Universität des Saarlandes

Fachrichtung 6.1 – Mathematik

Preprint Nr. 314

A note on the Toeplitz projection associated with spherical isometries

Michael Didas

Saarbrücken 2012

A note on the Toeplitz projection associated with spherical isometries

Michael Didas

Saarland University Department of Mathematics P.O. Box 15 11 50 66041 Saarbrücken Germany didas@math.uni-sb.de

Edited by FR 6.1 – Mathematik Universität des Saarlandes Postfach 15 11 50 66041 Saarbrücken Germany

Fax: + 49 681 302 4443 e-Mail: preprint@math.uni-sb.de WWW: http://www.math.uni-sb.de/

A note on the Toeplitz projection associated with spherical isometries

Michael Didas

In [7], Prunaru constructed a projection onto the space of Toeplitz operators associated with arbitrary families of spherical isometries. We show that, in the case of a finite spherical isometry $T \in B(H)^n$ (or, more general, a regular A-isometry), this projection takes a particularly simple form. As a consequence we deduce that, in this case, the space of Toeplitz operators $\mathcal{T}(T)$ associated with T is 2-hyperreflexive, extending a result of Ptak (Theorem 4.1 in [8]) for the Hardy space $H^2(D)$ on the unit polydisc $D = \mathbb{D}^n$ to the case of strictly pseudoconvex or bounded symmetric domains $D \subset \mathbb{C}^n$. Another application concerns the exact sequence for the corresponding Toeplitz C^* -algebra, $0 \longrightarrow \mathcal{C} \hookrightarrow C^*(\mathcal{T}(T))) \xrightarrow{\pi} (U)' \longrightarrow 0$, which has been established by Prunaru in [7]. We are able to give a concrete formula for π based on the Toeplitz projection according to the minimal normal extension U of T.

The present paper is a continuation of [2] and [3]. In particular, the reader is assumed to be familiar with the definitions and notations concerning A-isometries and their Toeplitz operators determined in Chapter 2 of [3]. For those who are not, we just want to mention that every spherical isometry $T \in B(H)^n$ (i.e. a commuting tuple of Hilbert-space operators satisfying $\sum_{i=1}^{n} T_i^* T_i = 1_H$) is a regular A-isometry with respect to the ball algebra $A = A(\mathbb{B}_n)$, and that every commuting tuple of isometries is a regular A-isometry for the polydisc algebra $A = A(\mathbb{D}^n)$. In these special cases, the operator algebra $\mathscr{H}_T \subset B(H)$ associated with T (see [2] for the precise definition) coincides with the smallest weak^{*} closed dual algebra $\mathcal{A}_T = \overline{\mathbb{C}[T_1, \ldots, T_n]}^{w^*}$ containing 1_H and the components of T.

An element $X \in B(H)$ belongs to the set $\mathcal{T}(T)$ of T-Toeplitz operators if it satisfies the generalized Brown-Halmos condition $J^*XJ = X$ for every isometry $J \in \mathscr{H}_T$. In [7], Prunaru constructed a completely positive unital mapping $\Phi : B(H) \to B(H)$ with $\Phi^2 = \Phi$ and $\operatorname{ran}(\Phi) = \mathcal{T}(T)$ for every commuting family T of (spherical) isometries. For an A-isometry $T \in B(H)^n$, this construction takes a particularly simple form. To be more precise, let \mathcal{I}_T denote the commutative semi-group of all isometries in \mathscr{H}_T . By a result of Dixmier [4], we may choose an invariant mean $m : \ell^{\infty}(\mathcal{I}_T) \to \mathbb{C}$, i.e. a state m on $\ell^{\infty}(\mathcal{I}_T)$ such that $m((a_J)_J) = m((a_{VJ})_J)$ whenever $(a_J)_J \in \ell^{\infty}(\mathcal{I}_T)$ and $V \in \mathcal{I}_T$. Motivated by Prunaru's approach (see the proof of Lemma 2.7 in [7]) we define a linear map $\Phi : B(H) \to B(H)$ by the formula

$$\langle \Phi(X)x, y \rangle = m_J(\langle J^*XJx, y \rangle) \qquad (X \in B(H), x, y \in H).$$

The following theorem summarizes some important properties of this map.

1 Theorem. Let $T \in B(H)^n$ be a regular A-isometry. Then the map Φ defined above ...

- (a) is a self-adjoint, completely positive and unital projection $(\Phi^2 = \Phi)$, with $ran(\Phi) = \mathcal{T}(T)$,
- (b) has the property that $A^*\Phi(X)B = \Phi(A^*XB)$ for all $A, B \in (T)'$ and $X \in B(H)$,
- (c) and maps every operator $X \in B(H)$ into the WOT-closed convex hull of the set $\{J^*XJ : J \in \mathcal{I}_T\} \subset B(H)$.

Proof. First observe that, for $X \in \mathcal{T}(T)$ and arbitrary vectors $x, y \in H$, we have $\langle \Phi(X)x, y \rangle = m_J(\langle Xx, y \rangle) = \langle Xx, y \rangle$. This proves that Φ is unital and $\mathcal{T}(T) \subset \operatorname{ran}(\Phi)$. From now on, let $X \in B(H)$ be an arbitrary operator. Making use of the invariance of m we immediately obtain the identity

 $\Phi(V^*XV) = \Phi(X) \qquad \text{(for every isometry } V \in \mathcal{I}_T \text{ and every } X \in B(H)\text{)}.$

Given $A, B \in (T)'$ and arbitrary vectors $x, y \in H$, the calculation

$$\langle A^* \Phi(X) Bx, y \rangle = m_J(\langle J^* X J Bx, Ay \rangle) = m_J(\langle J^* A^* X B Jx, y \rangle) = \langle \Phi(A^* X B) x, y \rangle$$

shows that the assertion of part (b) holds. Now applying these two relations to A = B = V with an isometry $V \in \mathcal{I}_T$, we obtain $V^*\Phi(X)V = \Phi(V^*XV) = \Phi(X)$. This settles the inclusion $\operatorname{ran}(\Phi) \subset \mathcal{T}(T)$ and furthermore guarantees that $\Phi^2 = \Phi$, since $m_J(\langle J^*\Phi(X)Jx, y \rangle) = \langle \Phi(X)x, y \rangle$ for $x, y \in H$.

To finish the proof of part (a), it remains to show that Φ is completely positive. Towards this, fix an integer $n \geq 1$, a positive operator-matrix $X^{(n)} = (X_{ij}) \in M_n(B(H))$ as well as a vector $x^{(n)} = (x_1, \ldots, x_n) \in H^n$. We have to show that the *n*-th inflation $\Phi^{(n)} : M_n(B(H)) \to M_n(B(H))$ of Φ is positive. But this can be seen by the identity

$$\begin{aligned} \langle \Phi^{(n)}(X^{(n)})x^{(n)}, x^{(n)} \rangle &= \sum_{1 \le i,j \le n} \langle \Phi(X_{ij})x_j, x_i \rangle \\ &= \sum_{1 \le i,j \le n} m_J(\langle J^*X_{ij}Jx_j, x_i \rangle) \\ &= m_J(\langle (J^*X_{ij}J)_{ij}x^{(n)}, x^{(n)} \rangle) \end{aligned}$$

and the fact that the conjugation map $B(H) \to B(H), X \mapsto J^*XJ$ is completely positive.

Towards a proof of part (c) suppose that, for some $X \in B(H)$, the image $\Phi(X)$ is not contained in the WOT-closed convex hull of the set $M = \{J^*XJ : J \in \mathcal{I}_T\}$. Then, by the Hahn-Banach theorem, there exists a WOT-continuous linear functional φ : $B(H) \to \mathbb{C}$ separating $\Phi(X)$ and M. This means that, for some $\varepsilon > 0$, we have

$$\operatorname{Re}\sum_{i=1}^{k} \langle \Phi(X)x_i, y_i \rangle + \varepsilon \leq \operatorname{Re}\sum_{i=1}^{k} \langle J^*XJx_i, y_i \rangle \qquad (J \in \mathcal{I}_T),$$

where the vectors $x_i, y_i \in H$ (i = 1, ..., k) arise from a representation of φ as finite sum $\varphi = \sum_{i=1}^k x_i \otimes y_i$.

Applying the invariant mean m to both sides preserves the inequality (m is positive) and leaves the left-hand side unchanged, while on the right-hand side we obtain

$$m_J\left(\operatorname{Re}\sum_{i=1}^k \langle J^*XJx_i, y_i \rangle\right) = \operatorname{Re}\sum_{i=1}^k m_J(\langle J^*XJx_i, y_i \rangle) = \operatorname{Re}\sum_{i=1}^k \langle \Phi(X)x_i, y_i \rangle.$$

This yields a contradiction which finishes the proof.

It should be mentioned that, as a consequence of part (a) of the above theorem, the map Φ is completely bounded and satisfies $\|\Phi\| = \|\Phi\|_{cb} = 1$.

As a first application we prove that the space $\mathcal{T}(T)$ is 2-hyperreflexive. This can be done by a well-known argument (see Theorem 4.1 in Ptak [8]) which relies on the validity of condition (c) of the above theorem. First recall that a weak^{*}-closed subset $S \subset B(H)$ is k-hyperreflexive if there is a constant a > 0 such that the distance estimate

$$d(A,\mathcal{S}) \le a \sup\{|\operatorname{trace}(Af)| : f \in \mathcal{S}_{\perp}, \operatorname{rank}(f) \le k, ||f||_1 \le 1\} \qquad (A \in B(H))$$

holds, where $\|\cdot\|_1$ refers to the norm in the trace class. For fixed $k \in \mathbb{N}$, the infumum of all possible constants a > 0 occuring in this estimate is denoted by $\kappa_k(\mathcal{S})$. Now we can state the announced 2-hyperreflexivity result.

2 Corollary. For every regular A-isometry $T \in B(H)^n$, the space $\mathcal{T}(T) \subset B(H)$ of all T-Toeplitz operators is 2-hyperreflexive with $\kappa_2(\mathcal{T}(T)) \leq 2$.

Proof. It is an easy exercise to deduce that, for every subset $\mathcal{W} \subset B(H)$, the norm estimate

$$||A|| \le \sup_{C \in M} ||C|| \qquad (A \in \overline{\operatorname{conv}}^{WOT}(M))$$

holds. Thus, using part (c) of the above theorem, we have , we have

$$d(A, \mathcal{T}(T)) \le ||A - \Phi(A)|| \le \sup_{J \in \mathcal{I}_T} ||A - J^*AJ|| \quad (A \in B(H)).$$

Since $||x \otimes y||_1 = ||x|| \cdot ||y||$ $(x, y \in H)$, the latter norm can be computed as

$$||A - J^*AJ|| = \sup\{|\langle (A - J^*AJ)x, y\rangle| : x, y \in H \text{ with } ||x \otimes y||_1 = 1\}.$$

Now observe that the scalar product occuring in the supremum can be written as $\langle (A-J^*AJ)x, y \rangle = \text{trace}(Af)$ with the rank 2-operator $f = x \otimes y - Jx \otimes Jy \in \mathcal{T}(T)_{\perp}$. Since J is an isometry, we have $||f||_1 \leq 2$ if $||x \otimes y||_1 = 1$, and hence

$$d(A, \mathcal{T}(T)) \le 2 \cdot \sup\{|\operatorname{trace}(Af)| : f \in \mathcal{T}(T)_{\perp}, \quad \operatorname{rank}(f) \le 2, \quad ||f||_1 \le 1\}$$

 \square

for every $A \in B(H)$, as we claimed.

Since the above corollary applies in particular to the tuple $T = (M_{z_1}, \ldots, M_{z_n}) \in B(H^2(D))^n$ of multiplication with the coordinate functions on the Hardy spaces over strictly pseudoconvex or bounded symmetric domains $D \subset \mathbb{C}^n$, it extends the cited result of Ptak for the polydisc-case $D = \mathbb{D}^n$.

Another consequence of the simple explicit formula for the Toeplitz projection Φ concerns compact perturbations of *T*-Toeplitz operators. It is known that there is no compact *T*-Toeplitz operator if $\sigma_p(T) = \emptyset$ (see [2]), so it seems natural to conjecture that Φ vanishes on the compact operators in this case. The following proposition settles this at least in the completely non-unitary case.

3 Proposition. Let $T \in B(H)^n$ be a completely non-unitary regular A-isometry. Then the Toeplitz projection Φ defined above satisfies $\Phi(K) = 0$ for every compact operator $K \in B(H)$.

Proof. Fix $x, y \in H$ with $||x||, ||y|| \leq 1$, a compact operator $K \in B(H)$ and a sequence

 $(V_k)_{k\geq 1}$ of isometries in \mathscr{H}_T such that $V_k^* \longrightarrow 0$ (SOT) if $k \to \infty$

which exists by hypothesis according to Proposition 3.13 and Lemma 3.12 in [2].

From the invariance of m we deduce that

$$\langle \Phi(K)x, y \rangle = m_J(\langle J^*V_k^*KV_kJx, y \rangle) \quad (k \ge 1).$$

Since the right-hand side is constant in k, we may add $\lim_{k\to\infty}$ in front of m_J . To prove the proposition, it suffices to show that the argument of m is a zero-sequence in $\ell^{\infty}(\mathcal{I}_T)$.

Towards this aim, fix an arbitrary real number $\varepsilon > 0$ and an arbitrary isometry $J \in \mathscr{H}_T$. Since K is compact, there exist finitely many vectors $x_1, \ldots, x_m \in H$ such that

$$KB_1(0) \subset \bigcup_{j=1}^n B_{\varepsilon}(x_i),$$

where $B_r(p) \subset H$ denotes the closed ball of radius r centered at p. Since $V_k^* \to 0$ (SOT), we can find an index N_{ε} such that

$$\|V_k^* x_i\| < \varepsilon$$
 $(i = 1, \dots, m)$ whenever $k \ge N_{\varepsilon}$.

Now fix any $k \ge N_{\varepsilon}$. Then the vector $z = KV_k Jx \subset KB_1(0)$ lies in some $B_{\varepsilon}(x_i)$ for $1 \le i \le m$. Thus

$$|\langle J^* V_k^* K V_k J x, y \rangle| \le ||V_k^* z|| \le ||V_k^* (z - x_i)|| + ||V_k^* x_i|| < 2\varepsilon.$$

Note that N_{ε} does not depend on the choice of J. Thus we have shown that

$$\sup_{j\in\mathcal{I}_T}\left|\langle J^*V_k^*KV_kJx,y\rangle\right|\stackrel{k\to\infty}{\longrightarrow}0,$$

and the proof is complete.

Combining the above proposition with Theorem 4.6 in [3] we obtain the following consequence.

4 Corollary. If $T \in B(H)^n$ is an essentially normal, completely non-unitary, regular A-isometry and $S \in B(H)$ belongs to the essential commutant of the dual algebra \mathscr{H}_T , then $S - \Phi(S)$ is compact.

From now on, fix a regular A-isometry $T \in B(H)^n$ together with a minimal normal extension $U \in B(K)^n$. Let us write $C^*(\mathcal{T}(T))$ for the C*-subalgebra of B(H)generated by all T-Toeplitz operators. In [7], Prunaru proved the existence of a generalized symbol map for this Toeplitz C*-algebra. More precisely, he showed that there is a (unique, see below) *-homomorphism

 $\pi: C^*(\mathcal{T}(T)) \to (U)'$ which satisfies $\pi(P_H Y|H) = Y$ for every $Y \in (U)'$,

and that this map π yields an exact sequence of the form

$$0 \longrightarrow \mathcal{C} \hookrightarrow C^*(\mathcal{T}(T))) \xrightarrow{\pi} (U)' \longrightarrow 0,$$

where \mathcal{C} denotes the commutator ideal of $C^*(\mathcal{T}(T))$. In view of the identity

$$\mathcal{T}(T) = \{ P_H Y | H : Y \in (U)' \} \subset B(H)$$

(see Prunaru [7] or, for the case of A-isometries, Proposition 3.2 in [3]), such a map π is unique. Its existence has been shown in [7] by making use of Stinespring's dilation

theorem. Following ideas of Mancera and Paul (see [6]), we give an explicit formula for π which is based on the Toeplitz projection $\Phi_U : B(K) \to B(K)$ associated with the minimal normal extension U of T. (Note that if T is a regular A-isometry, then so is U.) Remember that Φ_U itself is defined by the formula $\langle \Phi_U(X)x, y \rangle =$ $m_{\hat{J}}(\langle \hat{J}^*X\hat{J}x, y \rangle)$ ($X \in B(K), x, y \in K$), where \hat{J} ranges over the set \mathcal{I}_U of all isometries contained in the dual algebra \mathscr{H}_U . The following simple observations will play an important role in the sequel. We will use them mostly without further comment.

5 Lemma. For a regular A-isometry $T \in B(H)^n$ with minimal normal extension $U \in B(K)^n$, the following assertions hold:

(a) The restriction $\mathscr{H}_U \to \mathscr{H}_T$, $Y \mapsto Y | H$ is an isomorphism of dual algebras. Its inverse gives a canonical extension map

$$\mathscr{H}_T \to \mathscr{H}_U, \quad X \mapsto \hat{X},$$

which yields a bijection between the sets \mathcal{I}_T and \mathcal{I}_U .

- (b) The set of U-Toeplitz operators $\mathcal{T}(U) = \operatorname{ran}(\Phi_U)$ coincides with the commutant $(U)' \subset B(K)$.
- (c) The space K is the closed linear span of the set $\{\hat{J}^*x : \hat{J} \in \mathcal{I}_U, x \in H\}$.

Proof. Let $\Psi_U : L^{\infty}(\mu) \to B(K)$ denote the L^{∞} -functional calculus of U associated with a fixed scalar-spectral measure $\mu \in M_1^+(K)$. Then it is well known that Ψ_U induces a dual algebra isomorphism $H^{\infty}(\mu) \xrightarrow{\Psi_U} \mathscr{H}_U$ as well as an isomorphism of dual algebras $\gamma_T : H^{\infty}(\mu) \to \mathscr{H}_T, f \mapsto \Psi_U(f)|H$ (see [1], Proposition 1.1). Moreover, by Lemma 1.1 in [2], the isometries in $\mathscr{H}_T(\mathscr{H}_U,$ respectively) are precisely the images of elements $\theta \in H^{\infty}(\mu)$ with $|\theta| = 1$ (μ -a.e.) under the map $\gamma_T(\Psi_U,$ respectively). This proves part (a) and, moreover, shows that every $\hat{J} \in \mathcal{I}_U$ is even unitary. Using this and the generalized Brown-Halmos condition $\hat{J}^*Y\hat{J} = Y$ $(\hat{J} \in \mathcal{I}_U)$ for a U-Toeplitz operator Y, we derive that an element $Y \in B(K)$ belongs to $\mathcal{T}(U)$ if and only if it belongs to the commutant $(\mathcal{I}_U)'$ which is known to be equal to (U)' (see e.g. the proof of Proposition 3.7 in [2]). Finally consider the closed subspace $M = \overline{\mathrm{LH}}\{\hat{J}^*x : \hat{J} \in \mathcal{I}_U, x \in H\} \subset K$. Then M clearly contains H and is reducing for \mathcal{I}_U (and hence U, by Proposition 2.8 (a) in [3]) and thus coincides with K, since K is minimal with these properties.

The generalized symbol-homomorphism π that we are looking for will be obtained as a suitable restriction of the map

$$\widehat{\pi}: B(H) \to B(K)$$
 given by $\widehat{\pi}(X) = \Phi_U(i_H X P_H),$

where $i_H : H \hookrightarrow K$ denotes the inclusion of H into K and $P_H : K \to H$ the corresponding orthogonal projection. In Proposition 7 below, we give a collection of some important properties of this map $\hat{\pi}$. As a preparation, we first show a few auxiliary results making use of the explicit formula

$$\langle \hat{\pi}(X)x, y \rangle = m_{\hat{I}}(\langle \hat{J}^*XP_H \hat{J}x, y \rangle) \qquad (x, y \in K, X \in B(H)),$$

where \hat{J} runs through the set \mathcal{I}_U of all isometries contained in \mathcal{H}_U . Recall that, if $X \in \mathcal{H}_T$, then the unique element $Y \in \mathcal{H}_U$ with Y|H = X will be denoted by \hat{X} .

6 Lemma. The map $\hat{\pi} : B(H) \to B(K)$ has the following properties:

- (a) The range of $\hat{\pi}$ is contained in the commutant $(U)' \subset B(K)$.
- (b) If $X \in (T)'$, then $\widehat{\pi}(X)|_{H} = X$. Moreover, $\widehat{\pi}(W) = \widehat{W}$ whenever $W \in \mathcal{I}_{T}$.
- (c) If $Y \in B(K)$ with $YH \subset H$, then $\widehat{\pi}(Y|H)x = \Phi_U(Y)x$ holds for every $x \in H$.
- (d) Given $x, y \in H$ and $Y \in (U)'$, the equality $\langle \hat{\pi}(P_H Y | H) x, y \rangle = \langle Y x, y \rangle$ holds.

Proof. By a look at the definition of the map $\hat{\pi}$ and the preceding remarks we see that part (a) is obviously true and that $\langle \hat{\pi}(X)x, y \rangle = m_{\hat{J}}(\langle \hat{J}^*XJx, y \rangle)$ holds for every choice of vectors $x \in H$ and $y \in K$. Now, given $X \in (T)'$, we may replace XJx by $\hat{J}Xx$ in the last identity, proving the first part of assertion (b). If $W \in \mathscr{H}_T$ and $\hat{V} \in \mathscr{H}_U$ denote arbitrary isometries, then we deduce from the above that

$$\widehat{\pi}(W)\widehat{V}^*x = \widehat{V}^*Wx = \widehat{W}\widehat{V}^*x \quad (x \in H)$$

In view of Lemma 5 (c), thus the rest of part (b) follows. To establish part (c), fix an operator $Y \in B(K)$ leaving H invariant, as well as arbitrary vectors $x \in H$ and $y \in K$. Then

$$\langle \hat{\pi}(Y|H)x, y \rangle = m_{\hat{J}}(\langle \hat{J}^*YP_H\hat{J}x, y \rangle) = m_{\hat{J}}(\langle \hat{J}^*Y\hat{J}x, y \rangle) = \langle \Phi_U(Y)x, y \rangle$$

holds, as desired. Finally, fix $x, y \in H$ and $Y \in (U)'$. Then we have

$$\begin{aligned} \langle \hat{\pi}(P_H Y | H) x, y \rangle &= m_{\hat{J}}(\langle J^* P_H Y P_H J x, y \rangle) \\ &= m_{\hat{J}}(\langle \hat{J}^* P_H \hat{J} Y x, y \rangle) \\ &= m_{\hat{J}}(\langle P_H \hat{J} Y x, \hat{J} y \rangle) \\ &= m_{\hat{J}}(\langle \hat{J} Y x, \hat{J} y \rangle) = \langle Y x, y \rangle \end{aligned}$$

and the proof is complete.

Now we are able to prove the relevant properties turning $\widehat{\pi}$ into a generalized symbol map.

- **7 Proposition.** The map $\widehat{\pi} : B(H) \to B(K)$ defined above ...
 - (a) is a completely positive and completely contractive mapping with $ran(\hat{\pi}) = (U)';$
 - (b) satisfies the identity $P_H \hat{\pi}(X) | H = X$ for every $X \in \mathcal{T}(T)$;
 - (c) is multiplicative in the sense that $\widehat{\pi}(X_1X_2) = \widehat{\pi}(X_1)\widehat{\pi}(X_2)$ holds, whenever $X_1 \in B(H)$ and $X_2 \in \mathcal{T}(T)$;
 - (d) fulfills $\widehat{\pi}(P_H Y | H) = Y$ whenever $Y \in (U)'$.

Proof. Part (a) is obvious from the definition of the map $\hat{\pi}$ except the inclusion $\operatorname{ran}(\hat{\pi}) \supset (U)'$ which will be proved later. Reformulating part (d) of the above lemma, we obtain that $P_H \hat{\pi}(P_H Y | H) | H = P_H Y | H$ for every $Y \in (U)'$. Since every $X \in \mathcal{T}(T)$ has the form $X = P_H Y | H$ for some $Y \in (U)'$, the assertion of part (b) follows. Towards a proof of part (c), fix arbitrary operators $X_1 \in B(H), X_2 \in \mathcal{T}(T)$

and $\hat{V} \in \mathcal{I}_U$, as well as some vector $x \in H$. The desired multiplicativity then follows from the calculation

$$\begin{aligned} \widehat{\pi}(X_1X_2)\widehat{V}^*x &= \widehat{V}^*\widehat{\pi}(X_1X_2)x \\ &= \widehat{V}^*\widehat{\pi}(X_1P_H\widehat{\pi}(X_2)|H)x \quad \text{(by part (b))} \\ &= \widehat{V}^*\Phi_U(i_HX_1P_H\widehat{\pi}(X_2))x \quad \text{(by part(c) of Lemma 6)} \\ &= \widehat{V}^*\Phi_U(i_HX_1P_H)\widehat{\pi}(X_2)x \quad \text{(by Theorem 1 (c))} \\ &= \widehat{\pi}(X_1)\widehat{\pi}(X_2)\widehat{V}^*x \end{aligned}$$

combined with the fact that elements of the form \hat{V}^*x with $\hat{V} \in \mathcal{I}_U$ and $x \in H$ span K by Lemma 5. Finally, fix isometries $\hat{V}, \hat{W} \in \mathcal{I}_U$ and vectors $x, y \in H$. Then we have

$$\begin{aligned} \langle \widehat{\pi}(P_H Y | H) \widehat{V}^* x, \widehat{W}^* y \rangle &= \langle \widehat{W} \widehat{\pi}(P_H Y | H) x, \widehat{V} y \rangle \\ &= \langle \widehat{\pi}(P_H (Y | H) W) x, \widehat{V} y \rangle \quad \text{(by (c) and Lemma 6 (b))} \\ &= \langle \widehat{\pi}(P_H Y \widehat{W} | H) x, \widehat{V} y \rangle \\ &= \langle Y \widehat{W} x, \widehat{V} y \rangle \quad \text{(by Lemma 6 (d))} \\ &= \langle Y \widehat{V}^* x, \widehat{W}^* y \rangle. \end{aligned}$$

This proves part (d) which also implies the remaining inclusion of part (a). \Box

Note that $C^*(\mathcal{T}(T)) = \overline{LH}\{T_1 \cdots T_n : n \in \mathbb{N}, T_i \in \mathcal{T}(T) \text{ for } 1 \leq i \leq n\}$ since $\mathcal{T}(T)$ is self-adjoint. Thus part (c) of the preceding proposition says that the restriction $\pi = \hat{\pi}|C^*(\mathcal{T}(T))$ is multiplicative and hence an algebra homomorphism. Moreover, if $X = P_H Y | H$ with $Y \in (U)'$ is an arbitrary *T*-Toeplitz operator, then $\pi(X) = Y$ and $\pi(X^*) = \pi(P_H Y^* | H) = Y^*$ by part (d). This proves that π is actually a *-homomorphism and thus coincides with the symbol homomorphism defined by Prunaru in [7] (see [3] for the case of A-isometries).

8 Theorem. Let $T \in B(H)^n$ be a regular A-isometry and let Φ_U denote the Toeplitz projection according to the minimal normal extension $U \in B(K)^n$. If $i_H : H \hookrightarrow K$ denotes the inclusion and $P_H : K \to H$ the corresponding orthogonal projection, then the formula

$$\pi(X) = \Phi_U(i_H X P_H) \qquad (X \in C^*(\mathcal{T}(T)))$$

defines the unique *-homomorphism $\pi : C^*(\mathcal{T}(T)) \to B(K)$ with $\pi(P_H Y|H) = Y$ for $Y \in (U)'$. Moreover, the sequence

$$0 \longrightarrow \mathcal{C} \hookrightarrow C^*(\mathcal{T}(T))) \xrightarrow{\pi} (U)' \longrightarrow 0$$

is exact, where \mathcal{C} denotes the commutator ideal of $C^*(\mathcal{T}(T))$.

References

- J.B. Conway, Towards a functional calculus for subnormal tuples, Trans. Amer. Math. Soc. 326, No.2 (1991), 543-567.
- M. Didas, J. Eschmeier, Inner functions and spherical isometries, Proc. Amer. Math. Soc. 139(8) (2011), 2877-2889.

- [3] M. Didas, J. Eschmeier, K. Everard, On the essential commutant of analytic Toeplitz operators associated with spherical isometries, J. Funct. Anal. 261 (2011), 1361-1383.
- [4] J. Dixmier, Les moyennes invariantes dans les semi-groups et leur applications, Acta Sci. Math. Szeged 12 (1950), 213-227.
- [5] K. Klis, M. Ptak, k-hyperreflexive subspaces, Houston J. Math. 32, No. 1 (2006), 299-313.
- [6] C.H. Mancera, P.J. Paul, Properties of gerneralized Toeplitz operators, Integr. equ. oper. theory 40 (2001), 106-126.
- B. Prunaru, Some exact sequences for Toeplitz algebras of spherical isometries, Proc. Amer. Math. Soc. 135 (2007), 3621-3630.
- [8] M. Ptak, Projections onto the spaces of Toeplitz operators, Ann. Polonici Math. 86.2 (2005), 97-105.