Let T ∈ B(H)n be a completely non-unitary regular A-isometry.
Then the Toeplitz projection Φ defined above satisfies Φ(K) = 0 for every compact
operator K ∈ B(H).

Proof. Fix x, y ∈ H with ‖x‖, ‖y‖ ≤ 1, a compact operator K ∈ B(H) and a
sequence

(Vk)k≥1 of isometries in HT such that V ∗
k −→ 0 (SOT) if k → ∞

which exists by hypothesis according to Proposition 3.13 and Lemma 3.12 in [2].
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From the invariance of m we deduce that

〈Φ(K)x, y〉 = mJ(〈J∗V ∗
k KVkJx, y〉) (k ≥ 1).

Since the right-hand side is constant in k, we may add limk→∞ in front of mJ . To
prove the proposition, it suffices to show that the argument of m is a zero-sequence
in ℓ∞(IT ).

Towards this aim, fix an arbitrary real number ε > 0 and an arbitrary isometry
J ∈ HT . Since K is compact, there exist finitely many vectors x1, . . . , xm ∈ H such
that

KB1(0) ⊂
n⋃

j=1

Bε(xi),

where Br(p) ⊂ H denotes the closed ball of radius r centered at p. Since V ∗
k → 0

(SOT), we can find an index Nε such that

‖V ∗
k xi‖ < ε (i = 1, . . . ,m) whenever k ≥ Nε.

Now fix any k ≥ Nε. Then the vector z = KVkJx ⊂ KB1(0) lies in some Bε(xi) for
1 ≤ i ≤ m. Thus

|〈J∗V ∗
k KVkJx, y〉| ≤ ‖V ∗

k z‖ ≤ ‖V ∗
k (z − xi)‖ + ‖V ∗

k xi‖ < 2ε.

Note that Nε does not depend on the choice of J . Thus we have shown that

sup
j∈IT

|〈J∗V ∗
k KVkJx, y〉|

k→∞
−→ 0,

and the proof is complete. �

Combining the above proposition with Theorem 4.6 in [3] we obtain the following
consequence.

4 Corollary. If T ∈ B(H)n is an essentially normal, completely non-unitary, regu-
lar A-isometry and S ∈ B(H) belongs to the essential commutant of the dual algebra
HT , then S − Φ(S) is compact. �

From now on, fix a regular A-isometry T ∈ B(H)n together with a minimal normal
extension U ∈ B(K)n. Let us write C∗(T (T )) for the C∗-subalgebra of B(H)
generated by all T -Toeplitz operators. In [7], Prunaru proved the existence of a
generalized symbol map for this Toeplitz C∗-algebra. More precisely, he showed
that there is a (unique, see below) ∗-homomorphism

π : C∗(T (T )) → (U)′ which satisfies π(PHY |H) = Y for every Y ∈ (U)′,

and that this map π yields an exact sequence of the form

0 −→ C →֒ C∗(T (T )))
π

−→ (U)′ −→ 0,

where C denotes the commutator ideal of C∗(T (T )). In view of the identity

T (T ) = {PHY |H : Y ∈ (U)′} ⊂ B(H)

(see Prunaru [7] or, for the case of A-isometries, Proposition 3.2 in [3]), such a map π

is unique. Its existence has been shown in [7] by making use of Stinespring’s dilation
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theorem. Following ideas of Mancera and Paul (see [6]), we give an explicit formula
for π which is based on the Toeplitz projection ΦU : B(K) → B(K) associated
with the minimal normal extension U of T . (Note that if T is a regular A-isometry,
then so is U .) Remember that ΦU itself is defined by the formula 〈ΦU (X)x, y〉 =
m

Ĵ
(〈Ĵ∗XĴx, y〉) (X ∈ B(K), x, y ∈ K), where Ĵ ranges over the set IU of all

isometries contained in the dual algebra HU . The following simple observations
will play an important role in the sequel. We will use them mostly without further
comment.

5 Lemma. For a regular A-isometry T ∈ B(H)n with minimal normal extension
U ∈ B(K)n, the following assertions hold:

(a) The restriction HU → HT , Y 7→ Y |H is an isomorphism of dual algebras. Its
inverse gives a canonical extension map

HT → HU , X 7→ X̂,

which yields a bijection between the sets IT and IU .

(b) The set of U -Toeplitz operators T (U) = ran(ΦU ) coincides with the commu-
tant (U)′ ⊂ B(K).

(c) The space K is the closed linear span of the set {Ĵ∗x : Ĵ ∈ IU , x ∈ H}.

Proof. Let ΨU : L∞(µ) → B(K) denote the L∞-functional calculus of U associated
with a fixed scalar-spectral measure µ ∈ M+

1 (K). Then it is well known that ΨU

induces a dual algebra isomorphism H∞(µ)
ΨU−→ HU as well as an isomorphism

of dual algebras γT : H∞(µ) → HT , f 7→ ΨU(f)|H (see [1], Proposition 1.1).
Moreover, by Lemma 1.1 in [2], the isometries in HT (HU , respectively) are precisely
the images of elements θ ∈ H∞(µ) with |θ| = 1 (µ-a.e.) under the map γT (ΨU ,
respectively). This proves part (a) and, moreover, shows that every Ĵ ∈ IU is
even unitary. Using this and the generalized Brown-Halmos condition Ĵ∗Y Ĵ = Y

(Ĵ ∈ IU) for a U -Toeplitz operator Y , we derive that an element Y ∈ B(K) belongs
to T (U) if and only if it belongs to the commutant (IU )′ which is known to be equal
to (U)′ (see e.g. the proof of Proposition 3.7 in [2]). Finally consider the closed
subspace M = LH{Ĵ∗x : Ĵ ∈ IU , x ∈ H} ⊂ K. Then M clearly contains H and is
reducing for IU (and hence U , by Proposition 2.8 (a) in [3]) and thus coincides with
K, since K is minimal with these properties. �

The generalized symbol-homomorphism π that we are looking for will be obtained
as a suitable restriction of the map

π̂ : B(H) → B(K) given by π̂(X) = ΦU (iHXPH),

where iH : H →֒ K denotes the inclusion of H into K and PH : K → H the
corresponding orthogonal projection. In Proposition 7 below, we give a collection
of some important properties of this map π̂. As a preparation, we first show a few
auxiliary results making use of the explicit formula

〈π̂(X)x, y〉 = m
Ĵ
(〈Ĵ∗XPH Ĵx, y〉) (x, y ∈ K, X ∈ B(H)),

where Ĵ runs through the set IU of all isometries contained in HU . Recall that, if
X ∈ HT , then the unique element Y ∈ HU with Y |H = X will be denoted by X̂ .
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6 Lemma. The map π̂ : B(H) → B(K) has the following properties:

(a) The range of π̂ is contained in the commutant (U)′ ⊂ B(K).

(b) If X ∈ (T )′, then π̂(X)|H = X. Moreover, π̂(W ) = Ŵ whenever W ∈ IT .

(c) If Y ∈ B(K) with Y H ⊂ H, then π̂(Y |H)x = ΦU (Y )x holds for every x ∈ H.

(d) Given x, y ∈ H and Y ∈ (U)′, the equality 〈π̂(PHY |H)x, y〉 = 〈Y x, y〉 holds.

Proof. By a look at the definition of the map π̂ and the preceding remarks we
see that part (a) is obviously true and that 〈π̂(X)x, y〉 = m

Ĵ
(〈Ĵ∗XJx, y〉) holds for

every choice of vectors x ∈ H and y ∈ K. Now, given X ∈ (T )′, we may replace
XJx by ĴXx in the last identity, proving the first part of assertion (b). If W ∈ HT

and V̂ ∈ HU denote arbitrary isometries, then we deduce from the above that

π̂(W )V̂ ∗x = V̂ ∗Wx = Ŵ V̂ ∗x (x ∈ H).

In view of Lemma 5 (c), thus the rest of part (b) follows. To establish part (c), fix
an operator Y ∈ B(K) leaving H invariant, as well as arbitrary vectors x ∈ H and
y ∈ K. Then

〈π̂(Y |H)x, y〉 = m
Ĵ
(〈Ĵ∗Y PH Ĵx, y〉) = m

Ĵ
(〈Ĵ∗Y Ĵx, y〉) = 〈ΦU (Y )x, y〉

holds, as desired. Finally, fix x, y ∈ H and Y ∈ (U)′. Then we have

〈π̂(PHY |H)x, y〉 = m
Ĵ
(〈Ĵ∗PHY PH Ĵx, y〉)

= m
Ĵ
(〈Ĵ∗PH ĴY x, y〉)

= m
Ĵ
(〈PH ĴY x, Ĵy〉)

= m
Ĵ
(〈ĴY x, Ĵy〉) = 〈Y x, y〉

and the proof is complete. �

Now we are able to prove the relevant properties turning π̂ into a generalized symbol
map.

7 Proposition. The map π̂ : B(H) → B(K) defined above . . .

(a) is a completely positive and completely contractive mapping with ran(π̂) =
(U)′;

(b) satisfies the identity PH π̂(X)|H = X for every X ∈ T (T );

(c) is multiplicative in the sense that π̂(X1X2) = π̂(X1)π̂(X2) holds, whenever
X1 ∈ B(H) and X2 ∈ T (T );

(d) fulfills π̂(PHY |H) = Y whenever Y ∈ (U)′.

Proof. Part (a) is obvious from the definition of the map π̂ except the inclusion
ran(π̂) ⊃ (U)′ which will be proved later. Reformulating part (d) of the above
lemma, we obtain that PH π̂(PHY |H)|H = PHY |H for every Y ∈ (U)′. Since every
X ∈ T (T ) has the form X = PHY |H for some Y ∈ (U)′, the assertion of part (b)
follows. Towards a proof of part (c), fix arbitrary operators X1 ∈ B(H), X2 ∈ T (T )
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and V̂ ∈ IU , as well as some vector x ∈ H. The desired multiplicativity then follows
from the calculation

π̂(X1X2)V̂
∗x = V̂ ∗π̂(X1X2)x

= V̂ ∗π̂(X1PH π̂(X2)|H)x (by part (b))

= V̂ ∗ΦU(iHX1PH π̂(X2))x (by part(c) of Lemma 6)

= V̂ ∗ΦU(iHX1PH)π̂(X2)x (by Theorem 1 (c))

= π̂(X1)π̂(X2)V̂
∗x

combined with the fact that elements of the form V̂ ∗x with V̂ ∈ IU and x ∈ H span
K by Lemma 5. Finally, fix isometries V̂ , Ŵ ∈ IU and vectors x, y ∈ H. Then we
have

〈π̂(PHY |H)V̂ ∗x, Ŵ ∗y〉 = 〈Ŵ π̂(PHY |H)x, V̂ y〉

= 〈π̂(PH(Y |H)W )x, V̂ y〉 (by (c) and Lemma 6 (b))

= 〈π̂(PHY Ŵ |H)x, V̂ y〉

= 〈Y Ŵx, V̂ y〉 (by Lemma 6 (d))

= 〈Y V̂ ∗x, Ŵ ∗y〉.

This proves part (d) which also implies the remaining inclusion of part (a). �

Note that C∗(T (T )) = LH{T1 · · ·Tn : n ∈ N, Ti ∈ T (T ) for 1 ≤ i ≤ n} since T (T )
is self-adjoint. Thus part (c) of the preceding proposition says that the restriciton
π = π̂|C∗(T (T )) is multiplicative and hence an algebra homomorphism. Moreover,
if X = PHY |H with Y ∈ (U)′ is an arbitrary T -Toeplitz operator, then π(X) = Y

and π(X∗) = π(PHY ∗|H) = Y ∗ by part (d). This proves that π is actually a
∗-homomorphism and thus coincides with the symbol homomorphism defined by
Prunaru in [7] (see [3] for the case of A-isometries).

8 Theorem. Let T ∈ B(H)n be a regular A-isometry and let ΦU denote the
Toeplitz projection according to the minimal normal extension U ∈ B(K)n. If
iH : H →֒ K denotes the inclusion and PH : K → H the corresponding orthogonal
projection, then the formula

π(X) = ΦU (iHXPH) (X ∈ C∗(T (T )))

defines the unique ∗-homomorphism π : C∗(T (T )) → B(K) with π(PHY |H) = Y

for Y ∈ (U)′. Moreover, the sequence

0 −→ C →֒ C∗(T (T )))
π

−→ (U)′ −→ 0

is exact, where C denotes the commutator ideal of C∗(T (T )). �
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