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Abstract

We extend the Liouville-type theorems of Gilbarg and Weinberger and of Koch,
Nadirashvili, Seregin and Sverdk valid for the stationary variant of the classical
Navier-Stokes equations in 2D to the degenerate power law fluid model.

1 Introduction

To begin with we look at a velocity field u: R? — R? and a pressure function m: R? — R
satisfying the stationary equations of Navier-Stokes

(1.1)

—Au+uFou+Vr = 0,
divu = 0 on R?,

which correspond to the flow of an incompressible Newtonian fluid with constant viscosity
(w.l.o.g. equal to 1). Here we study entire solutions, and a natural question is the search
for suitable conditions which force u (and thereby 7) to be constant. We recall two
prominent examples of such Liouville-type results for the Navier-Stokes equation (1.1): if
u is a finite energy solution, i.e. if we have

|Vul?dz < oo, (1.2)
R2

then Gilbarg and Weinberger [GW] proved u = const making extensive use of the fact
that the vorticity function w := dyu' — 91u? satisfies a nice elliptic equation. Recently,
Koch, Nadirashvili, Seregin and Sverak [KNSS] discussed the instationary variant of (1.1)
and, as a byproduct of their investigations, they showed that in the stationary case (1.2)
can be replaced by
sup |u(x)| < oo (1.3)
z€ER?
implying the constancy of the vector field u. In connection with the Navier-Stokes equa-
tion we like to remark that according to [Zh] the hypothesis

lul"dz < 0o for some t > 1
R2

(replacing (1.1) or (1.3)) implies the vanishing of u, whereas in [FZho] it is observed that
u = const is still true if the growth of |u(x)| as |x| — oo is not too strong.
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In [Fu], [FZha|, [Zh] the situation for generalized Newtonian fluids being either of shear
thickening or shear thinning type is studied. For this case equation (1.1) has to be replaced
by

—div [DH(e(u))] + v*pu+Vr = 0,
on R?

dive = 0 (1.4)

with a strictly convex potential H of class C? acting on symmetric (2 x 2)-matrices (£(u)
denoting the symmetric gradient of the velocity field u) and being of the form

H(e) = h(el) (1.5)

for a function h: [0,00) — [0, 00) for which

either decreases or increases. Note that according to (1.5) we have DH (g) = u(|e])e, thus
1 plays the role of a shear dependent viscosity. For further physical and mathematical
explanations we refer to the monographs [Lal, [Gal], [Ga2], [MNRR] or [FS].

The most severe restriction concerns the existence and the behaviour of D?H (0), which
in particular means that we require

D?*H(0)(g,g) > Me|? (1.6)

for some positive constant . Assuming (1.6) it is shown: suppose that u € C*(R? R?) is
an entire weak solution of (1.4), i.e. it holds divu = 0 together with

0= g DH(e(u)) : e(p)dzx + /11@2 uPopu' ' da (1.7)

for all ¢ € C§°(R? R?) such that div ¢ = 0. Then we have u = const, if either (1.3) holds
or if we replace (1.2) through the appropriate hypothesis

/R2 h(|Vu]) dz < oo . (1.8)

Clearly these results apply to non-degenerate p-fluids for which h(t) = (1 + ¢2)P/?
(modulo physical constants) with exponent p € (1,00) but not to the degenerate power
law model, i.e. to the potential H with function h(t) = tP.

In the present paper we are going to investigate the degenerate p-case, i.e. from now on

we assume that H is given by
He) = e’

for some 1 < p < oo and that v € C*(R? R?) with divu = 0 solves equation (1.7). Then
our results are as follows:

Theorem 1.1 Suppose that 1 < p < 2.



i) Ifu belongs to the space L°(R?,R?), i.e. if condition (1.3) holds, then u is a constant
vector.

i) If p <2, if

2—p
0<a< —— 1.9
“ 6+p (1.9)
and if we have
lim sup |u(x)||z|™* < o0, (1.10)

|z| =00

then the conclusion of i) holds.

Remark 1.1 For the choice p = 2 we reproduce the contribution of Koch, Nadirashuvili,
Seregin and Sverdk [KNSS], for 1 < p < 2 condition (1.10) allows even a certain growth
of |lu(x)| as |x| — oo. In Theorem 1.5 we will discuss in more detail the admissible a
priori growth rates of u in the case p = 2.

The next two theorems extend the Liouville result of Gilbarg and Weinberger [GW] to
exponents p not necessarily equal to 2.

Theorem 1.2 Let 6/5 < p < 2 and assume that

|Vu|P de < oo,
R2

which means that (1.8) is satisfied. Then u has to be constant.
Theorem 1.3 Theorem 1.2 remains valid for exponents p € [2,3].

Theorem 1.4 is the counterpart to Theorem 1.1, 4i) for p > 2 involving formally the
same exponent (p —2)/(p + 6).

Theorem 1.4 Let p > 2 and let uy, € R? denote a vector such that

i) in case 2 <p <6

sup |u(z) — UOOHZE‘;;% —0 as R— o0 (1.11)
lz|=R
i) in case p = 6:
: 1
lim sup [u(x) — us||7]3 < 00 ; (1.12)
|z| =00
iii) in case p > 6:
sup |u(z) — uoo||x\% -0 as R—o0. (1.13)
lz|=R

Then u = us follows.



Remark 1.2 [t remains an open question, if in case p > 2 bounded solutions are constant
without imposing a decay condition.

An inspection of the proofs of Theorem 1.1 - 1.4 will show:

Corollary 1.1 Let p € (1,00) and suppose that u: R?* — R? is a solution of the p-Stokes
system in the plane, i.e. a solution of (1.7) with H(g) = |e|?, where now the convective
term is neglected. Then u is a constant vector if either u € L>®(R? R?) or if u is of finite
energy, i.e. [po |VulP do < co.

Remark 1.3 Clearly Corollary 1.1 can be generalized in the sense that for 1 < p < 2 a
certain growth of u can be included which might be even stronger in comparison to the
formulation given in (1.9) and (1.10). We leave the details to the reader.

We finish this introduction with an extension of the Liouville results obtained in [KNSS]
and [FZho] for the case of the classical Navier-Stokes equation.

Theorem 1.5 Suppose that u: R* — R? is a solution of (1.1) such that

lim sup |u(x)|]z|™* < o0 (1.14)

|x|—o00
for some o < 1/3. Then the constancy of u follows.

Remark 1.4 It would be interesting to know the optimal bound for the number o occur-
ring in (1.14).

Our paper is organized as follows: in Section 2 we give estimates for the energy
i) B (z0) [VulPdz, 1 < p < oo, on disks in terms of the radius under various hypothe-
ses imposed on u. Section 3 is devoted to the case 1 < p < 2, i.e. we will present the
proofs of Theorem 1.1 and of Theorem 1.2 by combining the results of Section 2 with
estimates for the “second derivatives” due to Wolf [Wo].

Since these estimates are not available for p > 2, we have to find alternatives leading
to Theorem 1.3 and to Theorem 1.4. This is done in Section 4.

In Section 5 we give a proof of Theorem 1.5. Moreover, we collect some technical tools
in an appendix.

Acknowledgement: We thank Jorg Wolf for valuable discussions.

2 Estimates for the p-energy on disks

In this section we describe the growth of the energy [ B (o) |VulP dz of weak solutions u

to (1.7) in terms of the radius of the disk under various conditions concerning the growth
of w.



Lemma 2.1 Let v € CY(R? R?), divu = 0, denote a solution of (1.7) for the choice
H(e) = |e|P with exponent p € (1,00).

i) Then, for any real number 5 < 1, it holds

/ [VulPdz < ¢ r_p/ |ul? dz +7“_1+ﬁ/ u|? dz
B (x0) Bar(x0) Bar(z0)

—l—r_l/ |u|3d:v+7’_1_/3/ lu|* dz (2.1)
Bar(x0) Bay(z0)

for all disks Ba,.(xq). Here, the positive constant ¢ is independent of xo, r and u.

i) If u is bounded, then it follows by choosing =0

/ |Vu|pdx§c(||u||Loo(Rz)> r—p/ |u|pdx—|—7‘_1/ wdz|  (2:2)
Br(z0) Bar(z0) Bar(z0)

again for all disks. In particular it holds

/ |VulP dz < C(HUHLOO(]RQ))R (2.3)
Br(0)

for radii R > 1.
If us € R? is some fized vector, then (2.2) is also valid for the function @ := U — s
in place of u.

ii1) Suppose that

lim sup |u(x)||z|”” < 0o
|z|—o00

for some number v such that

0,1), if 1<p<2,
c (2.4)
[—1/2,0), if p>2.
Then it holds for any R > 1
/ |VulP dr < cR™7 . (2.5)
Br(0)

Proof of Lemma 2.1.

Ad i) & ).



Consider n € C§°(Ba(9)) such that 0 < n < 1,7 =1 on B,.(xp) and |Vn| < ¢/r. In
equation (1.7) we let ¢ = n?u — w, where the field w is defined on By, (z¢), vanishing on

0By, () with the properties

divw = div(n®?u) =Vn*-u on By.(x),
IVwllaBaor oy < VI -t La(Bar a)) -

(2.6)

Note that (2.6) holds with the same field w both for the choice ¢ = 2 and for the choice

q = p (cf. Lemma A.1). The integer [ will be determined later. We have
/ DH(e(w) : c(uy? dz = — / DH(e(w)) : (Vi @ u) da
Bay(z0) Ba(x0)

+/B2T(x0) DH(e(u)) : e(w)dz

— / uFOpu - un? do + / uFopu - wdx
Bar(20) Bar(z0)

== T1—|—T2+T3+T4.

Young’s inequality yields for any § > 0

T < e / ()P~ | V] de
BQT‘(IO)

< 5 ()P V55 da + () / IVl ul? de

Bay(z0) Bay(z0)

< 5/ e (u)|P dz + c(é)r‘p/ |ulP dz |
Bar(z0)

Ba(x0)

(2.7)

provided that we choose [ so large that (2 — 1)p/(p — 1) > 2. For small enough ¢ the

bound for |7}] in combination with (2.7) yields

[ P <elrr [ jurde s m v (74T
Bar(z0) Bar(z0)

Next we use (2.6) for ¢ = p and obtain by Young’s inequality

Ty < 6/ \e(u)]”dx+c(5)/ le(w)|P dx
Bar(z0) Bay(x0)

< 5/ le(u)|P dz + 0(5)7‘_”/ lulP dx |
Bar (o) Bar(zo)

thus by (2.8)

/ le(w)|P dz < 5/ e(w)[? dz + c(a)r—p/ P dz + [|Ty] + |Tal] -
Br(xo) BQr(xO)

BQ'I*(CEO)

6
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Finally we observe using an integration by parts

1
T3] = = / uF|u?opn* do| < cr_l/ lu|® dz (2.10)
2 Bar(x0) Bar(z0)
and
T, = —/ vuFopw’ du
B2y (x0)
thus
2 2
|Ty| < / lul* dz / |Vw|*dz|
Bar(z0) Bar(zo)

and the use of (2.6) now with the choice ¢ = 2 shows

2 2
Ty < / lu|* dz 7"_2/ lul* dx
Bar(z0) Bar(z0)

= 7’_1_5/ lu|* dor
BQT(IO)

2 2
7’_1+5/ lu|? dz
L B2r(x0)
< cr”ﬁ/ lu|® dz + crl'@/ lu|* dz . (2.11)
Bay(z0) Bay(z0)

Combining (2.9) with (2.10) and (2.11) and using Lemma A.4 it follows

/ le(u)Pdz < ¢ 'rp/ lul? dz + rHﬁ/ |ul* dz
By (o) Bar(z0) Bar(z0)

—l—'r’l/ |u)? dx—l—'rlﬁ/ lu|*dz | .
Bar(z0) Bor(z0)

Applying Korn’s inequality in W, (Ba,(x0), R?) (cf. Lemma A.2) we arrive at (2.1). From
(2.1) the claims (2.2) and (2.3) immediately follow.

For the second statement of i) we observe that @ = u — u solves equation (1.7) with
the additional term [ uk Oyt - o dx and the choice ¢ = n?'i — (with an obvious meaning
of w) leads to (2.2) for @ with the help of elementary identities like

) ) 1
u];)/ Opi'n*u’ do = ——uﬁo/ |2 0™ d .
Bay (o) 2 Bay (o)
Ad iii).
Suppose that we have

limsup |u(x)||z|” < 0o (2.12)

|z|—o00



with ~ satisfying (2.4).

Case 1: v €[0,1) and 1 < p < 2. In this case (2.12) implies the growth condition

sup |u] <cR’ forall R>1. (2.13)
Br(0)

Quoting inequality (2.1) choosing zo =0, r = R > 1 and § = v, (2.13) gives
/ |Vu|P dz < C[RQ—erpv + R1+37} ,
Br(0)
and since 2 — p+ py < 1+ 37, we get (2.5).

Case 2: v € [-1/2,0) and p > 2. From (2.12) we deduce the boundedness of u together
with
sup |u| < RY (2.14)
R<|z|<2R
for R sufficiently large. We return to the beginning of the proof and replace ¢ through

the modified test-function (with 7 as before and with w* EI/f/}I(TR(O), R?) given according
to Lemma A.1 — again we will make use both of the choice ¢ = 2 and of the choice ¢ = p
in this Lemma)

. u on Bg(0),
T pu—w* on Tr(0) ,

where we always set

TR([L'()) = BQR(ZU()) - BR(ZL‘Q) .
We have
divw* = div(n*u) = Vn*-u  on Tr(0),
IV | Lagrmon < el VI - ull o)) -

Note that fTR(O) div(n?-u) dz = 0. We then obtain a version of (2.7) with 2y = 0, w being
replaced by w* and where in T; and Ty the integration is performed over the annulus
Tr(0). In place of (2.9) we get after specifying c(9)

/ le(u)|P de < (5/ le(u)|P dz + cdl_pR_p/ ulP da + [|T5] + [T4]] . (2.15)
Br(0) Tr(0) Tr(0)
For Tj it holds (compare (2.10))
T3] < cR_l/ lu|® dz
Tr(0)

and for Ty we just observe

|T4| S CR_I

: ;
/ lu|* dx / lul*dx| .
Tr(0) Tr(0)
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Thus (2.15) implies (recalling (2.14))

/ le(u)|P do < (5/ le(w)|P dz + [P R*PTPT 4+ RM] (2.16)
Br(0)

Tr(0)

Since w is bounded, we can apply (2.3) to the first term on the r.h.s. of (2.16), hence
/ le(w)|P dz < ¢[0R + 6" PR PP 4 cR'] (2.17)
Br(0)
Suppose now that we have for some n =0, 1, 2
/ le(u)|Pdow < cRY" | (2.18)
Br(0)

which by (2.3) in fact is true in the case n = 0. Then, instead of (2.17), we have using
assumption (2.18)

/ le(w)|P dz < c[§R™™ + §' P R*PTPY 4 cR] (2.19)
Br(0)
We choose § = R” in (2.19):

/ le(u)Pdz < C[RH‘(”‘H)V + RV R2PHPY 4 RIH3Y
Br(0)
< CRH—(n-H)'y : (220)

provided that we have (n + 1) < 3 (which clearly is true since we suppose n < 2 — recall
v < 0 in the case under consideration) and if we have in addition

T+2-p<l+(n+1)y & 1-p<n. (2.21)

Note that for v € [-1/2,0] and p > 2 (2.21) holds true up to the choice n = 2 and as the
final result we obtain

/B o le(w)|P do < cR'3Y . (2.22)
R

Applying the version of Korn’ s in equality stated in Lemma A.2, iii), to (2.22) we obtain
/ [VulP do < ¢[R™7 + R7PF#7]
Br(0)

and thereby (2.5) which completes the proof of Lemma 2.1. O

From Lemma 2.1 we immediately obtain



Corollary 2.1 Suppose that p > 2 and that

lim sup |u(x)|]z|™” < oo
|z|—00

holds for some number v < —1/3. Then u must be identically zero.

Proof of Corollary 2.1. W.lo.g. we may assume v € [—1/2,—1/3) since otherwise
we replace the (negative) exponent v through —1/2. But then (2.5) yields the claim by
passing to the limit R — oo. 0J

3 Thecasel <p<?2

During this section we always assume that u € C'(R? R?) is a solenoidal field satisfying
(1.7) for the choice H(e) = |e|P with exponent p € (1,2). Note that on account of
Corollary I in the paper [Wo] of Wolf weak solutions of (1.7) from the space W ,.(R? R?)
are of class C'! if we require p > 3/2.

The proofs of Theorem 1.1 and Theorem 1.2 make extensive use of the following pre-
liminary result, where we let

_ [T i e#0,
V(g)‘_{ 0 if e=0.

Lemma 3.1 The velocity field u is an element of the space W?

pﬁlOC(RQ,RQ) and for any
disk B,(xq) it holds (recall T,(xo) = Bo (o) — Br(x0))

/ V(e(w))?|Ve(u)?dz < ¢ r‘z/ \Vu|pdx+r_1/ lu||[Vul*dz| ,  (3.1)
By (zo) T (x0) T (z0)

where ¢ denotes a finite constant independent of u, r and xg.

Proof of Lemma 3.1. The existence of the second order weak derivatives in L (R? R?)
has been established by Naumann [Na] in Theorem 2 of his paper. Actually Naumann
considers slow flows, i.e. the convective term is neglected, but his arguments cover the
case of volume forces f € Lﬁ;c, and since u is a C'-function, we just put f := —u*0u.

For proving estimate (3.1) we benefit from the basic inequality (3.24) in Wolf’s paper
[Wo): let n € C5°(Ba,(g)) such that 0 <n < 1,np=1on B,(z9) and |Viy| < cr ! 1 =1,
2. Choosing

oH -

Si': ) )\:07 52777 f:_ukaku
asij
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and using the symbol 7 for the pressure we obtain from (3. 24) in [Wo] (replacing r by 2r)

(») /B Vi) Ive |2n2dx<zf (3.2)

with I; defined exactly as in the above reference and for a constant ¢(p) > 0. We have (c
denoting positive constants with values varying from line to line but being independent
of zo and r)

L < o / )P [Vl [Vl + [92n]] de
Tr(z0)

< cr_2/ |Vul|P d (3.3)
Tr(x0)

and by Young’s inequality (using also the estimate |V?u| < ¢|Ve(u)| and recalling the
definition of V)

Ll < c / ()P~ |Vl | V| da
Bar(z0)
< ¢ / V)Tl 9 ds
BQT‘ o

< 9 V(e(w))?|Ve(u)|*n? dx+c(5)/Tl( )]5(u)|p]V7]|2dx.

BQT‘(IO)

Choosing § small enough and quoting (3.3) we deduce from (3.2)

/B VPV

< ¢ M/ IVl dz + Iy + L) + 15| + T (3.4)
Ty (o)

Next we rewrite the quantity |I3 + I,| in the following form:

= / mdivedr
Bar(z0)

b

Bar(z0)

where " := 9;n?0pu’. From (1.4) it follows that

/ ndivpdr = / DH(e(u)) : e(p)dzx + / uFopu - pda
Bay(z0) Bar(z0) Bay(z0)

hence

|]3—|—I4| < C

/ () [P~ VP [V2u] do + / ()P V22| Vu] de
Bar(z0)

Bar(x0)

+

/ uFOput om0t da
Bar(20)

=: C[Jl -+ J2 + Jg] .

11



Ji is handled in the same way as I, J, corresponds to I, thus we get from (3.4)

/ V(e(u)?|Ve(u)* dr < ¢ ?"_2/ |VulP dz + |I5| + |1g] + J5 (3.5)
By (x0) T (zo0)
We estimate I5:
15| = / uF OO’ O dz| < 7"1/ |u|[Vul? dz .
Bay(x0) Tr(z0)
For Ig it holds:
|Is] = / uFOpul 00’ da| = / O (u*opu'n?) oy’ da
Bar (o) Bar (o)
= / ouFoutou'n?® do + / w00 ut o’ dx
Bar (o) Bar (o)
+ / uF oot om? d
BQT‘(xO)
= |K1 +K2 +K3| .
Since we are in the 2 D-case, we have K; = 0. For K5 we observe
1 1
| Ky = / —uP 0| Vul*n? dz| = / —u¥|Vu*opn? dz
Bar(x0) 2 Tr(z0) 2
< crl/ u||[Vul*dz
Tr(z0)
and clearly the same bound holds for K3. With (3.5) we therefore arrive at
/ V(e(u)?|Ve(u) | dx
By (z0)
< c|r? / |Vul? dz + R~ / u||Vul* de + Js (3.6)
Tr(xo) Tr(l'O)
By the definition of J3 we finally have
J3 < crl/ |u||Vul|? dx |
Ty (wo)
and our claim (3.1) follows from (3.6). O

12



With the help of Lemma 3.1 we now give the
Proof of Theorem 1.1. Suppose that 1 < p < 2 and that we have (1.9) together with
(1.10) (the case p = 2 together with bounded field u follows by the same arguments
setting v = 0).

From Lemma 2.1, iii), it follows with the choice 2o = 0 on account of o < 1/3

lim R‘Q/ |VulPdz =0 . (3.7)
Thus (3.1) will imply
V(e(w))?|Ve(u)> =0 a.e. on R? (3.8)

as soon as we can show that the remaining integral on the r.h.s. of (3.1) can be estimated
in a suitable way.

Obviously it is also sufficient to discuss the integral of |u||Vu|? with T} (xq) replaced
by An(x0) := Bsya(xo) — By(z0). In fact, inequality (3.1) remains true with A, (xg) as

domain of integration on the r.h.s., which follows by appropriate choice of 7.

In order to estimate the integral [ An(zo) |u||Vu|? dz we choose a new cut-off function
n € C§°(Ba(xg)) such that 0 <np <1, n =1 on A,(x9) and |Vn| < ¢/r. Moreover, we
note that (1.10) implies with a positive constant

[u(@)] < e(1+[af*)% =: h(x) .

Using this bound we obtain after an integration by parts

rl/ lu||[Vul?* dz < crl/ hn? Opu’ Opu’ da
Ar(zo) Bar (o)
- _cr—l/ hu'0,0pu'n? du
Bar(z0)
—cr_l/ hu'Opu'Opn? da
B2'r($0)

—crt / Ophu' Opu'n? da
Boy (J?())

IA

cr_l/ (1+ |2))**|Ve(u)| dz

Bar(z0)

—|—c1"_2/ (1 + |2))**|Vu|dx + cr T,
BQT‘(xO)

where

T := / Ophu'Opu'n? dx .
BQT($O)

13



On the set [e(u) = 0] we clearly have Ve(u) = 0, if e(u) # 0, then we use the definition
of V(¢) and obtain from Young’s inequality

P lvaPds < et [ V@) Ve ) o
Selzo) Bay (o)

+cr—2/ (14 |2)| V| dz + er—|T]
BQT(‘TO

IN

) V(e(u)?|Ve(u)|* dz
Bar(z0)
() / (1+ |2 |e(w) PP da
Bay(0)
+cr—2/ (14 )| V| dz + er—|T) (3.9)
B27‘(IO)
Let us look at the quantity 7": it holds
1
T = / Orh=0k|u|?n* dz
Bay(0) 2

1 1
= —/ Gkﬁkh§|u|2772 dz —/ akh§|U|2ak7]2 dz ,
Ba(x0) Ba(x0)

hence (recalling the bound for |u| and the definition of h)

/ (14 |z)®**2da +r! / (14 |z[)** tdx| .
By (z0) Bar(z0)

It is worth remarking that the quantity [, (z0) hutOputdyn?* do could have been estimated
in a similar way. We insert (3.9) combined with the estimate for |7'| into the r.h.s. of (3.1)
(in the version for the annulus A, () in place of T,.(xq)) with the result

IT|<c

| VEwpvewP
By (zo)
< 5/ V(s(u))2|V6(u)|2dx—|—c(5) 7"_2/ |VulP de
Bgr(l‘o) BQT‘(IO)

—|—r2/ (1+\x|)4a|vu|2pdx+r2/ (14 |2))2| V| dz
Bar(z0) Bar(z0)

—i—rl/ (1+\x|)30‘2dx+r2/ (14 ]y dx] | (3.10)
Bar(z0) Bar(z0)

Note that (3.10) holds for all § > 0 and any disk By,(x¢). Then Lemma A.4 applied to

14



(3.10) yields for all disks

/B ( )V(s(u))2|V5(u)|2dx

r2 / |Vul|P da
BQT‘(IO)

+r2/ (1+\x|)4o‘|Vu|2pdx+r2/ (1+ |2])*| V| de
Bar(z0) Bar(z0)

< c

—H“_l/ (1+ fal)*? dx+r‘2/ (1+ [z de| . (3.11)
Bar(z0) Bar(z0)
At this point we make the particular choice zo = 0. We obtain for » = R sufficiently large

/B | V) IeP s

R / |Vul? dz
Bar(0)

+R7 / [Vul>™? dz + R™*% / V| da
Bar(0) Bar(0)

< c

+R—1/ (1+|x|)3a_2dx+R_2/ (A4 tde| . (3.12)
Byr(0) B>g(0)

The first integral on the r.h.s. of (3.12) is already discussed in (3.7). For the second one
we observe with the help of (2.5):

Rt / |Vu*Pdz < cR™*t / |VulP dz
Bzr(0) Bar(0)

2p—2
P

_ CR—2+404R(1+304)2%I’R2

p=2 _ . pt+6
= cR»R"» -0 as R— o0,

where we used the fact that (1.9) is equivalent to

-2 6
b —|—ozp+ <
p p

0.

Next we note that (1.9) gives by elementary calculations

1

<t 3.13
@ 2p+ 3 (3.13)

15



which shows

R™*t2 / |Vu|dz < cR™2% / |Vul? dz
Byr(0) Bar(0)

— 1f3a 19 2
cR 2420+ P +2 p

-

p
RQ(lf%)

IN

_1 2p+3
cR»™ % 50 as R— oo.

Finally we discuss the last two integrals on the r.h.s. of (3.12): we have

2R
R—l/ (1+ |z))**?de = 27TR—1/ (1+t)% 2t de
B2r(0) 0
2R
< szl/ (1+¢)*>tdt
0
2m
= —R'(1+2R)**-1] -0
B1e" [( +28) }
as R — oo on account of a < 1/3. Moreover,

R™? (1+ |z))**tdz < cR?R* ™ — 0
B3r(0)

as R — oo, and with (3.12) we have shown

/ V(e(w)?|Ve(w)* dz = 0.
R2
which implies (3.8).

On the set [e(u) = 0] we once more observe Ve(u) = 0, hence V2u = 0 by recalling
the inequality |VZu| < ¢|Ve(u)| a.e. On the set [e(u) # 0] we deduce Ve(u) = 0 from
(3.8). Thus V?u = 0 on R? which means that u is affine. However, since we assume the
growth condition (1.10), the constancy of w is established, which completes the proof of
Theorem 1.1. O

The proof of Theorem 1.2 additionally needs the following auxiliary results:

Lemma 3.2 If u is as in Lemma 3.1, then v = |e(u)|2 belongs to the space W3 e (R?)
and

/Q‘Vv|zdx < C/QV(g(u))Z‘Vg(u)‘z da

for any domain Q € R?.

16



Proof of Lemma 3.2. Let vs := (6 + [¢(w)])?/2, § > 0. From u € W2, (R? R?) it easily
follows that vs € Wy,,.(R?) together with

2 cV(e(u))?|Ve(u)|* on the set [e(u) # 0]
Vo { 0 ) ) on the set [i(u) =0]

so that the sequence {vs} is locally uniformly bounded in Wy,,.(R?), thus

IHIA

! (3.14)

vs =10 in Wy (R?) .

Clearly © = v, and the desired estimate for [,|Vv[*dz follows from (3.14) and lower
semicontinuity. O

Lemma 3.3 Suppose that v € C'(R?) satisfies [o, |Vv|P dz < oo for some p € (1,2).
Then it holds

lim sup R~ lv|de < oo,
R—oo0 Br(0)

in particular we deduce for any § > 2

lim R~ lv|dz = 0.

Proof of Lemma 3.3. W.l.o.g. let o = 0 and fix some real number v > 0. Introducing
polar coordinates r, 6 we define

f(r,80) = |v(rcos(0),rsin(d))| +~ .

The following calculations are essentially due to Gilbarg and Weinberger (see [GW], proof
of Lemma 2.1). We have by Hélder’s inequality

d 2 ,
&[/0 f(r,6)Pdo
-1

[ 2 1% 2

< f(r,0) 40 Fr, 0P £ (r,0)] dO

P

=

p—1 1

0 0
[ ron 1 %71 2 P 2 P
< _ /0 f(r0) d9_ [ /0 f(r,0) d9] [ /O | (r, 0)[P d9] :

where we use the symbol f, for the partial derivative of f with respect to the variable 7.
Thus, for any v > 0 we have shown (recall that f is depending on the parameter )

[
@[/0 f(r,0) d@] <

17

/O R0 dQ] " (3.15)




Now let

B =

2

p(t) = [ f(t,0)° d9]

From (3.15) we get for any R > 1:

(1) — (1) S/l /Oﬂlfr(r,9)|pd9 dr

3=

R 27 1 L L
= / / |fr(r,@)[PdAO| rer— v dr
1 0

UlR [/02“ £ (r 9>|pd9]rdr] % [/IRr;p”l dr] B |

where we have used Hélder’s inequality once more. This shows (recall p < 2)

/1R /027r | fr(r,0)Pr d6 dr] :

[fo(r, 0)] < [Vol(re®)

/ VP dx] . (3.16)
Bgr(0)—B1(0)

In (3.16) we pass to the limit v — 0 and the finiteness of the energy then yields the
inequality

S =

IN

p(R) < (1) + c(p)

and since

we deduce

p(R) < (1) +c(p)

sup/0 ' |[v(Rcos(0), Rsin(f))|P df < oo . (3.17)

R>1

Hence, for any R > 1 we obtain from (3.17)

/ pfPdz = // |v(r cos(0), rsin(9))[Pr do dr
Br(0)

2m
c+/ / v(rcos(@), rsin(0))|Pr do dr

< 1+ R?),

IN

which proves Lemma 3.3. 0

Proof of Theorem 1.2. Now our assumption on w is

|Vu|P dz < oo, (3.18)
R2

18



and in view of this hypothesis and by quoting Lemma 3.1 we have to discuss the quantity

7“_1/ |u||Vu|? dz
Ty (o)

in order to verify (3.8) for the situation at hand. Let

A= ][ udz .

Tr(wo)

Clearly it holds

7}($0)

r! / lu||[Vul? dz < er™! / lu — A||Vul* dx + cr | A| |Vul?dz . (3.19)
Ty 1‘0) T’I’(ZO)

In (3.19) we apply Holder’s and Young’s inequality and get for any § > 0

— A7 »
7“_1/ lu||Vul*dz < ¢ / [|u |] " da / |Vul? dz
Tr(20) Tr(zo0) r Tr(z0)

+0 |Vul? dz

7}($0)
+c(0)r? |73 / |u| dor : (3.20)
Tr(xo)

To the first integral on the r.h.s. of (3.20) we apply the Sobolev-Poincaré inequality: let
pt =20 /(2+7p), p:=p/(p—1), so that p’ is the Sobolev exponent of p*.

RS

Let us first consider the case p > 4/3 for which p* < p. Then we have

1 1
/ lu— AP dz| <e¢ / |VulP dz|
Tr(x0) Tr(xo)

and by Holder’s inequality

/ lu — AP dz
T (z0)

S

3=

7

P *
< ¢ / |Vul|P d r20-5)5
T (x0)

1

— 33 p ’
= cr'p / |VulPdz| .
TT(IO)

19



We therefore obtain

7“_1/ lu||[Vul*dz < cr? s [/ ]Vu|pdx]
T (z0) T (z0)
+5/ |Vul? dz
Tr(20)
2
+c(8)r? [T_3/ |ul da:] . (3.21)
Tr-(x0)

Let v := 2 — 4/p and assume w.l.o.g. that p < 2, hence v < 0. Using our assumption

(3.18) in (3.21), we find
/ |Vu|? dz
Tr(20)

p

+c(8)r? [7“_3/ |ul dx] ,
Tr(zo0)

and another application of Young’s inequality shows

r_l/ lu||[Vu|*dz < 25/ |Vul? dz
Ty (z0) Tr(z0)

+c(0)

D=

1
/ |Vul? dz
Tr(z0)

RS

T_l/ Ju||[Vul*dz < (5/ |Vul? dz + cr”
T (z0) T (z0)

p

r3 / |u| dz . (3.22)
Tr(z0)

Next we discuss the quantity [ Bon(z0) |Vu|? dz: by Korn’s inequality Lemma A.2, i7), we
have

_p_
P71 4 p?

(3.23)

/ |Vul* dz < ¢ / le(w)|* dz + r_2p/ u|? da
Bay(x0) Bar(x0) Bar(wo)

Since u is a function of class C''(R?, R?) and thereby an element of the space W . (R?, R?)
we can apply the L?-variant of Korn’s inequality to get (3.23). Let B := Ban(20) udx
and ¢ := 4p/(2 4 2p), i.e. 2p is the Sobolev exponent of q. We therefore get from the

Sobolev-Poincaré inequality

IA
o

[ 1
lullzor(paniean < [l = Bllzzs(paeny + 1BIr? |

IA
o

r 1
IV ula(Baaon + Bl |

/ |VulP de
B2T(330)

20
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hence (quoting (3.18))

7’_2”/ [u[* dz < c[r™? + |B[*r*=?] . (3.24)
B27‘(IO)

By Lemma 3.2 the function v := |(u)["/? is in the local space W3, (R?), and from Lemma

A .3 we obtain
/ le(u)|**dz < ¢
Ba(x0)

42

loc

/ le(u) P da:/ (Vo|*dz
Bar(z0) Bar(zo)

/ . \e<u>|pdx] ] |

thus by (3.18) and the estimate for [, . |Vv[*dz stated in Lemma 3.2 we find

/ le(u)|2? dz < c[ / V(e(u)?|Ve(w) 2 dz + r—2 (3.25)
Ba(x0) Bar(z0)

Inserting (3.23)-(3.25) into (3.22) we get

7’1/ || Va2 de < 26 V(e ()| Ve(u) d
Tr(zo)

Boy (:CO)

r72 4 | B 4

+c(9)

p

p—1
= / ulde| | (3.26)
T (z0)

Next we return to (3.1) estimating the second term on the r.h.s. through (3.26) with the
result (replacing 0 by §/2)

[ vewrvemras < 5 [ ve@pIvempas
Br(x0)

Bar(x0)

2p
P2 e 2 [ ][ [ul dx]

B2r (xO)
P
R™? / |u| dz
B27‘ (IO)

g

Applying the 6-Lemma A.4 we arrive at (after choosing r = R > 1 and zg = 0)

2p
R;_S/ |u| dz
Bar(0)

p

p—1
R / |u|d:17] ] (3.27)
B2r(0)
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/ V(e(u)?|Ve(u)Pdz < ¢|R72+ R +
Br(0)
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By Lemma 3.3 it follows that the r.h.s. of (3.27) vanishes as R — oo, thus we obtain (3.8)
and, as outlined at the end of the proof of Theorem 1.1, u has to be an affine function.
But then (3.18) yields the constancy of u, which proves Theorem 1.2 in the case p > 4/3.

If 6/5 < p < 4/3 we return to (3.21) and estimate the r.h.s. of the inequality stated in
(3.20) in a different way: observing that by the choice of p

*

p<p =

14
<2p,
3p—2 P

we can apply the interpolation inequality
IVully: < Va3l Vully,®
where all norms are calculated over T,.(zq) and where

1-— 2
Q, hence a:—f—l.
p

1
p P p
o dx] [/ |Vu|2pdx] < o | Vull- | Vull3,
T (z0)

er [Vl Vull3

IN

3;704
cr? / |Vul? dz :
T (z0)

IN

With elementary calculations one obtains

3—a 6—3p

2p 2p

and we find that
33—«

2p
is true under our hypothesis p > 6/5. This gives us the flexibility to apply Young’s
inequality with the result

<1

3—a

o
rt / |Vul? dz <c|r " +/ |Vu|? dz
T (z0) Tr(z0)

with a suitable positive exponent k. Using this estimate in (3.20) the proof can be
finished as before. O
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4 The case p > 2

We start with an appropriate variant of Lemma 3.1 which is more difficult to establish since
now we can no longer benefit from the higher weak differentiability results of Naumann
[Na] and Wolf [Wo.

Lemma 4.1 Letu € C*(R?* R?) denote a solenoidal field satisfying (1.7) with H(e) = ||
for some exponent p > 2. Moreover, let

W= W(e(u)) == |e(u)| e(u) .
Then it holds:
i) W is in the space Wy, (R* R**?).

ii) There exists a finite constant ¢ independent of u such that for any 6 > 0 and for
each q > 2

/ IVW|?dz < 5/ VW |*dz + ¢
By (z0)

Ba(x0)

5_17"_2/ |Vul|P dx
Tr(z0)

2
/ ([ dz / Vurdz| | (41)
Tr(zo0) T (x0)

Proof. We use the difference quotient technique and let

1
ASv(z) = E(v(m + heq) — v())
for functions v, parameters h # 0 and a coordinate direction e,, a = 1, 2. If ¢ €

Cj(R?* R?) satisfies div ¢ = 0, then we have the equation(1.7) together with the identity

4t

for any disk B,(xg).

0= /R2 DH(e(u))(z + hey) : e(@)(z) dz + /Rz(ukakui)(x + hey ) (z) dr |

hence after subtracting the equations and after dividing by h

/R2 Ap(DH (e(u))) : e(p) dz +/ AY (uFOpu) - pdz =0, (4.2)

R2

and (4.2) clearly extends to solenoidal fields from W, .(R* R?) with compact support.
Alternatively — taking into account the pressure function 7 in the weak form of (1.4) —

we can replace (4.2) by

0 = /R2 Ap(DH (g(u))) : () dx+/ A (uFopu) - pdx —/ Af divpde

R2 R2
== T1 -+ T2 + T3 (43)
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valid for all ¢ € W), .(R*,R?) with compact support. In (4.3) we choose ¢ = @, =
n*A%u with @ = 1, 2 being fixed (no summation convention w.r.t. «) and with n €
CZ(Bar(70)), 0 < <1,p=1o0n B.(x), |Vn| < cr~!. We discuss the quantities T} from
(4.3) related to our choice of ¢: it holds

T, = / Ay (DH(g(u))) : e(Ayu)n® da
Bar(20)

+/ Ap(DH(g(u)) : (Vn* ® Aju) dx
Bar(0)
= U +U,y,
and for U; we observe
A7 (el e(w) (x) : (Afu)(a)
= [ @I+ hea)e(@) e+ hea) — o) P (@)eu)()]

1

F @+ hea) - e(u)(@)]

> @)@ + hea) + ()3 (@)| Afe(u) (@) : Afe(u)(a)

where the last inequality can be easily deduced from Lemma A.5, 7). At the same time,
Lemma A.5, 7), implies

il + hew(ute + hew) - 2P -2(e)e(u) @)
2 2 prQ 1
< c|le)Ple o+ hea) + P @] T prle) @+ hea) —(w)(@)]

thus using Young’s inequality
-2 « (6%
Us| < C/B - [le(@)|(x + hea) + le(u)|(2)]" " [Aje(u)]|AfulVn|* dz
< 5/3 - [|€(u)|(m + heq) + |5(u)|(x)]p72Af:5(u) : AYe(u)n? dx

es! /B ( )[yg(u)|(x+hea)+|s(u)\(x>}p‘2|vn|mgu.Agudx

for any 0 > 0. Combining these estimates, returning to (4.3) and choosing § small enough
we find

[ [l s hew + el @)= - Agee) a

< ¢

[ [P+ hew) + P @) [99P AT Afuda
T (z0)

+|Ty| + |Ts|

24



Next we look at the pressure term 73: we have
div(n*A%u) = Vn? - Afu =:

where the function f is compactly supported in T,(zp). Moreover, we have by the
definition of f;* and the properties of n

/ firde = / div(n? - Afu) dz
Tr(z0) T (z0)

T — Zo

= —/ Afu(z) - dH'(z)
9B (z0) r

= —/ div(Aju)de =0,
Br(zo0)

where H! denotes the one-dimensional Hausdorff-measure. According to Lemma A.1 we

find " EI/(I)/;(TT(xO), R?) satisfying div ¢ = f?* on T, () and sharing the usual estimates
on the annulus 7, (zy). We get

T3] = / A% div(n®Afu) dz| = / Afrfrde
T’I‘(IO) TT(xO)

= / Ay div ey do
Tr(zo0)

and if we use (4.3) with 15 as test function it follows

T3] = /T( )Aﬁ(DH(&?(u))) ce(vy) dx+/ AY (uFOpu) - da

Tr(wo)

For S} we first observe (compare the discussion of Us)
S < e (AP e« do
Tr(z0)
-2 « «
< C/T( ) (le(w)l(z + hea) + le(w)](x))" | Afe(w)lle(vh)| do
r(Z0
and then use Young’s inequality to get for any 6 > 0

151 <4 - )(|5(u)|(x+h6a)+|5(u)|(:c))p2|A25(u)|2dx
b [ (el + hea) +E@I@) @R . (46)

Tr(zo0)
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According to [Gal], Theorem 3.2, p. 130, the support of ¢ is compact in 7,.(zy) and by
quoting Lemma 7.23 of [GT] we can estimate using Holder’s inequality

! / (Ie(w)l(@ + hea) + [e(w)](2))" e(@f) [ da
Tr(z0)

< a[ / ()P da [ / |Vu|pdx]
Tr(z0) T (z0)

< 051r2/ |Vul|P de . (4.7)
717"(330)

P

We apply a similar reasoning to the first term on the r.h.s. of (4.4) and get from (4.4)—(4.7)

/B( )?72(\€(U)!p2($+h€a)+ [e(u)P~*(2)) [ARe(w)|* dz
< 5/ (le()P=(x + hea) + le(w)["~*(2)) |ATe(u)*] dz
T (x0)
—1—05_17’_2/ [VulP dz + c[|Ta] + [ So|] (4.8)
Tr(z0)

with Ty defined in (4.3) for the choice ¢ = n?A%u and Sy from (4.5). Let us look at Ty:
we have

T, = / AY (uFOpulyn? Afu’ da
BQ’I‘(IO)

= / ASuF Ot ASuin? do + / uF O (A" ASu'n? da
Bay(z0)

Bar(z0)
: . 1
= / ASuF o ASuin® do — / u* (Afu - Aju)opn? dz
Bay(z0) 2 Bar(z0)
hence
1
Tz < ¢ / (Afu - Afu) |Vl dz + —/ (Afu - Aju)|u|dz | . (4.9)
Bar (o) " J T (o)
For estimating S, we again use the properties of 1§ as already done after (4.6):
Sy = —/ uFopu - A da
Tr(z0)
i !
< | [ vepa] | uPivepa
7%($0) L YF(IO)
14 :
< ot / |Vul? dz / lu?|Vul*dz|
Tr(z0) | Tr(z0)
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thus

|Sa| < ¢ 7“_1/ |Vu|2da:—|—r_1/ Jul?|Vul? dz | . (4.10)
Tr(x0) T (x0)

Inserting (4.9) and (4.10) into (4.8) and using the J-Lemma A.4 with suitable functions
f, f; and g (replacing the domain of integration 7, (x,) through Bs,(z¢) on the r.h.s. of
the inequalities under consideration), we deduce

/B . (|€(u)|p_2(x + hey) + |€(u)|p_2(m))|A?L€(u)|2dx < c(r,u) < oo (4.11)

for a constant ¢(r,u) being independent of h. Now it is easy to see (cf. Lemma A.5, ))
that

AW (e(u)) - AFW (e(u))
can be bounded from above by the quantity
(le(@)P~(2 + hea) + |e(w) P72 (2)) [ARe(w)

so that (4.11) implies
W (e(u)) € Wy oo (R? R¥?) . (4.12)

At the same time we can deduce from (4.8) and the subsequent estimates by taking from
now on the sum w.r.t. a (letting W = W(e(u)) and using the formulas for T3, S»)

/ AST : ASW dx
By (zo)

< 5/ ATV + AST d + ¢
Bar(z0)

5_17"_2/ |VulP dz
T (z0)

—l—/ | Apu Opu’ Agu | do + 77 / ul (Afu - Aju) dz
Bar(z0) Ty (z0)

—H"_1/T( )|u||Vu|2dx—|—7“/T( )|u||Afh¢ff|2dx] . (4.13)
r{Z0 r(To

Here the third and the fourth integral on the r.h.s. correspond to 75, whereas the last
two ones are produced by breaking up S; with the help of Young’s inequality. Using
the properties of ¥ we can estimate the last integral on the r.h.s. of (4.13) by Hélder’s
inequality in order to get for any ¢ > 2

2

1_% q

[ onianwiras < | [ ] | [ (At
T (z0) Ty (o) Ty (o)

1—2 2

q q q

cr_2/ |u| =2 / |Vu|?dz|
Tr(20) Tr(z0)
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If we insert this estimate into (4.13), we obtain after passing to the limit A — 0 (using

Do Opul Dt = 0)

/ VWV ()P de < 5/ VI (e(u))[? da
B (z0)

Bar(x0)

+c 5_17‘_2/ |Vu|pdx+r_1/ |u||Vu|? dz
Tr(z0)

T (z0)

/ |u|72 da / |Vul?dz
Tr(xo) Tr(xo0)

and (4.14) holds for all § > 0, all disks B, (x) and for any ¢ > 2. Hence, with (4.14) our
claim (4.1) is established. O

2
q

4t

] , (4.14)

We also need a substitute for Lemma 3.3.

Lemma 4.2 Suppose that v € C'(R?) satisfies [o, V[P dz < oo for some p € (2,00).
Then we have

) 1
lim sup —2/ lv|de < oo .
R—o0 R375 Br(0)

Proof of Lemma 4.2. From the proof of Lemma 3.3 we recall the inequality

p(R) — (1) < [/1]%/02”f'“(’”’e)pderdrrl/frip”ldr] -3

being valid also for p > 2. In place of (3.16) we obtain (recalling |f.(r,0)| < |Vo(re®)))

P
/ |VulPdz|
Br(0)—B1(0)

provided we choose R > 1. Using the finiteness of the energy we get after passing to the
limit v — 0

p—

o(R) < (1) + c(p) R

2m
sup RQ_p/ |v(Rcos(f), Rsin(0))[P df < oo .
0

R>1

This estimate implies for R > 1

R p2m
/ ofPdz = // |v(r cos(0), rsin(9))[Pr do dr
Br(0)

c+/ / |v(r cos(0), rsin(9))[Pr do dr

< (14 RP) <cRP.

IN
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Finally we make use of Holder’s inequality

/ lv|dx < ¢ / lv|P dx
Br(0) Br(0)

hence our claim follows by inserting the previous estimate. ([l

P
RQ(l—%)

Next we give the

Proof of Theorem 1.4. W.l.o.g. let u,, = 0. Let us further assume that

sup |u(z)||z]”"—=0 as R— o (4.15)
jo|>R

for some v € [—1/3,0), hence we have for all R > 1:
lu(z)] < O(R)R” forall R<|z|<2R (4.16)

with some function © such that O(R) — 0 as R — oco. From (4.1) we deduce choosing
g = p and applying Young’s inequality (W := W (e(u)))

517“2/ |Vul|P d
BQT(CCO)

2
/ |u|ﬁ dz / |VulP dz
Bay (o) Bar (o)
5_1T_2/ |Vul|P de
Bar(z0)

7/ |Vu|pd3:+TP22/ \u|ppf2 dz
Bay (o) Bar (o)

for any disk B,(xp). Let 7 := r® for some k € (0,1). The d-Lemma A.4 yields for any

disk B,(xp)
/ VW [?dx < ¢ 7’2/ yvuypdx+r1+*’~/ |VulP dx

B (z0) Bar(z0) Bar (o)
2K -1

T2 / u|72 dz | . (4.17)
B2r($0)

We choose g = 0, r = R > 1 and insert (2.5) in (4.17), where the last integral on the
r.hus. of (4.17) is handled with the condition |u| < ¢. We arrive at

/ VW [Pdr < 4 IVW|?dz + ¢
Br(20)

B2'r (I())

4t

< 5/ IVW|?dz + ¢
Bor(x0)

4t

/ VW[dz < c[R72H497 4 griestledy 4 it j2]
Br(0)
< C[R"H_‘g'y + R17p252:| ’
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i.e. we have with some v < 1 (w.l.o.g. v > 0)

/ VW |*dx < cR” forall R>1. (4.18)
Br(0)

Next we choose 1 € (v,1) and apply (4.1) with ¢ = p and § = R™* to obtain
/ VW [2dz < c|R™HY 4 Rr2HIES
Br(0)

YRR sup |u|R(1+37)%]. (4.19)

R<|z[<2R

By the choice of the above parameters, the first two terms on the r.h.s. of (4.19) converge
to zero as R — oo and it remains to discuss the quantity (recall (4.16))

(ri=R"PO(R)RRM™): = 9(R)R 1+
where we have to distinguish the three different cases of Theorem 1.4.

Case 1. For 2 < p < 6 we may choose v = (2—p)/(p+6) in (4.15), where we note that

1
7>—§ & p<b6.

This particular choice of v gives

1—g+7(1+§):0
p p

which implies (g — 0 as R — oo, hence the first part of the theorem is established.
Case 2. For p = 6 we have by assumption
lu(z)| < ¢cR™5  for all lz| > R

and for all R > 1. Since the condition ©(R) — 0 as R — oo is not needed for deriving
(4.18), we obtain (4.18) as before. Moreover, (2.5) gives

|VulP dez < oo . (4.20)
R2

As above we let ¢ = p and 6 = R™* in (4.1) to obtain (recall (4.18))

3
/ luf? da / Vafdz| | (421)
Tr(0) Tr(0)
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/ VW [*de <c|R" " + R?*+ R!
BRr(0)




Here we observe

Rfl

3
/ |u]% de| < cR1R™5 R?3 <ec
Tr(0)

and by (4.20) the last integral of (4.21) converges to 0 as R — oo which completes the
proof in the second case of Theorem 1.4.

Case 3. In the case p > 6 we again have by assumption the global energy estimate
(4.20). We recall (2.15) of Section 2, choose 0 = 1/2 in this inequality and observe that
by the boundedness of u

R_p/ luPdez —0 as R— o0.
Tr(0)

Moreover we have

3
5] + |Ty| < CR[ sup |u\] —0 as R—o0.
R<|z|<2R

As a consequence we see

V4 1 P
(WP dz < §/RQ ()P da

which means £(u) = 0, hence u is a rigid motion and u = const by the decay assumption.
This completes the proof of Theorem 1.4. O

e
]R2

We finish this section with the

Proof of Theorem 1.3. Let 2 < p < 3. As above we have (4.17), where we know in the
situation at hand that

|Vu|P de < oo,
R2

hence for any R > 1 (W := W (e(u)))

/ VW [*de < c|R' + Rf”zl/
Br(0)

Bzr(0)
We insert (4.22) in the r.h.s. of (4.1) choosing ¢ = p there and get for any 6 > 0

/ VIV|2dz < 6 Rl+”+R—f—"f1/
Br(0) Bar(0)
+c

§IR? / |VulP dz
Tr(0)

p—2

/ |u|7°2 da / |Vul|P da . (4.23)
Tr(0) Tr(0)
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|u|72 dx]

+R7!




Let
A= ][ uwdz
Bsr(0)

and observe

/ Wi de < c/ u— A7 da + B A7
Bar(0) Bar(0)

p

] . (4.24)

< ¢ / lu— Al72 dz +
Bar(0)

_949pP=2
R % udz

Bar(0)

To the first integral on the r.h.s. of (4.24) we apply the Sobolev-Poincaré inequality, which
is possible on account of p/(p — 2) > 2: letting

2p
3p—4

1<qg:=

and observing g < p on account of p > 2, we find

p=2 _

/ lu— A|72 da < c / |Vul|?dx
Bar(0) | 7/ B2r(0)
/ |Vul|P da
Bar(0)

/ |Vu|P do
Bsr(0)

Q=

IN
o

— cRi» , (4.25)
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where we also made use of Holder’s inequality. With (4.24) and (4.25) we find

p=2 2

& = Rl/ |u|7-2 da / |Vul? dz
| /Tr(0) Tr(0)

< R! / |u|72 da / |VulP dz
| / B2r(0) Tr(0)
42 1
< ¢|R'Ri > / |Vul|P do / |VulP de
T5(0) | | /Br

/ |Vul|P do
| /Tr(0)

LRIRTS / wdz
Byr(0)

/ |Vul|P de / \Vul? dz

Tg(0) Br(0)

R / udx / |VulP dz
B2r(0) Tr(0)

6
R*™»

= C

hSEIN]

] : (4.26)

and since
lim |Vu|P de = 0
R—o0 TR(O)
it follows
lim & =0 (4.27)
R—o00

on account of p < 3 and by quoting Lemma 4.2. Using (4.24) and (4.25) one more time
we obtain

— — 251 3
& = OR 2 |ul?=2 dx
Bar(0)

=
SR v RGP / |VulP dz
Bsr(0)

IN

— R RS

Since p < 3, it holds

2
—143=2--" <o 9.
p—2 p—2
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Recalling that x € (0,1) is arbitrary, we may fix, e.g., K = 3/4, hence 2 — 2x = 1/2.
Finally we choose § = 1/R in (4.23). This implies

1

/ |Vul|P dx —0
B2r(0)

as R — oo and at the same time by Lemma 4.2

SR 72 'R?

p

_ 2 | _4 e o 2 e
OR »2 "|R » udx =|R " » udx — 0
Bag(0) Bar(0)
as R — oo, hence
lim & =0. (4.29)
R—o0

Inserting (4.26)—(4.29) into (4.23) and passing to the limit R — oo, we have shown that
VW =0 on R2, hence u is affine and the finiteness of the p-energy implies the constancy
of u. U

5 Proof of Theorem 1.5

Let u denote an entire solution of (1.1) satisfying (1.14). Introducing the vorticity
w = Ou' — Oyu?

we have for ¢, [ € N sufficiently large with n € C5°(R?)
/ Wrrtdr = / (Opu' — 0w da
R2 R2
= / div(—u?, uh)w?n? da
RQ
= — /R2(—u2,u1) . V[qu_lnm] dx

= (2¢—1) | Vw-(u? —u")wp*da

R2
+21 /2(u2, —ul') - V! e (5.1)
R
and from divu = 0 we infer
/ u- Vw3 de = ! / u- Vw22 da
R2 29 — 2 Jpe
= _2q1— 5 /]R2 w- Vw2 da (5.2)
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Recall that
Aw—u-Vw=0 on R?,

hence

/ Vw-Vgodx—i—/ u-Vwedr =0
R2

R2
for p € CL(R?). We specify ¢ = n*w??~3 and get

/ n*(2q — 3)|Vw|?w? ™ dx
RQ
= — | Vw Vp2w?3de — / u - Vw3 da (5.3)
R2 R2

By Young’s inequality, the first term on the r.h.s. of (5.3) is estimated through

5/ \Vw]2w2q74n2l dz + ¢(0, l)/ ]Vn|27]2l’2w2q’2 dx ,
R2 R2

to the second term on the r.h.s. of (5.3) we apply (5.2). This yields after appropriate
choice of §

2 ‘Vw’2w2q74772l dz
R

< C(l,Q)[/ wzq‘2n2"zlvnl2dx+/ IUHVn”\wzq‘zdx]- (5.4)
R? R?
Now we return to (5.1) and estimate
/ WP dr < (2q—1)/ |Vw||u|w?T2n* dx—l—?l/ lu||[Vn|w? Tt da
R? R? R?
< 5/ qungldijc(cS,q)/ IVw|?|u?w?*n* do
R2 R2
s2 [ Jul|Vgltr i e,
R2
hence for ¢ sufficiently small

/ nQZWZq dzr
R2

< e, q)

/}R2 IVw|?|u?w?*n do + /R2 u|| V|t da | . (5.5)

Next we specify n: let R > 1 and choose n = 1 on Bg(0), 0 < n < 1, sptn C Bygr(0),
|Vn| < ¢/R. From (1.14) we get (w.l.o.g. we assume « > 0)

lu(z)| < cR* for all € Bg(0). (5.6)
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We use (5.6) on the r.h.s. of (5.5) and get

/ 7]2lw2q dz
Bar(0)

< «ol,q) RQQ/ |Vw|2w2q_4772[dx—|—Ra/ IVnlw2 2t de | |
BQR(O) B2R(O)

and if we apply (5.4) on the r.h.s. quoting (5.6) one more time it follows

/ 7]2lw2q dz
B2r(0)

< ¢, q)

RQOA/ qu—2n2l—2|vn|2 dﬂ?‘i‘ R3a/ |vn2l|w2q—2 dzx
Br(0) B2r(0)

+Ra/ w2q_1|V77|7]2l_1 dz
B>r(0)

= C(l,q) [Tl +T2+T3:| .

Young’s inequality yields
T, < / WA 222 pRa=2 g
B3r(0)
< 5/ w2qn(2l—2)2q/(2q—2) dr + 0(5)R2+q(2a—2)
Bzr(0)
and
T, < / W22l pial g,
Bar(0)
< 5 w2q7](2l71)2q/(2q72) dz + C(5>R2+q(3a71)

Bar(0)

as well as
TS S C/ w2q—1772l—1R04—1 dr
Bzr(0)
< (5/ qun(2l—1)2q/(2q—1) dz + 0(5)R2+2q(a—1) )
Bar(0)
Moreover, for [ > 1 we have
21 — 2)2q

( (20 — 1)2q
20 < A
[ < 20— 2 and [ < =1
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hence, for 0 small enough, we obtain from (5.7)
/ n21w2q dr < c(l,q) [R2+q(2a—2) + R2+q(3a—1) + R2+2q(a—1)] ) (58)
Bar(0)

Recall that o < 1/3. Therefore we can fix a sufficiently large exponent ¢ with the property
that
24+¢(Ba—1) <0,

and (5.8) shows

/ w¥dz < ¢(l,q)R*B*") 50 as R0,
Br(0)

hence w = 0 on R2 This together with divu = 0 shows that u is harmonic and the
constancy of u then follows from (1.14) and results concerning entire harmonic functions.

O

Appendix. Helpful tools

The following lemma is a well known result. A proof together with further comments can
be found in [Gal], Chapter III, Section 3. Our formulation is taken from [AM], Lemma
2.5.

Lemma A.1 Suppose that we are given numbers 1 < p; < p < ps < 0.
Then there exists a constant ¢ = c(p1,p2) as follows: if f € LP(B,.(xo)) satisfies

UCBr(q;O))fd$ = 0, then there exists a field v in the space I/IO/;)(BT([B()),RQ) satisfying
dive = f on the disk B,(xo) together with the estimate

/ ]VU\degc/ |f|° dx
By (o) B, (o)

for any exponent s € [p1,p|. The same is true if the disk is replaced by the annulus
T;.(w9) = Bar(0) — Br(x0).

Our next tool is a collection of Korn-type inequalities. We refer the reader to Lemma
3.0.1 in [F'S], where a list of references is given. We note that the last statement follows
from the first one by applying i) to nv, where 7 is a suitable cut-off function.

Lemma A.2 Let 1 < p < oco. Then there ezists a constant c¢(p) such that the following
imequalities hold.

i) For all v El/f/;(Br(xo),R2) we have

V|| r(B,(20)) < () lle()||Lr (B, (x0)) -
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i) For all v e W, (B,(xo), R*) we have

1900205,y < ) {11820 + 7 ol o, 00 | -

iti) For all v € W} (Ba(20), R?) we have letting T, (o) = Bar(0) — By (20)
IV 0ll o, aan < e®)| 1@ ernenn + 7 ol ean] -

The following lemma originates from the work of Ladyzhenskaya (see [La], Lemma 1,

p. 8). Actually it is a local variant of Ladyzhenskaya’s lemma established as Lemma 2.6
in part B of [Zh].

Lemma A.3 Suppose that w € Wy (B, (o)), B.(zo) C R% Then there is a constant ¢
independent of u, xo and r such that
2
/ |u|? dx] ] .
Br(x0)

/ lu|*dz < ¢ / \u|2dx/ |Vul*dz + 72
Br(zo0) Br(zo0) Br(zo0)

The next lemma goes back to Giaquinta and Modica (see [GM1], Lemma 0.5). We state
a small extension presented in [FZha] as Lemma 3.1.

Lemma A.4 Let f, fi, ..., fi denote non-negative functions from the space Li (R?).
Suppose further that we are given exponents oy, ..., oy > 0.
Then we can find a number dg > 0 (depending on o, . .., oy) as follows: if for o € (0, dp)

it is possible to calculate a constant c¢(6) > 0 such that the inequality

!
/ fde <6 Fdo+ ()Y / £, da (A1)
B (z0) Bay(z0) j=1 Bor(z0)

holds for any choice of B,(xo) C R?, then there is a constant ¢ with the property

!
/ fdx < CZT_aj / fjdz (A.2)
B, (z0) j=1 Bay(x0)

for all disks B,(z) C R%
Finally we recall some well known inequalities.

Lemma A.5 Let p > 2.

i) With suitable positive constants ¢y < co it holds

_ _ p=2 p=2 |2 _ _
e [J672 4 Inf 21 = nl® < [IEl"= e = Inl"= 0| < o [lel2 + i 2)le — P

forany &, n € RM, M > 1.
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ii) There ezists a constant ¢ > 0 such that

(IE[P=2€ = InlP=2n) = (€ —n) = [P + InP~?] € — nf?
forallé, ne RM M > 1.

Proof. i) follows from inequality (2.4) in [GM2] by letting p = 0, 6 = p — 2 in this
reference.
For proving ii) we let F(£) = |£[P72¢ and observe that

(PO -Fm): (6= = [ GFo+He—mat: €=

1
_. /1M+d£—mwﬁﬁk—nF+A,
0

where A is easily seen to be non-negative. From Lemma 2.2 in [FH] we therefore deduce

(F)=FMm): (&€=n)=dé=nl[lE ="+ nP] ,

and our claim immediately follows from this estimate by considering the cases || > 2|n|
and || < 2|n|, respectively. O
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