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A note on the Toeplitz projection
associated with spherical isometries

Michael Didas

In [7], Prunaru constructed a projection onto the space of Toeplitz oper-
ators associated with arbitrary families of spherical isometries. We show
that, in the case of a finite spherical isometry T' € B(H)" (or, more gen-
eral, a regular A-isometry), this projection takes a particularly simple form.
As a consequence we deduce that, in this case, the space of Toeplitz op-
erators 7 (T') associated with T is 2-hyperreflexive, extending a result of
Ptak (Theorem 4.1 in [8]) for the Hardy space H?(D) on the unit polydisc
D = D" to the case of strictly pseudoconvex or bounded symmetric domains

D C C™. Another application concerns the exact sequence for the corre-
™

sponding Toeplitz C*-algebra, 0 — C — C*(7(T))) — (U)’ — 0, which
has been established by Prunaru in [7]. We are able to give a concrete for-
mula for 7 based on the Toeplitz projection according to the minimal normal
extension U of T'.

The present paper is a continuation of [2] and [3]. In particular, the reader is
assumed to be familiar with the definitions and notations concerning A-isometries
and their Toeplitz operators determined in Chapter 2 of [3]. For those who are
not, we just want to mention that every spherical isometry T' € B(H)" (i.e. a
commuting tuple of Hilbert-space operators satisfying » ;" | T;*T; = 1p) is a regular
A-isometry with respect to the ball algebra A = A(B,,), and that every commuting
tuple of isometries is a regular A-isometry for the polydisc algebra A = A(D").
In these special cases, the operator algebra #7 C B(H) associated with T' (see
[2] for the precise definition) coincides with the smallest weak* closed dual algebra

*

Ap =Cl[Ty,... ,Tn]w containing 1y and the components of T

An element X € B(H) belongs to the set 7 (T") of T-Toeplitz operators if it satisfies
the generalized Brown-Halmos condition J*XJ = X for every isometry J € 7. In
[7], Prunaru constructed a completely positive unital mapping ® : B(H) — B(H)
with ®2 = & and ran(®) = T(T) for every commuting family T of (spherical)
isometries. For an A-isometry 7' € B(H)"™, this construction takes a particularly
simple form. To be more precise, let Zr denote the commutative semi-group of all
isometries in .#7. By a result of Dixmier [4], we may choose an invariant mean
m : {>*(Zr) — C, ie. a state m on ¢*°(Zr) such that m((ay)s) = m((avs)s)
whenever (ay); € ¢>°(Zr) and V' € Zp. Motivated by Prunaru’s approach (see the
proof of Lemma 2.7 in [7]) we define a linear map ® : B(H) — B(H) by the formula

(@(X)z,y) =my(J*XJz,y)) (X € B(H), z,y € H).
The following theorem summarizes some important properties of this map.

1 Theorem. Let T € B(H)" be a regular A-isometry. Then the map ® defined
above ...

(a) is a self-adjoint, completely positive and unital projection (®? = ®), with
ran(®) = 7(T),

(b) has the property that A*®(X)B = ®(A*XB) for all A,B € (T) and X €
B(H),

(c) and maps every operator X € B(H) into the WOT-closed convex hull of the
set {J*XJ:JeIr}C B(H).



Proof. First observe that, for X € 7(T') and arbitrary vectors x,y € H, we have
(®(X)x,y) = myj((Xx,y)) = (Xx,y). This proves that ® is unital and 7(T") C
ran(®). From now on, let X € B(H) be an arbitrary operator. Making use of the
invariance of m we immediately obtain the identity

O(V*XV) =d(X) (for every isometry V € Zr and every X € B(H)).
Given A, B € (T) and arbitrary vectors =,y € H, the calculation
(A*®(X)Bz,y) = myj(J*XJBzx, Ay)) = m;((J*"A*XBJzx,y)) = (P(A* X B)z,y)

shows that the assertion of part (b) holds. Now applying these two relations to
A = B =V with an isometry V € Zp, we obtain V*®(X)V = &(V*XV) = &(X).
This settles the inclusion ran(®) C 7 (T) and furthermore guarantees that ®2 = @,
since my((J*®(X)Jz,y)) = (®(X)x,y) for z,y € H.

To finish the proof of part (a), it remains to show that ® is completely positive.
Towards this, fix an integer n > 1, a positive operator-matrix X (n) — (Xi5) €
M, (B(H)) as well as a vector (™ = (x1,...,2,) € H". We have to show that the
n-th inflation ®™ : M, (B(H)) — M,(B(H)) of ® is positive. But this can be seen
by the identity

(@) (X)) My = Z (D(Xij)zj, i)
1<i,j<n
= Z my((J* X Jxj, 24))
1<i,j<n

= my(((J*Xi; )2, 2™))

and the fact that the conjugation map B(H) — B(H), X — J*XJ is completely
positive.

Towards a proof of part (c) suppose that, for some X € B(H), the image ®(X) is not
contained in the WOT-closed convex hull of the set M = {J*XJ : J € Ir}. Then,
by the Hahn-Banach theorem, there exists a WOT-continuous linear functional ¢ :
B(H) — C separating ®(X) and M. This means that, for some ¢ > 0, we have

k k
Re Y (®(X)ai, yi) +e <Re » (J*XJzi,y)  (J € Tp),
i=1 i=1
where the vectors z;,y; € H (i = 1,...,k) arise from a representation of ¢ as finite

sum @ = Zf;l i QY.

Applying the invariant mean m to both sides preserves the inequality (m is positive)
and leaves the left-hand side unchanged, while on the right-hand side we obtain

k k k
mg (Re Z(J*Xin,yi>> = Re Y my((J*X Jai,y;)) = Re Y (D(X)zi, i)

i=1 i=1 i=1
This yields a contradiction which finishes the proof. g

It should be mentioned that, as a consequence of part (a) of the above theorem, the
map P is completely bounded and satisfies ||®|| = ||®||cp = 1.

As a first application we prove that the space 7 (T') is 2-hyperreflexive. This can be
done by a well-known argument (see Theorem 4.1 in Ptak [8]) which relies on the



validity of condition (c) of the above theorem. First recall that a weak*-closed subset
S C B(H) is k-hyperreflexive if there is a constant a > 0 such that the distance
estimate

d(A,S) < a sup{|trace(Af)|: f € S1, rank(f) <k, ||f]1 <1} (A€ B(H))

holds, where ||-||; refers to the norm in the trace class. For fixed k € N, the infumum
of all possible constants a > 0 occuring in this estimate is denoted by ki (S). Now
we can state the announced 2-hyperreflexivity result.

2 Corollary. For every regular A-isometry T € B(H)", the space T(T) C B(H) of
all T-Toeplitz operators is 2-hyperreflexive with ko(7(T)) < 2.

Proof. It is an easy exercise to deduce that, for every subset W C B(H), the norm
estimate
1Al < sup [IC]] (A € conv VO (M)
CeM

holds. Thus, using part (c¢) of the above theorem, we have , we have

A(AT(D) < A~ @A) < sup A~ J°AT| (A€ B(H),

Since ||z ® y|l1 = ||z| - [Jy|| (z,y € H), the latter norm can be computed as
|4~ J° AT = sup{| (A — J*AT)r.y) < 2,y € H with 2@yl = 1),

Now observe that the scalar product occuring in the supremum can be written as
((A—J*AJ)x,y) = trace(Af) with the rank 2-operator f = z@y—Jx@Jy € T(T), .
Since J is an isometry, we have || f||1 < 2 if ||z ® y||; = 1, and hence

d(A, T(T)) <2-sup{|trace(Af)|: f € T(T),, rank(f)<2, |fl:<1}

for every A € B(H), as we claimed. O

Since the above corollary applies in particular to the tuple T = (M,,,..., M, ) €
B(H?(D))™ of multiplication with the coordinate functions on the Hardy spaces over
strictly pseudoconvex or bounded symmetric domains D C C", it extends the cited
result of Ptak for the polydisc-case D = D".

Another consequence of the simple explicit formula for the Toeplitz projection ®
concerns compact perturbations of T-Toeplitz operators. It is known that there
is no compact T-Toeplitz operator if o,(T) = 0 (see [2]), so it seems natural to
conjecture that ® vanishes on the compact operators in this case. The following
proposition settles this at least in the completely non-unitary case.

3 Proposition. Let T € B(H)" be a completely non-unitary regular A-isometry.
Then the Toeplitz projection ® defined above satisfies ®(K) = 0 for every compact
operator K € B(H).

Proof. Fix z,y € H with ||z||,|y|| < 1, a compact operator K € B(H) and a
sequence

(Vi)k>1 of isometries in J#7 such that V7 — 0 (SOT) if kK — oo

which exists by hypothesis according to Proposition 3.13 and Lemma 3.12 in [2].



From the invariance of m we deduce that
(@(K )z, y) = my (T Vi KVida,y) (k> 1).

Since the right-hand side is constant in k, we may add limy_. ., in front of m . To
prove the proposition, it suffices to show that the argument of m is a zero-sequence
in £>°(Z7).

Towards this aim, fix an arbitrary real number € > 0 and an arbitrary isometry
J € . Since K is compact, there exist finitely many vectors 1, ..., z,, € H such
that

KB(0) C | Be(),
j=1

where B,.(p) C H denotes the closed ball of radius r centered at p. Since V; — 0
(SOT), we can find an index N, such that

Vi < e (i=1,...,m) whenever k > N..

Now fix any k > N.. Then the vector z = KV, Jx C KB1(0) lies in some B.(z;) for
1 <4 <m. Thus

(T VEEViJa, y)| < IVizll < [V (2 — @) || + Vil < 2.
Note that N, does not depend on the choice of J. Thus we have shown that

sup (VK ViJz, y)| "= 0,
JE€IT

and the proof is complete. O

Combining the above proposition with Theorem 4.6 in [3] we obtain the following
consequence.

4 Corollary. If T € B(H)™ is an essentially normal, completely non-unitary, regu-
lar A-isometry and S € B(H) belongs to the essential commutant of the dual algebra
7, then S — ®(S) is compact. O

From now on, fix a regular A-isometry T' € B(H)" together with a minimal normal
extension U € B(K)"™. Let us write C*(7(T)) for the C*-subalgebra of B(H)
generated by all T-Toeplitz operators. In [7], Prunaru proved the existence of a
generalized symbol map for this Toeplitz C*-algebra. More precisely, he showed
that there is a (unique, see below) *-homomorphism

7:C*(T(T)) — (U) which satisfies 7w(PyY|H)=Y for every Y € (U),
and that this map « yields an exact sequence of the form
0 — C = CYT(T))) = (U) — 0,
where C denotes the commutator ideal of C*(7(T")). In view of the identity
T(T)={PyY|H:Y € (U)'} C B(H)

(see Prunaru [7] or, for the case of A-isometries, Proposition 3.2 in [3]), such a map 7
is unique. Its existence has been shown in [7] by making use of Stinespring’s dilation



theorem. Following ideas of Mancera and Paul (see [6]), we give an explicit formula
for m which is based on the Toeplitz projection @ : B(K) — B(K) associated
with the minimal normal extension U of T'. (Note that if 7" is a regular A-isometry,
then so is U.) Remember that ®p itself is defined by the formula (®y(X)z,y) =
mj(<j*Xj:c,y>) (X € B(K), z,y € K), where J ranges over the set Zy of all
isometries contained in the dual algebra J#;. The following simple observations
will play an important role in the sequel. We will use them mostly without further
comment.

5 Lemma. For a regular A-isometry T € B(H)" with minimal normal extension
U € B(K)", the following assertions hold:

(a) The restriction i — 7, Y — Y|H is an isomorphism of dual algebras. Its
inverse gives a canonical extension map

Hy — Ay, X X,
which yields a bijection between the sets Zp and 1y .

(b) The set of U-Toeplitz operators T (U) = ran(®y) coincides with the commu-
tant (U) C B(K).

(¢) The space K is the closed linear span of the set {J*z : J € Ty, x € H}.

Proof. Let Uy : L>(u) — B(K) denote the L*-functional calculus of U associated
with a fixed scalar-spectral measure y € M1+ (K). Then it is well known that Uy

induces a dual algebra isomorphism H(u) Yy, 7 as well as an isomorphism
of dual algebras v : H®(u) — 7, f — Yy(f)|H (see [1], Proposition 1.1).
Moreover, by Lemma 1.1 in [2], the isometries in 7 (7, respectively) are precisely
the images of elements § € H*>(u) with [#] = 1 (u-a.e.) under the map vy (Vy,
respectively). This proves part (a) and, moreover, shows that every J e Iy is
even unitary. Using this and the generalized Brown-Halmos condition JYJ =Y
(J € Iy) for a U-Toeplitz operator Y, we derive that an element Y € B(K) belongs
to 7 (U) if and only if it belongs to the commutant (Zy)" which is known to be equal
to (U)" (see e.g. the proof of Proposition 3.7 in [2]). Finally consider the closed
subspace M = LH{J*z : J € Ty,z € H} ¢ K. Then M clearly contains H and is
reducing for Zyy (and hence U, by Proposition 2.8 (a) in [3]) and thus coincides with
K, since K is minimal with these properties. O

The generalized symbol-homomorphism 7 that we are looking for will be obtained
as a suitable restriction of the map

7:B(H) — B(K) given by #(X) = ®y(igXPy),

where iy : H — K denotes the inclusion of H into K and Py : K — H the
corresponding orthogonal projection. In Proposition 7 below, we give a collection
of some important properties of this map 7. As a preparation, we first show a few
auxiliary results making use of the explicit formula

(F(X)z,y) =m;(J* XPyJa,y))  (v,y € K, X € B(H)),

where J runs through the set Zy of all isometries contained in 747;. Recall that, if
X € S, then the unique element Y € s with Y|H = X will be denoted by X.



6 Lemma. The map 7 : B(H) — B(K) has the following properties:

(a) The range of 7 is contained in the commutant (U) C B(K).
(b) If X € (T, then #(X)|H = X. Moreover, #(W) = W whenever W &€ Tr.

(c) IfY € B(K) with YH C H, then 7(Y|H)z = ®y (Y )z holds for every z € H.
(d) Given x,y € H and Y € (U)', the equality (7(PyY|H)x,y) = (Yx,y) holds.
Proof. By a look at the definition of the map 7 and the preceding remarks we
see that part (a) is obviously true and that (7(X)z,y) = m;((J*XJz,y)) holds for
every choice of vectors x € H and y € K. Now, given X € (T), we may replace

X Jz by JXz in the last identity, proving the first part of assertion (b). It W € o1
and V € J#; denote arbitrary isometries, then we deduce from the above that

TWWe =V*We=WV*z (€ H).

In view of Lemma 5 (c), thus the rest of part (b) follows. To establish part (c), fix
an operator Y € B(K) leaving H invariant, as well as arbitrary vectors x € H and
y € K. Then

FY|H)z,y) =m;((JYPyJz,y)) = m;(JY Jz,y)) = (2u(Y)z,y)
holds, as desired. Finally, fix z,y € H and Y € (U)’. Then we have

(m(PuY|H)x,y) = m;

and the proof is complete. ]
Now we are able to prove the relevant properties turning 7 into a generalized symbol

map.

7 Proposition. The map 7 : B(H) — B(K) defined above ...

(a) is a completely positive and completely contractive mapping with ran(m) =

)
(b) satisfies the identity Pym(X)|H = X for every X € T(T);

(c) is multiplicative in the sense that m(X1X2) = 7(X1)7(X2) holds, whenever
X € B(H) and Xy € T(T),’

(d) fulfills #(PyY|H) =Y whenever Y € (U)'.

Proof. Part (a) is obvious from the definition of the map 7 except the inclusion
ran(7) O (U)" which will be proved later. Reformulating part (d) of the above
lemma, we obtain that Py7(PyY|H)|H = PyY|H for every Y € (U)'. Since every
X € T(T) has the form X = PgY|H for some Y € (U)’, the assertion of part (b)
follows. Towards a proof of part (c), fix arbitrary operators Xy € B(H), X9 € T(T)



and V € Ty, as well as some vector z € H. The desired multiplicativity then follows
from the calculation

(X1 Xo)Viz = VF(X1Xy)zx
= V*7(X,Py7(X2)|H)z  (by part (b))
= V*ou(ig X, Pu7(Xo))x (by part(c) of Lemma 6)
= V*ou(ig X, Py)7(Xy)x (by Theorem 1 (c))
= F(X))F(X)V*z

combined with the fact that elements of the form V*z with V € Zyy and 2 € H span
K by Lemma 5. Finally, fix isometries V, W € Zy and vectors x,y € H. Then we
have

(®R(PrY |H)V 2, W*y)

W#(PyY |H)z, Vy)

Py (Y|H)W)z,Vy) (by (c) and Lemma 6 (b))
PyYW|H)z, Vy)

YWz, Vy) (by Lemma 6 (d))

iz, WHy).

7(
7(

{
{
=
{
{

~<

This proves part (d) which also implies the remaining inclusion of part (a). O

Note that C*(7(T)) = LH{T}--- T, : n € N, T; € T(T) for 1 <i < n} since T(T)
is self-adjoint. Thus part (c) of the preceding proposition says that the restriciton
m =w|C*(7T(T)) is multiplicative and hence an algebra homomorphism. Moreover,
if X = PgY|H with Y € (U)’ is an arbitrary T-Toeplitz operator, then 7(X) =Y
and 7m(X*) = m(PyY*|H) = Y* by part (d). This proves that 7 is actually a
x-homomorphism and thus coincides with the symbol homomorphism defined by
Prunaru in [7] (see [3] for the case of A-isometries).

8 Theorem. Let T € B(H)" be a regular A-isometry and let ®;; denote the
Toeplitz projection according to the minimal normal extension U € B(K)". If
ig : H — K denotes the inclusion and Py : K — H the corresponding orthogonal
projection, then the formula

m(X) = Py(ig X Pr) (X e C*(T(1)))

defines the unique *-homomorphism = : C*(7(T)) — B(K) with n(PgY|H) =Y
for Y € (U)'. Moreover, the sequence

0 — C— C*T(T))) = (U) —0

is exact, where C denotes the commutator ideal of C*(7(T)). O
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