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Abstract

The goal of this paper is to generalize the BEM-based FEM for sec-
ond order elliptic boundary value problems to three space dimensions with
the emphasis on polyhedral meshes with polygonal faces, where even non-
convex elements are allowed. Due to an implicit definition of the trial
functions, the strategy yields conforming approximations and is very flex-
ible with respect to the meshes. Thus, it gets into the line of recent de-
velopments in several areas. The arising local problems are treated by
two dimensional Galerkin schemes coming from finite and boundary ele-
ment formulations. With the help of a new interpolation operator and its
properties, convergence estimates are proven in the H1- as well as in the
L2-norm. Numerical experiments confirm the theoretical results.

Keywords BEM-based FEM · polyhedral mesh · convergence estimates · non-

standard finite element method

Mathematics Subject Classification (2000) 65N30 · 65N38 · 41A25 · 41A30

1 Introduction

The finite element method (FEM) is a powerful tool for the approximation of
solutions of boundary value problems. Its history goes back to the mid of the
nineteenth-century. Since that time, there have been a lot of developments for the
method which is usually applied on simplicial meshes. Nowadays, the need for
more general meshes is arising and thus schemes like finite volume [18], discontin-
uous Galerkin [10], multiscale finite element [13] or mimetic discretization meth-
ods [5] as well as virtual element methods [2] are sometimes favourable over the
classic finite element approach. These strategies are applicable on more general
meshes due to their nature. But also within the finite element method, there are
some developements towards polygonal and polyhedral meshes, see [14, 15, 23].
Such meshes appear naturally in geological and biological science but also while
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meshing complex geometries where simplicial elements can be restrictive and de-
teriorate the mesh quality.
In 2009, D. Copeland, U. Langer and D. Pusch [8] proposed a new strategy which
goes back to boundary element domain decomposition methods. This approach
uses locally implicit defined trial functions in the finite element method such
that it is applicable on general polygonal meshes in two space dimensions. This
promising approach, also called BEM-based FEM, has been studied concerning
convergence [16, 17], higher order trial functions [21] as well as in an adaptive
strategy [24]. Already in [9], the method was formulated in three space dimension
on polyhedral meshes and this formulation has been used in the literature cited
above. Unfortunately, the polyhedral elements are restricted to those with only
triangular faces. The aim of this presentation is to generalize the lowest order
trial functions to arbitrary polyhedral elements with polygonal faces. We even
relax the convexity of the elements and prove linear convergence in the H1-norm
and quadratic convergence in the L2-norm with respect to the mesh size.
The article is organized as follows. In Section 2, we state the model problem,
give a definition of regular and stable meshes and review the boundary element
method (BEM) which is utilized in the numerical realization. The trial functions
are introduced in Section 3 and we discuss the set up of the finite element matrix.
A priori error estimates are proven in Section 4 and finally, we present numerical
experiments in Section 5 which confirm the theoretical results and draw some
conclusion.

2 Preliminaries

For the sake of simplicity, we restrict ourselves to a model problem. Let Ω ⊂ R3

be a polyhedral and bounded domain with boundary Γ = ΓD ∪ ΓN which is split
into a Dirichlet and a Neumann part. Furthermore, we assume |ΓD| > 0 and
there is a given source term f ∈ L2(Ω), a Dirichlet datum gD ∈ H1/2(ΓD) as well
as a Neumann datum gN ∈ L2(ΓN). We consider the boundary value problem

−div(a∇u) = f in Ω,

u = gD on ΓD,

a∇u · n = gN on ΓN ,

(1)

for a ∈ L∞(Ω) with 0 < amin ≤ a ≤ amax on Ω. By the use of an extension
uD ∈ H1(Ω) of the Dirichlet datum, the Galerkin formulation for (1) with the
solution u = u0 + uD ∈ H1(Ω) reads

Seek u0 ∈ V : aΩ(u0, v) = `(v) ∀v ∈ V (2)

with

aΩ(u, v) =

∫
Ω

a∇u · ∇v
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and
`(v) = (f, v)Ω + (gN , v)ΓN

− aΩ(uD, v),

where
V = H1

D(Ω) =
{
v ∈ H1(Ω) : γ0v = 0 on ΓD

}
.

Here, γ0 : H1(Ω)→ H1/2(Γ) denotes the usual trace operator, see [1], and (·, ·)Ω

and (·, ·)ΓN
denote the L2-scalar products over Ω and ΓN , respectively. Due to

the properties of the material coefficient a ∈ L∞(Ω) the bilinear form

aΩ(·, ·) : H1(Ω)×H1(Ω)→ R

is bounded and coercive on V , i.e. there are constants m,M > 0 such that

|aΩ(u, v)| ≤M‖u‖H1(Ω)‖v‖H1(Ω) and aΩ(v, v) ≥ m‖v‖2
H1(Ω),

for all u, v ∈ V ⊂ H1(Ω). Since `(·) : H1(Ω) → R is also bounded on V , the
variational formulation (2) admits a unique solution according to the lemma of
Lax-Milgram, see [7]. Due to the boundedness and coercivity of the bilinear
form, the energy norm ‖ · ‖E =

√
aΩ(·, ·) is equivalent to the usual Sobolev norm

‖ · ‖H1(Ω) on V .
The next step in finite element methods is to discretize the domain Ω and to
introduce a finite dimensional subspace Vh of V such that we obtain a discrete
Galerkin formulation which turns into a system of linear equations. The intro-
duction of Vh and the set up of the system are addressed in Section 3. At this
point, we discuss the discretization of the domain. As we have mentioned at the
beginning, we allow arbitrary polyhedral meshes with polygonal faces that fulfill
some regularity and stability conditions.
A discretization of the domain or also called mesh is denoted by Kh and it consists
of polyhedral elements K ∈ Kh, polygonal faces F ∈ Fh, edges E ∈ Eh and nodes
z ∈ Nh, where Fh, Eh and Nh are the sets of faces, edges and nodes in the
mesh. With Nh,D, we indicate the nodes which lie on ΓD or on the transition
lines between the Dirichlet and Neumann boundary. The sets of nodes, edges and
faces which belong to an element K ∈ Kh are labeled N (K), E(K) and F(K),
respectively. In the same manner, we define N (F ) and E(F ) for F ∈ Fh as the
sets of the corresponding nodes and edges. The elements, faces and edges are
assumed to be three, two and one dimensional open sets. The diameter of an
element K ∈ Kh, a face F ∈ Fh and the length of an edge E ∈ Eh are denoted
by hK , hF and hE, respectively.

Definition 1. A set of faces Fh is called regular if all faces are flat and there
is a constant σF such that every face F ∈ Fh is star-shaped with respect to a
circle inscribed in F with radius ρF and center zF and the aspect ratio hF/ρF is
uniformly bounded from above by σF for all F ∈ Fh.
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Definition 2. A mesh Kh is called regular if the associated set of faces Fh is
regular and if there is a constant σK such that every element K ∈ Kh is star-
shaped with respect to a ball inscribed in K with radius ρK and center zK and
the aspect ratio hK/ρK is uniformly bounded from above by σK for all K ∈ Kh.

Definition 3. A mesh Kh is called stable if there is a constant cK such that for
every K ∈ Kh the estimate hK ≤ cKhE for all E ∈ E(K) holds true.

In the following, we always consider regular and stable meshes Kh. Note that the
elements are star-shaped with respect to a ball and thus non-convex elements are
allowed in the discretization. Nevertheless, each element is a Lipschitz domain
by itself and we have

hE ≤ hF ≤ hK ≤ cKhE ≤ cKhF

for K ∈ Kh and all F ∈ F(K) and E ∈ E(F ).
An alternative approach to the finite element method is the so called boundary
element method. In the case of a constant material parameter a(·) and vanishing
right hand side f in (1) we end up with the Laplace equation. We consider this
equation on an arbitrary element K ∈ Kh and prescribe some Dirichlet data on
the boundary, i.e.

−∆u = 0 in K,

u = g on ∂K.
(3)

With the help of the so called fundamental solution of minus the Laplacian, which
is

U∗(x, y) =
1

4π|x− y|
for x, y ∈ R3,

the usual trace operator γK0 : H1(K) → H1/2(∂K) as well as the conormal
derivative, which takes the form

γK1 v = nK · γK0 ∇v ∈ H−1/2(∂K)

for sufficient regular v and the outer unite normal vector nK to ∂K, we have the
representation formula

u(x) =

∫
∂K

U∗(x, y)γK1 u(y) dsy −
∫
∂K

γK1,yU
∗(x, y)γK0 u(y) dsy for x ∈ K. (4)

Applying the trace and the conormal derivative operators to this formula, it is
possible to derive the relation between the Dirichlet datum γK0 u and the Neumann
datum γK1 u on ∂K. It is

γK1 u = SKγ
K
0 u with SK = V−1

K

(
1
2
I + KK

)
, (5)
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where the operator
SK : H1/2(∂K)→ H−1/2(∂K)

is called Steklov-Poincaré operator. Here, we have used the standard boundary
integral operators which are well studied, see e.g. [19, 22]. For x ∈ ∂K, we have
the single-layer potential operator

(VKζ)(x) = γK0

∫
∂K

U∗(x, y)ζ(y) dsy for ζ ∈ H−1/2(∂K)

as well as the double-layer potential operator

(KKξ)(x) = lim
ε→0

∫
y∈∂K:|y−x|≥ε

γK1,yU
∗(x, y)ξ(y) dsy for ξ ∈ H1/2(∂K).

In the numerical realization, these operators have to be approximated. For this
reason, a Galerkin scheme is utilized on the boundary ∂K. The first step is to
discretize the boundary of K with an admissible triangulation. The boundary
mesh is denoted by Bh = Bh(K) and its elements, the triangles, by T . The set of
nodes is labeled Mh =Mh(K). For each T ∈ Bh, we define a function

τ 0
T =

{
1, in T

0, else
and set ΦN = {τ 0

T : T ∈ Bh},

which is a basis of the space of piecewise constant functions over the mesh Bh. It is
span ΦN ⊂ H−1/2(∂K), and thus we use this discrete space for the approximation
of the Neumann trace. Additionally, we define for z ∈Mh a function

ϕz =


1, at z

linear, on T ∈ Bh
0, at x ∈Mh \ {z}

and set ΦD = {ϕz : z ∈Mh}. (6)

These functions form a basis of the space of piecewise linear and globally contin-
uous functions over the boundary ∂K. Therefore, it is span ΨD ⊂ H1/2(∂K) and
we use this discrete space for the approximation of the Dirichlet trace.
In the boundary value problem (3) the Dirichlet datum g ∈ H1/2(∂K) is given
and we approximate it by gh ∈ span ΦD. This datum is used in a discrete Galerkin
formulation for (5)

Seek th ∈ span ΦN : (VKth, ϑ)L2(∂K) =
((

1
2
I + KK

)
gh, ϑ

)
L2(∂K)

∀ϑ ∈ ΦN

to approximate the unknown Neumann datum t = γK1 u ∈ H−1/2(∂K). Due to
the properties of the boundary integral operators, the variational formulation has
a unique solution. The representations

th =
∑
τ∈ΦN

tττ and gh =
∑
ϕ∈ΦD

gϕϕ
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yield the system of linear equations

VK,hth =
(

1
2
MK,h + KK,h

)
g
h
,

where the underline refers to the coefficient vector, e.g. th = (tτ )τ∈ΦN
. The

matrices are defined as

VK,h =
(

(VKτ, ϑ)L2(∂K)

)
ϑ∈ΦN ,τ∈ΦN

and

MK,h =
(

(ϕ, ϑ)L2(∂K)

)
ϑ∈ΦN ,ϕ∈ΦD

, KK,h =
(

(KKϕ, ϑ)L2(∂K)

)
ϑ∈ΦN ,ϕ∈ΦD

.

After the computation of th, we use the approximations gh ∈ span ΦD of the
Dirichlet datum and th ∈ span ΦN of the Neumann datum in the representation
formula (4) to obtain an approximation of the exact solution u of (3) in K.

3 BEM-based FEM in 3D

In this section, we discuss the generalization of the BEM-based finite element
method studied for the two dimensional case in [21, 24]. So, we address the def-
inition of trial functions on meshes with polyhedral elements which satisfy the
regularity of Definition 2. These functions are used to construct an approxima-
tion space Vh which can be utilized in the discrete Galerkin formulation of the
finite element method. The idea of the BEM-based FEM is to define the trial
functions implicitly on each element as local solutions of the underlying differen-
tial equation. Here, the coefficients are approximated by piecewise constants and
the right hand side is neglected, see [8]. For our model problem, we end up with
the Laplace equation.
In order to get a nodal basis of Vh, we declare for each node z ∈ Nh a trial
function ψz which is equal to one in z and zero in all other nodes of the mesh.
In [21, 24], the authors used linear data on the edges for the two dimensional
case. So more precise, they defined ψz as unique solution of

−∆ψz = 0 in K for all elements K,

ψz(x) =

{
1 for x = z

0 for all other nodes x
,

ψz is linear on each edge of K,

where the elements K are convex polygons. In the case of polyhedral elements
with triangulated surfaces, we can get a straightforward generalization by replac-
ing the word ‘edge’ by ‘triangular face’. This strategy is chosen in the present
literature [9, 16, 17].
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To handle arbitrary polygonal faces of the polyhedral elements, we follow another
strategy. If we look again into the two dimensional case, we observe that the val-
ues of the trial functions are fixed in the nodes and extended uniquely along the
edges by linear functions. This linear extension is nothing else than an harmonic
extension along the edge and thus the trial function is also defined on the edges
according to the underlying differential equation. Therefore, we propose a step-
wise construction for the trial functions in the case of polyhedral elements with
polygonal faces as sketched in Figure 1.

ψ ∈ {0, 1} ∆1ψ = ψ′′ = 0 ∆2ψ = 0 ∆3ψ = 0

Figure 1: Stepwise construction of trial functions

Denoting the i-dimensional Laplace operator by ∆i, we define the trial func-
tion ψz, which belongs to z ∈ Nh, as unique solution of

−∆3ψz = 0 in K for all K ∈ Kh,
−∆2ψz = 0 in F for all F ∈ Fh,
−∆1ψz = 0 in E for all E ∈ Eh,

ψz(x) =

{
1 for x = z

0 for x ∈ Nh \ {z}
,

where the Laplace operators have to be understood in the corresponding linear
parameter spaces. So, the values in the nodes are prescribed. Afterwards, we
solve a Dirichlet problem for the Laplace equation on each edge. Then, we use
the computed data as Dirichlet datum for the Laplace problem on each face,
and finally we proceed with the Laplace problem on each element, where the
solutions on the faces are used as boundary values. In the case of convex faces
and elements, these problems are understood in the classical sense and we have
ψz ∈ C2(K) ∩C0(K). In the more general situation of non-convex elements, the
weak solution is considered such that we have at least ψz ∈ H1(K).

Remark 1. The novel inside into the BEM-based FEM is to define the trial
function implicitly on the edges, faces, and elements and not only, as in previous
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publications, on the element level. In particular, considering a Helmholtz or
convection-diffusion equation, the trial functions already become non-linear on
the edges and the properties of the differential equation are build into the trial
functions on all levels, on the edges, faces, and elements.

We set
Ψh = {ψz : z ∈ Nh} as well as ΨD = {ψz : z ∈ Nh,D},

and we introduce the trial space

Vh = span Ψ with Ψ = Ψh \ΨD.

According to the regularity of the trial functions inside the elements and their
continuity across the element boundaries, the trial space is conforming in the
sense of Vh ⊂ V . The discrete version of the Galerkin formulation (2) for the
approximation uh of the exact solution u with uh = u0h + uDh and

u0h =
∑
ψ∈Ψ

βψψ ∈ Vh as well as uDh =
∑
ψ∈ΨD

βψψ

reads ∑
ψ∈Ψ

βψ aΩ(ψ, φ) = (f, φ)Ω + (gN , φ)ΓN
−
∑
ψ∈ΨD

βψ aΩ(ψ, φ) for φ ∈ Ψ,

where uDh is the discrete extension of the boundary data gD in the model prob-
lem (1). In the representations of u0h and uDh the same symbol βψ is used for
the coefficients, but there should be no confusion since Ψ ∩ΨD = ∅.
If there are only triangular faces of the polyhedra, the definition of the trial space
agrees with the former generalization. Otherwise, we have to solve additional
Dirichlet boundary value problems on the faces of the elements. This can be
done by the help of a two dimensional boundary element method. Nevertheless,
we propose to use a 2D finite element method on triangular meshes of the faces.
For each F ∈ Fh, we introduce a mesh Bh(F ) of level l. The coarsest mesh
with l = 0 is obtained by connecting the nodes z ∈ N (F ) with the point zF ,
which is fixed once per face according to Definition 1. Afterwards, the meshes
of level l ≥ 1 are defined recursively by splitting each triangle of the previous
level into four similar triangles. So, the midpoints of the sides of a triangle are
connected successively, see Figure 2. The set of nodes in the triangular mesh is
denoted by Mh(F ). Obviously, we can combine the discretizations of the faces
to a triangulation of the whole surface of an element K ∈ Kh by setting

Bh(K) =
⋃

F∈F(K)

Bh(F ) and Mh(K) =
⋃

F∈F(K)

Mh(F ).

Due to the construction, the surface mesh Bh(K) is conforming. Now, we address
the approximation of the trace of a trial function ψz, z ∈ Nh on a face F ∈ Fh
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Figure 2: Polyhedral element with surface triangulations of level l = 0, 1, 2

with z ∈ N (F ). For the finite element computations on the face, we have to use
a further trial space. Here, we utilize the usual basis ΦD(F ) of piecewise linear
and continuous functions. It is

ΦD(F ) = {ϕz : z ∈Mh(F )},

compare (6). We approximate the trace of the trial function ψz by

gFz =
∑

ϕ∈ΦD(F )

gϕϕ,

where the coefficients gϕ which belong to ϕ = ϕx with x ∈ ∂F are fixed such
that gFz coincides with the piecewise linear data of ψz on the edges of the face F .
Consequently, we obtain the discrete Galerkin formulation

Seek gFz :
∑

x∈Mh(F )

gϕx

∫
F

∇ϕx · ∇ϕy = 0, ∀y ∈Mh(F ) : y 6∈ ∂F,

for the approximation of the trace of ψz on F ∈ Fh, where z ∈ N (F ). This
discrete variational formulation admits a unique solution and the corresponding
system of linear equations can be solved by a conjugate gradient method, for
example. Changing the level of the face discretization, the accuracy of the finite
element approximation can be adapted.

Remark 2. In the case of another differential equation like for Helmholtz or
convection-diffusion problems, we should choose a mesh level l ≥ 1 for the faces.
This automatically implies a discretization of the edges which can be used to
handle the non-linear data of the trial functions along the edges in the 2D finite
element method on the faces.

To get an approximation gKz of the trace of ψz on the whole boundary of an
element K ∈ Kh, the Dirichlet problems on the faces F ∈ F(K) are solved
successively. Afterwards, these approximations are combined to

gKz =
∑

ϕ∈ΦD(K)

gϕϕ with ΦD(K) =
⋃

F∈F(K)

ΦD(F ).
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Thus, we obtain a piecewise linear and globally continuous approximation of
the Dirichlet trace γK0 ψz over the surface triangulation Bh(K). In the numerics,
we use this approximated datum instead of the exact boundary values of the
trial functions to define ψz. Therefore, we only obtain approximations of the
introduced trial functions and we rather work with an approximated space Vl of
Vh than with Vh directly. Let us define

Ψl = {ψlz : z ∈ Nh} as well as ΨD,l = {ψlz : z ∈ Nh,D},

where ψlz is the unique solution of

−∆ψlz = 0 in K,

ψlz = gKz on ∂K

for all K ∈ Kh. Additionally, we set

Vl = span Ψ with Ψ = Ψl \ΨD,l

and obtain another conforming approximation space Vl ⊂ V which depends on
the auxiliary triangulations of the faces and especially on their discretization
level l. The trial function ψlz approximates the function ψz. If it is clear from
the context which function is meant and the level is not important, we skeep the
index l in the following.
In the computational realization, we actually solve the discrete Galerkin method
which is obtained by exchanging Vh, Ψh and ΨD by Vl, Ψl and ΨD,l in the discrete
variational formulation above. That means, we seek an approximation ul of the
exact solution u with ul = u0l + uDl and

u0l =
∑
ψ∈Ψ

βψψ ∈ Vl as well as uDl =
∑

ψ∈ΨD,l

βψψ (7)

fulfilling∑
ψ∈Ψ

βψ aΩ(ψ, φ) = (f, φ)Ω + (gN , φ)ΓN
−
∑

ψ∈ΨD,l

βψ aΩ(ψ, φ) for φ ∈ Ψ, (8)

where uDl is a discrete extension of the boundary data gD and Ψ = Ψl \ΨD,l.
The next task is to discuss the approximation of the several terms in the discrete
Galerkin formulation. The L2-scalar product over the Neuman boundary is rather
simple. The trial functions are given as piecewise linear on a triangulation of ΓN .
Therefore, a standard Gaussian quadrature can be used on each triangle. To han-
dle the L2-scalar product over Ω, we use a quadrature over polyhedral elements.
This can be done by refining the element into tetrahedra or by using directly a
numerical integration scheme for polyhedral domains, see [20]. The evaluations
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of the trial functions are realized with the help of boundary element methods.
Thus, the Neumann traces of the trial functions have to be approximated.
At this point, it becomes clear why we have chosen a finite element discretization
of the faces. The surface mesh Bh(K) and the trial functions on the boundary ∂K
for the two dimensional finite element method fit into the theory of the boundary
element method reviewed in Section 2. Following the ideas given there, we obtain
an approximation tKz of the Neumann trace γK1 ψz in the form

tKz =
∑

τ∈ΦN (K)

tττ with tKz = V−1
K,h(

1
2
MK,h + KK,h)g

K

z
. (9)

For each element K ∈ Kh, the approximations of the Dirichlet and Neumann
traces of the trial functions ψz with z ∈ N (K) are gathered in the matrices

DK =
(
gK
z

)
z∈N (K)

and NK =
(
tKz

)
z∈N (K)

such that each column corresponds to the datum of one ψz. The relation (9)
turns into

NK = V−1
K,h(

1
2
MK,h + KK,h)DK .

For a better understanding, we give the dimensions of the matrices

VK,h ∈ R|Bh(K)|×|Bh(K)| DK ∈ R|Mh(K)|×|N (K)|

KK,h ∈ R|Bh(K)|×|Mh(K)| NK ∈ R|Bh(K)|×|N (K)|

MK,h ∈ R|Bh(K)|×|Mh(K)|.

(10)

In the global finite element computation, the number of degrees of freedom which
correspond to the element K is |N (K)|. For the local computations, we use
|Bh(K)| degrees of freedom to approximate the Neumann trace of each trial func-
tion and the Dirichlet trace is represented by |Mh(K)| coefficients. Obviously,
we have

|N (K)| ≤ |Mh(K)| and |F(K)| ≤ |Bh(K)|.
Since we know how to approximate the Dirichlet and Neumann data of the trial
functions on the element boundaries, we can use the representation formula (4)
to get an approximation inside the elements.
Finally, we consider the approximation of the bilinear form aΩ(·, ·). We assume
that the material coefficient is constant on each element such that

a(x) = aK for x ∈ K and K ∈ Kh,

or it is approximated by a piecewise constant function. Let ψ, φ ∈ Ψ, it is

aΩ(ψ, φ) =
∑
K∈Kh

aK

∫
K

∇ψ · ∇φ =
∑
K∈Kh

aK
2

( ∫
∂K

γK1 ψγ
K
0 φ+

∫
∂K

γK1 φγ
K
0 ψ

)
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according to Green’s first identity and since ψ as well as φ are harmonic on each
element K ∈ Kh. Obviously, there are x, z ∈ Nh such that ψ = ψx and φ = ψz
and if there is no K ∈ Kh with x, z ∈ N (K), we have aΩ(ψ, φ) = 0. On the other
hand, for each K ∈ Kh with x, z ∈ N (K) we get the approximations gKx , g

K
z for

the Dirichlet traces and tKx , t
K
z for the Neumann traces of the trial functions ψx

and ψz out of the matrices DK and NK , respectively. For the integrals in the
representation of the bilinear form above, we choose the approximation∫
∂K

γK1 ψxγ
K
0 ψz ≈

∫
∂K

tKx g
K
z =

∑
τ∈ΦN (K)

tτ
∑

ϕ∈ΦD(K)

gϕ(τ, ϕ)L2(∂K) =
(
tKx
)>

MK,h g
K

z

with the mass matrix MK,h defined as in Section 2. This yields the symmetric
approximation

aΩ(ψx, ψz) ≈
∑
K∈Kh

aK
2

((
tKx
)>

MK,h g
K

z
+
(
tKz
)>

MK,h g
K

x

)
, (11)

where the coefficient vectors are identical to zero if x 6∈ N (K) and z 6∈ N (K),
respectively. Consequently, we use the local matrix

N>K MK,h DK ∈ R|N (K)|×|N (K)|

for each K ∈ Kh to set up the global finite element matrix. Due to the symmetric
approximation (11) of the bilinear form, we obtain a symmetric system matrix
in the finite element method which is sparse and positive definite. Therefore, the
conjugate gradient method is applied to get the solution of the system of linear
equations.

Remark 3. Before the finite element matrix is set up, it is necessary to compute
the approximations of the Dirichlet problems on the faces and to get the Neumann
traces. This is done in a preprocessing step where first the 2D finite element
approximations on the faces and afterwards the boundary integral matrices as
well as the Neumann traces are computed. Each step is fully parallelizable since
the problems on the faces as well as those on the elements are independent from
each other.

4 Convergence estimates

Let u = u0 +uD be the solution of the model problem obtained by the variational
formulation (2) and ul = u0l + uDl its Galerkin approximation gained by (7)
and (8) with the approximated trial space Vl. We assume that the extension of
the Dirichlet datum gD can be chosen such that uD = uDl ∈ span Ψl. In this
section, our goal is to introduce an interpolation operator Il : H2(Ω) → span Ψl

such that
‖v − Ilv‖H1(Ω) ≤ ch |v|H2(Ω) for v ∈ H2(Ω), (12)
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where h = max{hK : K ∈ Kh}. The definition of an interpolation operator with
this approximation property is a non-trivial task. However, it is an important tool
for theoretical considerations and it enables us to prove the following convergence
estimates.

Theorem 1. Let Kh be a regular and stable mesh of a bounded polyhedral domain
Ω ⊂ R3. Then, it is

‖u− ul‖H1(Ω) ≤ ch |u|H2(Ω) for u ∈ H2(Ω),

where the constant c only depends on the regularity and stability parameters of
the mesh and on the level l.

Proof. Since Vl ⊂ V is a conforming approximation space, we can apply Céa’s
lemma, see [7], which yields

‖u− ul‖H1(Ω) ≤
M

m
min

v∈uDl+Vl
‖u− v‖H1(Ω) ≤

M

m
‖u− Ilu‖H1(Ω),

where we used Ilu ∈ uDl + Vl with the notation

uDl + Vl = {vl + uDl : vl ∈ Vl} ⊂ span Ψl.

The property (12) of the interpolation operator finishes the proof.

Remark 4. For the estimate in the theorem, we have implicitly assumed that
there are no errors in the evaluation of the bilinear form and the right hand side of
the Galerkin formulation. The case of approximate data f , gD, gN in the discrete
problem can be treated in the usual way, where the Strang lemma is used instead
of Céa’s lemma, see [7].

The change of the norm in which the finite element error is measured gives an
additional power of h if the adjoint variational formulation admits a sufficiently
regular solution.

Theorem 2. Let Kh be a regular mesh of a bounded polyhedral domain Ω ⊂ R3.
Under the condition that for any g ∈ L2(Ω) there is a unique solution of

Seek w ∈ V : aΩ(v, w) = (g, v)Ω, ∀v ∈ V,

with w ∈ H2(Ω) such that

|w|H2(Ω) ≤ C ‖g‖L2(Ω),

it is
‖u− ul‖L2(Ω) ≤ ch2 |u|H2(Ω) for u ∈ H2(Ω),

where the constant c only depends on the regularity and stability parameters of
the mesh and on the level l.
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Proof. We use the usual Aubin-Nitsche trick, see [7]. Since u− ul ∈ V ⊂ L2(Ω)
and due to the preliminaries of the theorem, there is a unique function w ∈ H2(Ω)
such that

aΩ(v, w) = (u− ul, v)Ω for v ∈ V

and
|w|H2(Ω) ≤ C ‖u− ul‖L2(Ω).

The Galerkin orthogonality

aΩ(u− ul, vl) = 0 for vl ∈ Vl

and the continuity of the bilinear form yield for arbitrary vl ∈ Vl

‖u− ul‖2
L2(Ω) = (u− ul, u− ul)Ω = aΩ(u− ul, w)

= aΩ(u− ul, w − vl) ≤M ‖u− ul‖H1(Ω)‖w − vl‖H1(Ω).

The two terms on the right hand side are estimated separately. For the second
one, we choose vl = Ilw ∈ Vl and obtain with (12)

‖w − Ilw‖H1(Ω) ≤ ch|w|H2(Ω) ≤ ch‖u− ul‖L2(Ω).

The first term ‖u−ul‖H1(Ω), which is the approximation error of the finite element
method in the H1-norm, is treated by Theorem 1. Finally, we obtain

‖u− ul‖2
L2(Ω) ≤ cMh2 |u|H2(Ω)‖u− ul‖L2(Ω).

Dividing by ‖u− ul‖L2(Ω) yields the desired estimate.

The rest of this section is devoted to give an appropriate interpolation operator.
Since H2(Ω) ⊂ C0(Ω) according to the Sobolev embedding theorem, see [6], the
pointwise evaluation of a function v ∈ H2(Ω) is well defined and we can utilize a
nodal interpolation operator. We set

Ilv =
∑
ψ∈Ψl

αψψ with αψz = v(z) for z ∈ Nh.

As in [21], we start studying the properties of the interpolation operator over one
element K ∈ Kh. Consequently, we are just interested in the linear combination
of trial functions which belong to nodes in N (K).

Lemma 1. The restriction of the interpolation operator Il to an element K ∈ Kh
fulfills Ilp = p on K for each linear polynomial p ∈ P1(K).

Proof. Let p ∈ P1(K). Obviously, the restriction of p to each face F ∈ F(K)
and all the edges E ∈ E(F ) is linear. Due to the definition of the trial functions
ψlz ∈ Ψl for z ∈ N (F ) and the nodal interpolation, p and Ilp coincide on the

14



polygonal boundary ∂F of the face F and both fulfill the weak formulation of the
two dimensional Laplace equation in the parameter space of the face F ∈ F(K).
Since the Galerkin formulation for the Dirichlet problem of the Laplace equation
admits a unique solution, the linear function p and its interpolation Ilp coincide
on all faces F ∈ F(K). With the same argument, we obtain Ilp = p in K since
p and Ilp agree on ∂K and fulfill the Laplace equation in K.

The proof of the next lemma makes use of an auxiliary discretization of the
element into tetrahedra. For this reason, we connect all nodes in the triangu-
lation Bh(K) of ∂K with the center zK from Definition 2. Such a constructed
tetrahedra is denoted by Ttet in the following.

Proposition 1. The auxiliary discretization of an element into tetrahedra, as
described above, is regular in the classical sense of finite element methods. So,
neighbouring tetrahedra either share a common node, edge or triangular face and
the aspect ratio of their diameter hTtet and the radius ρTtet of their insphere is
bounded uniformly from above, i.e. hTtet/ρTtet < σtet. Here, σtet only depends on
the regularity and stability parameters of Definitions 2 and 3 and on the level l
in the face discretization.

Proof. For an arbitrary tetrahedron, we have the relation

ρtet =
3Vtet

Atet

,

where Vtet is the volume and Atet is the surface area of the tetrahedron. This
relation is seen as follows. The insphere is perpendicular to the faces of the
tetrahedron and thus Vtet is equal to the sum of the volumes Vtet,i, i = 1, . . . , 4, of
the four tetrahedrons obtained by connecting the vertexes with the center of the
insphere. Each volume is computed as Vtet,i = 1

3
ρtet|Ti|, where Ti is the triangle

on the surface of the initial tetrahedron. Consequently, it is

Vtet =
4∑
i=1

Vtet,i =
4∑
i=1

1

3
ρtet|Ti| =

1

3
ρtetAtet.

Let K ∈ Kh be an element of a regular and stable mesh. First, we study the
case l = 0, where only one node per face is added for the triangulation of the
element surface. We consider the auxiliary discretization and choose an arbitrary
tetrahedron Ttet with corresponding triangle T ∈ Bh(F ) in some face F ∈ F(K)
and with an edge E ∈ E(F ) such that E ⊂ ∂T ∩ ∂F . A rough estimate for the
surface area of this tetrahedron is

Atet =
4∑
i=1

|Ti| ≤
4∑
i=1

h2
K

2
= 2h2

K .
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Let dist(zK , T ) be the distance of the center zK to the triangle T and let hTE be
the hight of the triangle T over the edge E. For the volume of Ttet, we have

Vtet =
1

3
dist(zK , T )|T | = 1

6
dist(zK , T )hTEhE.

Since the faces of the element K and the element itself are star-shaped with
respect to circles and a ball according to Definitions 1 and 2, it is ρF ≤ hTE as
well as ρK ≤ dist(zK , T ). Consequently, we obtain

Vtet ≥
1

6
ρKρFhE ≥

1

6σKσF
hKhFhE ≥

1

6σKσF
h3
E.

This yields together with the stability in Definition 3

hTtet
ρTtet

=
hTtetAtet

3Vtet

≤ 4σKσFh
3
K

h3
E

≤ 4σKσFc
3
K.

In the case l ≥ 1, the volume Vtet gets smaller. The triangle T ⊂ F ∈ F(K) is
obtained by successive splitting of an initial triangle T0 of the mesh with level zero.
Due to the construction, these triangles are similar and the relation |T | = |T0|/4l
holds. Taking into account this relation in the considerations above gives the
general estimate

hTtet
ρTtet

≤ σtet with σtet = 4l+1σKσFc
3
K.

Lemma 2. Let Kh be a regular and stable mesh and K ∈ Kh with hK = 1. There
exists a constant c which only depends on the regularity and stability parameters
as well as on the level l such that

‖Ilv‖H1(K) ≤ c ‖v‖H2(K) for v ∈ H2(K).

Proof. Let v ∈ H2(K). The interpolation Ilv fulfills the weak formulation

Find ṽ ∈ H1(K) : γK0 ṽ = gv and (∇ṽ,∇w)L2(K) = 0, ∀w ∈ H1
0 (K)

with a piecewise linear function gv = Ilv
∣∣
∂K

on the boundary. To obtain ho-
mogeneous boundary data, we decompose ṽ = ṽ0 + ṽg, where ṽ0 ∈ H1

0 (K) and
ṽg ∈ H1(K) with γK0 ṽg = gv. According to Proposition 1, the auxiliary dis-
cretization of K into tetrahedra is regular in the classical sense of finite elements
methods. Therefore, we can use the standard interpolation operator on tetra-
hedral meshes for linear trial functions to get some ṽg. Due to this choice and
since hK = 1, it is

‖v − ṽg‖H1(K) ≤ C1 |v|H2(K),
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see [7], where the constant C1 only depends on the maximal aspect ratio σtet.
The reverse triangular inequality yields

‖ṽg‖H1(K) ≤ C1 |v|H2(K) + ‖v‖H1(K) ≤ max{1, C1} ‖v‖H2(K).

The function ṽ0 fulfills

Find ṽ0 ∈ H1
0 (K) : (∇ṽ0 · ∇w)L2(K) = −(∇ṽg · ∇w)L2(K), ∀w ∈ H1

0 (K).

Since K can be embedded into a cube with side length hK , the Poincaré inequality
in [3] takes the form

‖w‖L2(K) ≤ hK |w|H1(K) for w ∈ H1
0 (K).

According to this inequality and since hK = 1, it is

‖ṽ0‖2
H1(K) = ‖ṽ0‖2

L2(K) + |ṽ0|2H1(K) ≤ 2|ṽ0|2H1(K).

Due to the variational formulation for ṽ0, we find with the help of the Cauchy-
Schwarz inequality that

|ṽ0|2H1(K) =
∣∣(∇ṽg,∇ṽ0)L2(K)

∣∣ ≤ |ṽg|H1(K)|ṽ0|H1(K)

which yields
|ṽ0|H1(K) ≤ ‖ṽg‖H1(K).

The final step in the proof is to combine all estimates as follows

‖Ilv‖H1(K) ≤ ‖ṽ0‖H1(K) + ‖ṽg‖H1(K)

≤
√

2 |ṽ0|H1(K) + ‖ṽg‖H1(K)

≤
(

1 +
√

2
)
‖ṽg‖H1(K)

≤ max{1, C1}
(

1 +
√

2
)
‖v‖H2(K).

Applying all previous considerations, we are able to prove the interpolation error
estimate (12).

Theorem 3. For a regular and stable mesh Kh of a bounded polyhedral domain
Ω ⊂ R3, the interpolation operators Il : H2(Ω)→ span Ψl fulfills

‖v − Ilv‖H1(Ω) ≤ ch |v|H2(Ω) for v ∈ H2(Ω)

where h = max{hK : K ∈ Kh} and the constant c only depends on the regularity
and stability parameters of the mesh and on the level l.
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Proof. Let us start to examine the error over one element K ∈ Kh. We scale
this element such that its diameter becomes one. For this, the transformation
x̂ 7→ x = zK +hK x̂ ∈ K is applied and the scaled element is denoted by K̂. With
the notation v̂(x̂) = v(zK +hK x̂) and the variable transformation in the integrals
of the norms, we obtain for v ∈ H2(K)

‖v‖L2(K) = h
3/2
K ‖v̂‖L2(K̂),

|v|H1(K) = h
1/2
K |v̂|H1(K̂),

|v|H2(K) = h
−1/2
K |v̂|H2(K̂)

and thus v̂ ∈ H2(K̂).

Let Îl be the interpolation operator with respect to K̂. Due to the pointwise
interpolation, it does not matter if v is first transformed into v̂ and then interpo-
lated or vice versa, i.e.

Îlv̂ = Îlv.

Consequently, we obtain

‖v − Ilv‖2
H1(K) = ‖v − Ilv‖2

L2(K) + |v − Ilv|2H1(K)

= h3
K‖v̂ − Îlv̂‖2

L2(K̂)
+ hK |v̂ − Îlv̂|2H1(K̂)

≤ hK‖v̂ − Îlv̂‖2
H1(K̂)

since hK ≤ 1. According to the general approximation theory in Sobolev spaces,
see [4], there is a linear polynomial p̂ ∈ P1(K̂) which satisfies

|v̂ − p̂|Hk(K̂) ≤ C(k, σK) |v̂|H2(K̂) for k = 0, 1. (13)

Due to the scaling, the constant C(k, σK) is independent on the mesh size hK .
Applying Lemmata 1 and 2, we obtain

‖v̂ − Îlv̂‖H1(K̂) ≤ ‖v̂ − p̂‖H1(K̂) + ‖Îl(v̂ − p̂)‖H1(K̂)

≤ (1 + c) ‖v̂ − p̂‖H2(K̂) (14)

≤ (1 + c)C(σK) |v̂|H2(K̂),

where we also have used (13) and the fact that the second derivatives of p̂ vanish.
Comparing the last two estimates and transforming back to the element K yields

‖v − Ilv‖2
H1(K) ≤ chK |v̂|2H2(K̂)

= ch2
K |v|2H2(K)

In the last step of the proof, we have to sum up this inequality over all elements
of the mesh and apply the square root to it. This gives

‖v − Ilv‖H1(Ω) ≤ c

(∑
K∈Kh

h2
K |v|2H2(K)

)1/2

≤ ch |v|H2(K)

and finishes the proof.
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5 Numerical experiments

All numerical examples in this section are formulated on the unite cube. As
discretization, we utilize Voronoi meshes which are an example of polyhedral
meshes. In Figure 3, the first meshes of the sequence for the convergence exper-
iments are visualized. We see that the elements are non-trivial polyhedra with
arbitrary polygonal faces. The meshes have been produced by generating random
points according to [12] and constructing the corresponding Voronoi diagram in
accordance with [11]. In the set up of the local boundary element matrices, we
use a semi analytical integration scheme. The inner integral in the Galerkin ma-
trices is evaluated analytically and the outer one is approximated by Gaussian
quadrature.

Figure 3: Sequence of Voronoi meshes

In Table 1, we sketch the number of elements |Kh| and the number of nodes |Nh| in
the different Voronoi meshes. The proposed strategy approximates the solution by
a linear combination of as many trial function as nodes are in the mesh. Therefore,
the number of degrees of freedom in the finite element method is |Nh| minus the
number of nodes on the Dirichlet boundary ΓD. The method proposed in [8]
needs to triangulate the surfaces of the elements and the number of trial functions
corresponds to the total number of nodes after the triangulation. In Table 1, this
total number of nodes is listed in the case that the faces are triangulated with

|Kh| |Nh| l = 0 l = 1 l = 2

9 46 98 424 1790
76 416 905 4170 18011
712 4186 9081 42446 184170
1316 7850 17013 79676 345903
5606 34427 74457 349663 1519143
26362 164915 356189 1675171 7280603

Table 1: Total number of nodes when working with triangulated surfaces of
different mesh levels l
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|N (K)| l |Mh(K)| |Bh(K)|
12 0 20 36

1 74 144
2 290 576
3 1154 2304
4 4610 9216

Table 2: Number of nodes |Mh(K)| and number of triangles |Bh(K)| in the
surface discretization of the element in Figure 2 for different levels

the level l = 0, 1, 2. We recognize that in this situation much more trial functions
and thus degrees of freedom are required in the global computations. Roughly
speaking, the number of nodes doubles if the coarsest discretization of the faces is
used. If a finer triangulation is needed, the number of nodes and thus the number
of degrees of freedom increase ten times for l = 1 and even more than forty times
for l = 2. Since the diameter of the elements are equal in all four situations, the
approximation errors of the finite element computations are of the same order.
Therefore, the method proposed in this manuscript is favourable because it has
a smaller system matrix in the global finite element method. The dimension of
this matrix is DoF×DoF, where DoF denotes the number of degrees of freedom
which corresponds to |Nh| minus the nodes on the Dirichlet boundary ΓD.
In the following, we investigate the influence of the face discretization. These
triangulations of the faces are required to define the approximated trial functions
ψlz ∈ Ψl on the faces with the help of local, two dimensional finite element
methods. The finer the discretization is chosen the better we approximate the
original trial functions ψz ∈ Ψh. Even though, the face discretization does not
blow up the global system matrix, the computational effort for the local problems
increases if the discretization level l is raised. As one example, we pick the
element K from Figure 2 and list the number of nodes |Mh(K)| and the number
of triangles |Bh(K)| in the surface discretization of K for different levels l in
Table 2. We remember the dimensions of the matrices in the boundary element
method which are given in (10). The main tasks in the local problems are the
evaluation of the boundary element matrix entries and the inversion of the single
layer potential matrix VK,h which gives a local complexity of O(|Bh(K)|3).
In the next example, we analyse the rates of convergence for different values of l.

Example 1. Consider the Dirichlet boundary value problem

−∆u = 0 in Ω = (0, 1)3,

u = gD on Γ

with gD = γ0u such that

u(x) = e2
√

2π(x1−0.3) cos(2π(x2 − 0.3)) sin(2π(x3 − 0.3)), x ∈ R3
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Figure 4: Relative error in ‖ · ‖E (•) and ‖ · ‖L2(Ω) (+) with respect to h for
l = 0, 1, 2 in Example 1 and triangles with slope one and two

is the exact solution. In Figure 4, the approximation errors ‖u − uh‖E and
‖u− uh‖L2(Ω) are given with respect to h = max{hK : K ∈ Kh} in a logarithmic
plot for different discretization levels l = 0, 1, 2 of the faces.

This example shows that the discretization level of the faces does not influence
the rates of convergence as we expect from the theory in Section 4. Therefore,
the coarsest face discretization with l = 0 is sufficient to analyse the convergence
rates in the forthcoming numerical experiments. Due to this choice, the local
complexity in the two dimensional finite element method on the faces F ∈ Fh
and the local boundary element methods on the elements K ∈ Kh is rather
small. Furthermore, in Figure 4, we recognize linear convergence for the ap-
proximation error measured in the energy norm and quadratic convergence if the
error is measured in the L2-norm. This is the first numerical experiment in three
space dimensions which confirms the rates of convergence for the BEM-based fi-
nite element method on Voronoi meshes with polyhedral elements and arbitrary
polygonal faces.
Beside the Dirichlet problem for the Laplace equation, we also give examples for
the Poisson problem and the case of a non-constant material parameter.

Example 2. The function u(x) = cos(πx1) sin(2πx2) sin(3πx3), x ∈ R3 fulfills
the boundary value problem

−∆u = f in Ω = (0, 1)3,

u = gD on Γ

with f = 14π2u and gD = γ0u fixed. In Figure 5, the errors ‖u − uh‖E and
‖u − uh‖L2(Ω) are shown with respect to h = max{hK : K ∈ Kh} in logarithmic
scale.
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Figure 5: Relative error with respect to h for Example 2 with l = 0 and triangles
with slope one and two

Example 3. We take the two functions already considered in Example 1 and 2
and label them by u1 and u2, respectively. They fulfill the boundary value prob-
lems

−div
(
(7

2
− x1 − x2 − x3)∇ui

)
= fi in Ω = (0, 1)3,

ui = giD on Γ

for i = 1, 2, where fi and giD have to be chosen appropriately. In Figure 6, the
approximation errors ‖ui − uih‖E and ‖ui − uih‖L2(Ω) are shown with respect to
h = max{hK : K ∈ Kh} in logarithmic scale for i = 1, 2.

In the final two examples, we have also obtained optimal rates of convergence
for the finite element approximation which confirm the theoretical results of the
previous section. The BEM-based FEM yields linear convergence in the energy
norm and quadratic convergence in the L2-norm.

1e− 02

1e− 01

1e+ 00

1e− 01 1e+ 00

1
1

1

2 ‖ · ‖E
‖ · ‖E
‖ · ‖L2

‖ · ‖L2

Figure 6: Relative error ‖ui − uih‖ for i = 1 (•) and i = 2 (+) with respect to h
for Example 3 and triangles with slope one and two
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6 Conclusion

The classical convergence rates of finite element methods on simplicial meshes are
recovered by the BEM-based FEM. However, the new methodology benefits from
the flexibility with respect to arbitrary meshes with polyhedral elements having
polygonal faces. This behaviour together with the conforming approximations
makes the BEM-based finite element method an interesting and attractive strat-
egy for ongoing research. Since the trial functions are defined in accordance with
the underlying differential equation, the system of linear equations as well as the
approximations contain already some information of the solution. This property
is advantageous when considering other differential equations like convection-
diffusion, for example, and it has to be investigated further.

References

[1] R. A. Adams. Sobolev Spaces. Academic Press, 1975.

[2] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini, and
A. Russo. Basic principles of virtual element methods. Math. Models Methods
Appl. Sci., 2012. DOI: 10.1142/S0218202512500492.

[3] D. Braess. Finite Elements. Cambridge University Press, Cambridge, third
edition, 2007. Theory, fast solvers, and applications in elasticity theory,
Translated from the German by Larry L. Schumaker.

[4] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element
Methods, volume 15 of Texts in Applied Mathematics. Springer, New York,
second edition, 2002.

[5] F. Brezzi, K. Lipnikov, and M. Shashkov. Convergence of the mimetic finite
difference method for diffusion problems on polyhedral meshes. SIAM J.
Numer. Anal., 43(5):1872–1896, 2005.

[6] V. I. Burenkov. Sobolev spaces on domains, volume 137. BG Teubner, 1998.

[7] P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-
Holland, Amsterdam, 1978.

[8] D. Copeland, U. Langer, and D. Pusch. From the boundary element domain
decomposition methods to local Trefftz finite element methods on polyhedral
meshes. In Domain decomposition methods in science and engineering XVIII,
volume 70 of Lect. Notes Comput. Sci. Eng., pages 315–322. Springer, Berlin
Heidelberg, 2009.

23



[9] D. M. Copeland. Boundary-element-based finite element methods for
Helmholtz and Maxwell equations on general polyhedral meshes. Int. J.
Appl. Math. Comput. Sci., 5(1):60–73, 2009.
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